diff --git a/.gitattributes b/.gitattributes
index a6344aac8c09253b3b630fb776ae94478aa0275b..6cc1bb3f4755ad4e65bca43ea68e41e1e2313b71 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -33,3 +33,8 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+test_samples/open_door.jpg filter=lfs diff=lfs merge=lfs -text
+test_samples/oxford.jpeg filter=lfs diff=lfs merge=lfs -text
+test_samples/changi.jpg filter=lfs diff=lfs merge=lfs -text
+test_samples/friends.jpg filter=lfs diff=lfs merge=lfs -text
+test_samples/jesus.jpg filter=lfs diff=lfs merge=lfs -text
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..256e737fbe4078a79d1bb088d7d9376784fa706a
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,4 @@
+assets/*
+pycache/*
+__pycache__/*
+.DS_Store
diff --git a/README.md b/README.md
index 1f7fb4cb3b7240e31c988632350378845d71b433..08e1ef703c761ca7969ec832e492559b5cad6110 100644
--- a/README.md
+++ b/README.md
@@ -1,13 +1,76 @@
----
-title: Vmem
-emoji: 👁
-colorFrom: yellow
-colorTo: gray
-sdk: gradio
-sdk_version: 5.33.2
-app_file: app.py
-pinned: false
-license: apache-2.0
----
-
-Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
+
+
VMem: Consistent Video Scene Generation with Surfel-Indexed View Memory
+
+

+

+

+

+
+[Runjia Li](https://runjiali-rl.github.io/), [Philip Torr](https://www.robots.ox.ac.uk/~phst/), [Andrea Vedaldi](https://www.robots.ox.ac.uk/~vedaldi/), [Tomas Jakab](https://www.robots.ox.ac.uk/~tomj/)
+
+
+[University of Oxford](https://www.robots.ox.ac.uk/~vgg/)
+
+
+
+
+
+
+
+
+# Overview
+
+`VMem` is a plug-and-play memory mechanism of image-set models for consistent scene generation.
+Existing methods either rely on inpainting with explicit geometry estimation, which suffers from inaccuracies, or use limited context windows in video-based approaches, leading to poor long-term coherence. To overcome these issues, we introduce Surfel Memory of Views (VMem), which anchors past views to surface elements (surfels) they observed. This enables conditioning novel view generation on the most relevant past views rather than just the most recent ones, enhancing long-term scene consistency while reducing computational cost.
+
+
+# :wrench: Installation
+
+```bash
+conda create -n vmem python=3.10
+conda activate vmem
+pip install -r requirements.txt
+```
+
+
+# :rocket: Usage
+
+You need to properly authenticate with Hugging Face to download our model weights. Once set up, our code will handle it automatically at your first run. You can authenticate by running
+
+```bash
+# This will prompt you to enter your Hugging Face credentials.
+huggingface-cli login
+```
+
+Once authenticated, go to our model card [here](https://huggingface.co/stabilityai/stable-virtual-camera) and enter your information for access.
+
+We provide a demo for you to interact with `VMem`. Simply run
+
+```bash
+python app.py
+```
+
+
+## :heart: Acknowledgement
+This work is built on top of [CUT3R](https://github.com/CUT3R/CUT3R), [DUSt3R](https://github.com/naver/dust3r) and [Stable Virtual Camera](https://github.com/stability-ai/stable-virtual-camera). We thank them for their great works.
+
+
+
+
+
+# :books: Citing
+
+If you find this repository useful, please consider giving a star :star: and citation.
