Spaces:
Runtime error
Runtime error
Commit
·
ef0f098
1
Parent(s):
3800e81
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,9 @@ HF_API = os.getenv('HF_API')
|
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
import torch
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto",trust_remote_code=True).eval()
|
17 |
|
18 |
def generate_summary(prompt):
|
19 |
# Add instructions to the prompt to signal that you want a summary
|
@@ -64,7 +63,7 @@ def search_pubmed(query, retmax):
|
|
64 |
return pd.DataFrame(article_list)
|
65 |
|
66 |
# Function to summarize articles using Hugging Face's API
|
67 |
-
def summarize_with_huggingface(model, selected_articles, USE_LOCAL=
|
68 |
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
69 |
# Your Hugging Face API key
|
70 |
API_KEY = HF_API
|
@@ -121,8 +120,8 @@ def summarize_articles(indices, articles_for_display):
|
|
121 |
|
122 |
PASSWORD = "pass"
|
123 |
|
124 |
-
def check_password(password):
|
125 |
-
if password == PASSWORD:
|
126 |
return True, "Welcome!"
|
127 |
else:
|
128 |
return False, "Incorrect username or password."
|
@@ -138,32 +137,30 @@ with gr.Blocks() as demo:
|
|
138 |
login_button = gr.Button("Login")
|
139 |
login_result = gr.Textbox(label="Login Result", interactive=False)
|
140 |
|
141 |
-
|
142 |
|
143 |
-
query_input = gr.Textbox(label="Query Keywords")
|
144 |
with gr.Row():
|
145 |
-
retmax_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of articles")
|
146 |
model_input = gr.Textbox(label="Enter the model to use", value="h2oai/h2ogpt-4096-llama2-7b-chat")
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
|
156 |
def process_login(is_success, message):
|
157 |
if is_success:
|
158 |
model_input.visible = True
|
159 |
-
|
160 |
summarize_button.visible = True
|
161 |
-
login_result.value
|
162 |
login_result.visible = True
|
163 |
|
164 |
-
login_button.click(check_password, inputs=[password_input], outputs=[
|
165 |
-
process_login, [login_result], []
|
166 |
-
)
|
167 |
|
168 |
def update_output_table(query, retmax):
|
169 |
df = search_pubmed(query, retmax)
|
@@ -198,4 +195,4 @@ if False:
|
|
198 |
outputs=summary_output
|
199 |
)
|
200 |
|
201 |
-
demo.launch(debug=True)
|
|
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
import torch
|
12 |
|
13 |
+
# Load the model and tokenizer
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto",trust_remote_code=True).eval()
|
|
|
16 |
|
17 |
def generate_summary(prompt):
|
18 |
# Add instructions to the prompt to signal that you want a summary
|
|
|
63 |
return pd.DataFrame(article_list)
|
64 |
|
65 |
# Function to summarize articles using Hugging Face's API
|
66 |
+
def summarize_with_huggingface(model, selected_articles, USE_LOCAL=True):
|
67 |
API_URL = f"https://api-inference.huggingface.co/models/{model}"
|
68 |
# Your Hugging Face API key
|
69 |
API_KEY = HF_API
|
|
|
120 |
|
121 |
PASSWORD = "pass"
|
122 |
|
123 |
+
def check_password(username, password):
|
124 |
+
if username == USERNAME and password == PASSWORD:
|
125 |
return True, "Welcome!"
|
126 |
else:
|
127 |
return False, "Incorrect username or password."
|
|
|
137 |
login_button = gr.Button("Login")
|
138 |
login_result = gr.Textbox(label="Login Result", interactive=False)
|
139 |
|
140 |
+
login_button.click(check_password, inputs=[username_input, password_input], outputs=[login_result])
|
141 |
|
|
|
142 |
with gr.Row():
|
|
|
143 |
model_input = gr.Textbox(label="Enter the model to use", value="h2oai/h2ogpt-4096-llama2-7b-chat")
|
144 |
+
query_input = gr.Textbox(label="Query Keywords")
|
145 |
+
retmax_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of articles")
|
146 |
+
search_button = gr.Button("Search")
|
147 |
+
output_table = gr.Dataframe(headers=["PMID", "Authors", "Title","Abstract" ])
|
148 |
+
summarize_button = gr.Button("Summarize")
|
149 |
+
summary_output = gr.Textbox()
|
150 |
|
151 |
+
model_input.visible = False
|
152 |
+
query_input.visible = False
|
153 |
+
summarize_button.visible = False
|
154 |
|
155 |
def process_login(is_success, message):
|
156 |
if is_success:
|
157 |
model_input.visible = True
|
158 |
+
query_button.visible = True
|
159 |
summarize_button.visible = True
|
160 |
+
login_result.update(value=message)
|
161 |
login_result.visible = True
|
162 |
|
163 |
+
login_button.click(check_password, inputs=[username_input, password_input], outputs=[process_login])
|
|
|
|
|
164 |
|
165 |
def update_output_table(query, retmax):
|
166 |
df = search_pubmed(query, retmax)
|
|
|
195 |
outputs=summary_output
|
196 |
)
|
197 |
|
198 |
+
demo.launch(auth=("user", "pass1234"), debug=True)
|