+
+```
+@article{zhou2025stable,
+ title={Stable Virtual Camera: Generative View Synthesis with Diffusion Models},
+ author={Jensen (Jinghao) Zhou and Hang Gao and Vikram Voleti and Aaryaman Vasishta and Chun-Han Yao and Mark Boss and
+ Philip Torr and Christian Rupprecht and Varun Jampani
+ },
+ journal={arXiv preprint arXiv:2503.14489},
+ year={2025}
+}
+```
\ No newline at end of file
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..9006db68c99ca47304f71c956b9ee9eecc5329d6
--- /dev/null
+++ b/app.py
@@ -0,0 +1,933 @@
+from typing import List, Literal
+from pathlib import Path
+from functools import partial
+import spaces
+import gradio as gr
+import numpy as np
+import torch
+from torchvision.datasets.utils import download_and_extract_archive
+from einops import repeat
+from omegaconf import OmegaConf
+from modeling.pipeline import VMemPipeline
+from diffusers.utils import export_to_video, export_to_gif
+from scipy.spatial.transform import Rotation, Slerp
+from navigation import Navigator
+from PIL import Image
+from utils import tensor_to_pil, encode_vae_image, encode_image, get_default_intrinsics, load_img_and_K, transform_img_and_K
+import os
+import glob
+
+
+CONFIG_PATH = "configs/inference/inference.yaml"
+CONFIG = OmegaConf.load(CONFIG_PATH)
+DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+MODEL = VMemPipeline(CONFIG, DEVICE)
+NAVIGATORS = []
+
+
+NAVIGATION_FPS = 3
+WIDTH = 576
+HEIGHT = 576
+
+
+IMAGE_PATHS = ['test_samples/changi.jpg', 'test_samples/oxford.jpeg', 'test_samples/open_door.jpg', 'test_samples/jesus.jpg', 'test_samples/friends.jpg']
+
+# for asset_dir in ASSET_DIRS:
+# if os.path.exists(asset_dir):
+# for ext in ["*.jpg", "*.jpeg", "*.png"]:
+# IMAGE_PATHS.extend(glob.glob(os.path.join(asset_dir, ext)))
+
+# If no images found, create placeholders
+if not IMAGE_PATHS:
+ def create_placeholder_images(num_samples=5, height=HEIGHT, width=WIDTH):
+ """Create placeholder images for the demo"""
+ images = []
+ for i in range(num_samples):
+ # Create a gradient image as placeholder
+ img = np.zeros((height, width, 3), dtype=np.uint8)
+ for h in range(height):
+ for w in range(width):
+ img[h, w, 0] = int(255 * h / height) # Red gradient
+ img[h, w, 1] = int(255 * w / width) # Green gradient
+ img[h, w, 2] = int(255 * (i+1) / num_samples) # Blue varies by image
+ images.append(img)
+ return images
+
+ # Create placeholder video frames and poses
+ def create_placeholder_video_and_poses(num_samples=5, num_frames=1, height=HEIGHT, width=WIDTH):
+ """Create placeholder videos and poses for the demo"""
+ videos = []
+ poses = []
+
+ for i in range(num_samples):
+ # Create a simple video (just one frame initially for each sample)
+ frames = []
+ for j in range(num_frames):
+ # Create a gradient frame
+ img = np.zeros((height, width, 3), dtype=np.uint8)
+ for h in range(height):
+ for w in range(width):
+ img[h, w, 0] = int(255 * h / height) # Red gradient
+ img[h, w, 1] = int(255 * w / width) # Green gradient
+ img[h, w, 2] = int(255 * (i+1) / num_samples) # Blue varies by video
+
+ # Convert to torch tensor [C, H, W] with normalized values
+ frame = torch.from_numpy(img.transpose(2, 0, 1)).float() / 255.0
+ frames.append(frame)
+
+ video = torch.stack(frames)
+ videos.append(video)
+
+ # Create placeholder poses (identity matrices flattened)
+ # This creates a 4x4 identity matrix flattened to match expected format
+ # pose = torch.eye(4).flatten()[:-4] # Remove last row of 4x4 matrix
+ poses.append(torch.eye(4).unsqueeze(0).repeat(num_frames, 1, 1))
+
+ return videos, poses
+
+ first_frame_list = create_placeholder_images(num_samples=5)
+ video_list, poses_list = create_placeholder_video_and_poses(num_samples=5)
+
+# Function to load image from path
+def load_image_for_navigation(image_path):
+ """Load image from path and prepare for navigation"""
+ # Load image and get default intrinsics
+ image, _ = load_img_and_K(image_path, None, K=None, device=DEVICE)
+
+ # Transform image to the target size
+ config = OmegaConf.load(CONFIG_PATH)
+ image, _ = transform_img_and_K(image, (config.model.height, config.model.width), mode="crop", K=None)
+
+ # Create initial video with single frame and pose
+ video = image
+ pose = torch.eye(4).unsqueeze(0) # [1, 4, 4]
+
+ return {
+ "image": tensor_to_pil(image),
+ "video": video,
+ "pose": pose
+ }
+
+
+class CustomProgressBar:
+ def __init__(self, pbar):
+ self.pbar = pbar
+
+ def set_postfix(self, **kwargs):
+ pass
+
+ def __getattr__(self, attr):
+ return getattr(self.pbar, attr)
+
+def get_duration_navigate_video(video: torch.Tensor,
+ poses: torch.Tensor,
+ x_angle: float,
+ y_angle: float,
+ distance: float
+):
+ # Estimate processing time based on navigation complexity and number of frames
+ base_duration = 15 # Base duration in seconds
+
+ # Add time for more complex navigation operations
+ if abs(x_angle) > 20 or abs(y_angle) > 30:
+ base_duration += 10 # More time for sharp turns
+
+ if distance > 100:
+ base_duration += 10 # More time for longer distances
+
+ # Add time proportional to existing video length (more frames = more processing)
+ base_duration += min(10, len(video))
+
+ return base_duration
+
+@spaces.GPU(duration=get_duration_navigate_video)
+@torch.autocast("cuda")
+@torch.no_grad()
+def navigate_video(
+ video: torch.Tensor,
+ poses: torch.Tensor,
+ x_angle: float,
+ y_angle: float,
+ distance: float,
+):
+ """
+ Generate new video frames by navigating in the 3D scene.
+ This function uses the Navigator class from navigation.py to handle movement:
+ - y_angle parameter controls left/right turning (turn_left/turn_right methods)
+ - distance parameter controls forward movement (move_forward method)
+ - x_angle parameter controls vertical angle (not directly implemented in Navigator)
+
+ Each Navigator instance is stored based on the video session to maintain state.
+ """
+ try:
+ # Convert first frame to PIL Image for navigator
+ initial_frame = tensor_to_pil(video[0])
+
+ # Initialize the navigator for this session if not already done
+ if len(NAVIGATORS) == 0:
+ # Create a new navigator instance
+ NAVIGATORS.append(Navigator(MODEL, step_size=0.1, num_interpolation_frames=4))
+
+ # Get the initial pose and convert to numpy
+ initial_pose = poses[0].cpu().numpy().reshape(4, 4)
+
+ # Default camera intrinsics if not available
+ initial_K = np.array(get_default_intrinsics()[0])
+
+ # Initialize the navigator
+ NAVIGATORS[0].initialize(initial_frame, initial_pose, initial_K)
+
+ navigator = NAVIGATORS[0]
+
+ # Generate new frames based on navigation commands
+ new_frames = []
+
+ # First handle any x-angle (vertical angle) adjustments
+ # Note: This is approximated as Navigator doesn't directly support this
+ if abs(x_angle) > 0:
+ # Implementation for x-angle could be added here
+ # For now, we'll skip this as it's not directly supported
+ pass
+
+ # Next handle y-angle (turning left/right)
+ if abs(y_angle) > 0:
+ # Use Navigator's turn methods
+ if y_angle > 0:
+ new_frames = navigator.turn_left(abs(y_angle//2))
+ else:
+ new_frames = navigator.turn_right(abs(y_angle//2))
+ # Finally handle distance (moving forward)
+ elif distance > 0:
+ # Calculate number of steps based on distance
+ steps = max(1, int(distance / 10))
+ new_frames = navigator.move_forward(steps)
+ elif distance < 0:
+ # Handle moving backward if needed
+ steps = max(1, int(abs(distance) / 10))
+ new_frames = navigator.move_backward(steps)
+
+ if not new_frames:
+ # If no new frames were generated, return the current state
+ return video, poses, tensor_to_pil(video[-1]), export_to_video([tensor_to_pil(video[i]) for i in range(len(video))], fps=NAVIGATION_FPS), [(tensor_to_pil(video[i]), f"t={i}") for i in range(len(video))]
+
+ # Convert PIL images to tensors
+ new_frame_tensors = []
+ for frame in new_frames:
+ # Convert PIL Image to tensor [C, H, W]
+ frame_np = np.array(frame) / 255.0
+ # Convert to [-1, 1] range to match the expected format
+ frame_tensor = torch.from_numpy(frame_np.transpose(2, 0, 1)).float() * 2.0 - 1.0
+ new_frame_tensors.append(frame_tensor)
+
+ new_frames_tensor = torch.stack(new_frame_tensors)
+
+ # Get the updated camera poses from the navigator
+ current_pose = navigator.current_pose
+ new_poses = torch.from_numpy(current_pose).float().unsqueeze(0).repeat(len(new_frames), 1, 1)
+
+ # Reshape the poses to match the expected format
+ new_poses = new_poses.view(len(new_frames), 4, 4)
+
+ # Concatenate new frames and poses with existing ones
+ updated_video = torch.cat([video.cpu(), new_frames_tensor], dim=0)
+ updated_poses = torch.cat([poses.cpu(), new_poses], dim=0)
+
+ # Create output images for gallery
+ all_images = [(tensor_to_pil(updated_video[i]), f"t={i}") for i in range(len(updated_video))]
+ updated_video_pil = [tensor_to_pil(updated_video[i]) for i in range(len(updated_video))]
+
+ return (
+ updated_video,
+ updated_poses,
+ tensor_to_pil(updated_video[-1]), # Current view
+ export_to_video(updated_video_pil, fps=NAVIGATION_FPS), # Video
+ all_images, # Gallery
+ )
+ except Exception as e:
+ print(f"Error in navigate_video: {e}")
+ gr.Warning(f"Navigation error: {e}")
+ # Return the original inputs to avoid crashes
+ current_frame = tensor_to_pil(video[-1]) if len(video) > 0 else None
+ all_frames = [(tensor_to_pil(video[i]), f"t={i}") for i in range(len(video))]
+ video_frames = [tensor_to_pil(video[i]) for i in range(len(video))]
+ video_output = export_to_video(video_frames, fps=NAVIGATION_FPS) if video_frames else None
+ return video, poses, current_frame, video_output, all_frames
+
+
+def undo_navigation(
+ video: torch.Tensor,
+ poses: torch.Tensor,
+):
+ """
+ Undo the last navigation step by removing the last set of frames.
+ Uses the Navigator's undo method which in turn uses the pipeline's undo_latest_move
+ to properly handle surfels and state management.
+ """
+ if len(NAVIGATORS) > 0:
+ navigator = NAVIGATORS[0]
+
+ # Call the Navigator's undo method to handle the operation
+ success = navigator.undo()
+
+ if success:
+ # Since the navigator has handled the frame removal internally,
+ # we need to update our video and poses tensors to match
+ updated_video = video[:len(navigator.frames)]
+ updated_poses = poses[:len(navigator.frames)]
+
+ # Create gallery images
+ all_images = [(tensor_to_pil(updated_video[i]), f"t={i}") for i in range(len(updated_video))]
+
+ return (
+ updated_video,
+ updated_poses,
+ tensor_to_pil(updated_video[-1]),
+ export_to_video([tensor_to_pil(updated_video[i]) for i in range(len(updated_video))], fps=NAVIGATION_FPS),
+ all_images,
+ )
+ else:
+ gr.Warning("You have no moves left to undo!")
+ else:
+ gr.Warning("No navigation session available!")
+
+ # If undo wasn't successful or no navigator exists, return original state
+ all_images = [(tensor_to_pil(video[i]), f"t={i}") for i in range(len(video))]
+
+ return (
+ video,
+ poses,
+ tensor_to_pil(video[-1]),
+ export_to_video([tensor_to_pil(video[i]) for i in range(len(video))], fps=NAVIGATION_FPS),
+ all_images,
+ )
+
+
+
+
+
+def render_demo3(
+ s: Literal["Selection", "Generation"],
+ idx: int,
+ demo3_stage: gr.State,
+ demo3_selected_index: gr.State,
+ demo3_current_video: gr.State,
+ demo3_current_poses: gr.State
+):
+ gr.Markdown(
+ """
+ ## Single Image → Consistent Scene Navigation
+ > #### _Select an image and navigate through the scene by controlling camera movements._
+ """,
+ elem_classes=["task-title"]
+ )
+ match s:
+ case "Selection":
+ with gr.Group():
+ # Add upload functionality
+ with gr.Group(elem_classes=["gradio-box"]):
+ gr.Markdown("### Upload Your Own Image")
+ gr.Markdown("_Upload an image to navigate through its 3D scene_")
+ with gr.Row():
+ with gr.Column(scale=3):
+ upload_image = gr.Image(
+ label="Upload an image",
+ type="filepath",
+ height=300,
+ elem_id="upload-image"
+ )
+ with gr.Column(scale=1):
+ gr.Markdown("#### Instructions:")
+ gr.Markdown("1. Upload a clear, high-quality image")
+ gr.Markdown("2. Images with distinct visual features work best")
+ gr.Markdown("3. Landscape or architectural scenes are ideal")
+ upload_btn = gr.Button("Start Navigation", variant="primary", size="lg")
+
+ def process_uploaded_image(image_path):
+ if image_path is None:
+ gr.Warning("Please upload an image first")
+ return "Selection", None, None, None
+ try:
+ # Load image and prepare for navigation
+ result = load_image_for_navigation(image_path)
+
+ # Clear any existing navigators
+ global NAVIGATORS
+ NAVIGATORS = []
+
+ return (
+ "Generation",
+ None, # No predefined index for uploaded images
+ result["video"],
+ result["pose"],
+ )
+ except Exception as e:
+ print(f"Error in process_uploaded_image: {e}")
+ gr.Warning(f"Error processing uploaded image: {e}")
+ return "Selection", None, None, None
+
+ upload_btn.click(
+ fn=process_uploaded_image,
+ inputs=[upload_image],
+ outputs=[demo3_stage, demo3_selected_index, demo3_current_video, demo3_current_poses]
+ )
+
+ gr.Markdown("### Or Choose From Our Examples")
+ # Define image captions
+ image_captions = {
+ 'test_samples/changi.jpg': 'Changi Airport',
+ 'test_samples/oxford.jpeg': 'Oxford University',
+ 'test_samples/open_door.jpg': 'Bedroom Interior',
+ 'test_samples/jesus.jpg': 'Jesus College',
+ 'test_samples/friends.jpg': 'Friends Café'
+ }
+
+ # Load all images for the gallery with captions
+ gallery_images = []
+ for img_path in IMAGE_PATHS:
+ try:
+ # Get caption or default to basename
+ caption = image_captions.get(img_path, os.path.basename(img_path))
+ gallery_images.append((img_path, caption))
+ except Exception as e:
+ print(f"Error loading image {img_path}: {e}")
+
+ # Show image gallery for selection
+ demo3_image_gallery = gr.Gallery(
+ value=gallery_images,
+ label="Select an Image to Start Navigation",
+ columns=len(gallery_images),
+ height=400,
+ allow_preview=True,
+ preview=False,
+ elem_id="navigation-gallery"
+ )
+
+ gr.Markdown("_Click on an image to begin navigation_")
+
+ def start_navigation(evt: gr.SelectData):
+ try:
+ # Get the selected image path
+ selected_path = IMAGE_PATHS[evt.index]
+
+ # Load image and prepare for navigation
+ result = load_image_for_navigation(selected_path)
+
+ # Clear any existing navigators
+ global NAVIGATORS
+ NAVIGATORS = []
+
+ return (
+ "Generation",
+ evt.index,
+ result["video"],
+ result["pose"],
+ )
+ except Exception as e:
+ print(f"Error in start_navigation: {e}")
+ gr.Warning(f"Error starting navigation: {e}")
+ return "Selection", None, None, None
+
+ demo3_image_gallery.select(
+ fn=start_navigation,
+ inputs=None,
+ outputs=[demo3_stage, demo3_selected_index, demo3_current_video, demo3_current_poses]
+ )
+
+ case "Generation":
+ with gr.Row():
+ with gr.Column(scale=3):
+ with gr.Row():
+ demo3_current_view = gr.Image(
+ label="Current View",
+ width=256,
+ height=256,
+ )
+ demo3_video = gr.Video(
+ label="Generated Video",
+ width=256,
+ height=256,
+ autoplay=True,
+ loop=True,
+ show_share_button=True,
+ show_download_button=True,
+ )
+
+ demo3_generated_gallery = gr.Gallery(
+ value=[],
+ label="Generated Frames",
+ columns=[6],
+ )
+
+ # Initialize the current view with the selected image if available
+ if idx is not None:
+ try:
+ selected_path = IMAGE_PATHS[idx]
+ result = load_image_for_navigation(selected_path)
+ demo3_current_view.value = result["image"]
+ except Exception as e:
+ print(f"Error initializing current view: {e}")
+
+ with gr.Column():
+ gr.Markdown("### Navigation Controls ↓")
+ with gr.Accordion("Instructions", open=False):
+ gr.Markdown("""
+ - **The model will predict the next few frames based on your camera movements. Repeat the process to continue navigating through the scene.**
+ - **Use the navigation controls to move forward/backward and turn left/right.**
+ - **At the end of your navigation, you can save your camera path for later use.**
+
+ """)
+ # with gr.Tab("Basic", elem_id="basic-controls-tab"):
+ with gr.Group():
+ gr.Markdown("_**Select a direction to move:**_")
+ # First row: Turn left/right
+ with gr.Row(elem_id="basic-controls"):
+ gr.Button(
+ "↰20°\nVeer",
+ size="sm",
+ min_width=0,
+ variant="primary",
+ ).click(
+ fn=partial(
+ navigate_video,
+ x_angle=0,
+ y_angle=20,
+ distance=0,
+ ),
+ inputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ ],
+ outputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ demo3_current_view,
+ demo3_video,
+ demo3_generated_gallery,
+ ],
+ )
+
+ gr.Button(
+ "↖10°\nTurn",
+ size="sm",
+ min_width=0,
+ variant="primary",
+ ).click(
+ fn=partial(
+ navigate_video,
+ x_angle=0,
+ y_angle=10,
+ distance=0,
+ ),
+ inputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ ],
+ outputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ demo3_current_view,
+ demo3_video,
+ demo3_generated_gallery,
+ ],
+ )
+
+ # gr.Button(
+ # "↑0°\nAhead",
+ # size="sm",
+ # min_width=0,
+ # variant="primary",
+ # ).click(
+ # fn=partial(
+ # navigate_video,
+ # x_angle=0,
+ # y_angle=0,
+ # distance=10,
+ # ),
+ # inputs=[
+ # demo3_current_video,
+ # demo3_current_poses,
+ # ],
+ # outputs=[
+ # demo3_current_video,
+ # demo3_current_poses,
+ # demo3_current_view,
+ # demo3_video,
+ # demo3_generated_gallery,
+ # ],
+ # )
+ gr.Button(
+ "↗10°\nTurn",
+ size="sm",
+ min_width=0,
+ variant="primary",
+ ).click(
+ fn=partial(
+ navigate_video,
+ x_angle=0,
+ y_angle=-10,
+ distance=0,
+ ),
+ inputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ ],
+ outputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ demo3_current_view,
+ demo3_video,
+ demo3_generated_gallery,
+ ],
+ )
+ gr.Button(
+ "↱\n20° Veer",
+ size="sm",
+ min_width=0,
+ variant="primary",
+ ).click(
+ fn=partial(
+ navigate_video,
+ x_angle=0,
+ y_angle=-20,
+ distance=0,
+ ),
+ inputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ ],
+ outputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ demo3_current_view,
+ demo3_video,
+ demo3_generated_gallery,
+ ],
+ )
+
+ # Second row: Forward/Backward movement
+ with gr.Row(elem_id="forward-backward-controls"):
+ gr.Button(
+ "↓\nBackward",
+ size="sm",
+ min_width=0,
+ variant="secondary",
+ ).click(
+ fn=partial(
+ navigate_video,
+ x_angle=0,
+ y_angle=0,
+ distance=-10,
+ ),
+ inputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ ],
+ outputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ demo3_current_view,
+ demo3_video,
+ demo3_generated_gallery,
+ ],
+ )
+
+ gr.Button(
+ "↑\nForward",
+ size="sm",
+ min_width=0,
+ variant="secondary",
+ ).click(
+ fn=partial(
+ navigate_video,
+ x_angle=0,
+ y_angle=0,
+ distance=10,
+ ),
+ inputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ ],
+ outputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ demo3_current_view,
+ demo3_video,
+ demo3_generated_gallery,
+ ],
+ )
+ # with gr.Tab("Advanced", elem_id="advanced-controls-tab"):
+ # with gr.Group():
+ # gr.Markdown("_**Select angles and distance:**_")
+
+ # demo3_y_angle = gr.Slider(
+ # minimum=-90,
+ # maximum=90,
+ # value=0,
+ # step=10,
+ # label="Horizontal Angle",
+ # interactive=True,
+ # )
+ # demo3_x_angle = gr.Slider(
+ # minimum=-40,
+ # maximum=40,
+ # value=0,
+ # step=10,
+ # label="Vertical Angle",
+ # interactive=True,
+ # )
+ # demo3_distance = gr.Slider(
+ # minimum=-200,
+ # maximum=200,
+ # value=100,
+ # step=10,
+ # label="Distance (negative = backward)",
+ # interactive=True,
+ # )
+
+ # gr.Button(
+ # "Generate Next Move", variant="primary"
+ # ).click(
+ # fn=navigate_video,
+ # inputs=[
+ # demo3_current_video,
+ # demo3_current_poses,
+ # demo3_x_angle,
+ # demo3_y_angle,
+ # demo3_distance,
+ # ],
+ # outputs=[
+ # demo3_current_video,
+ # demo3_current_poses,
+ # demo3_current_view,
+ # demo3_video,
+ # demo3_generated_gallery,
+ # ],
+ # )
+ gr.Markdown("---")
+ with gr.Group():
+ gr.Markdown("_**Navigation controls:**_")
+ with gr.Row():
+ gr.Button("Undo Last Move", variant="huggingface").click(
+ fn=undo_navigation,
+ inputs=[demo3_current_video, demo3_current_poses],
+ outputs=[
+ demo3_current_video,
+ demo3_current_poses,
+ demo3_current_view,
+ demo3_video,
+ demo3_generated_gallery,
+ ],
+ )
+
+ # Add a function to save camera poses
+ def save_camera_poses(video, poses):
+ if len(NAVIGATORS) > 0:
+ navigator = NAVIGATORS[0]
+ # Create a directory for saved poses
+ os.makedirs("./visualization", exist_ok=True)
+ save_path = f"./visualization/transforms_{len(navigator.frames)}_frames.json"
+ navigator.save_camera_poses(save_path)
+ return gr.Info(f"Camera poses saved to {save_path}")
+ return gr.Warning("No navigation instance found")
+
+ gr.Button("Save Camera", variant="huggingface").click(
+ fn=save_camera_poses,
+ inputs=[demo3_current_video, demo3_current_poses],
+ outputs=[]
+ )
+
+ # Add a button to return to image selection
+ def reset_navigation():
+ # Clear current navigator
+ global NAVIGATORS
+ NAVIGATORS = []
+ return "Selection", None, None, None
+
+ gr.Button("Choose New Image", variant="secondary").click(
+ fn=reset_navigation,
+ inputs=[],
+ outputs=[demo3_stage, demo3_selected_index, demo3_current_video, demo3_current_poses]
+ )
+
+
+# Create the Gradio Blocks
+with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
+ gr.HTML(
+ """
+
+ """
+ )
+
+ demo_idx = gr.State(value=3)
+
+ with gr.Sidebar():
+ gr.Markdown("# VMem: Consistent Scene Generation with Surfel Memory of Views", elem_id="page-title")
+ gr.Markdown(
+ "### Official Interactive Demo for [_VMem_](https://arxiv.org/abs/2502.06764)"
+ )
+ gr.Markdown("---")
+ gr.Markdown("#### Links ↓")
+ with gr.Row(elem_classes=["header-button-row"]):
+ with gr.Column(elem_classes=["header-button-column"], min_width=0):
+ gr.Button(
+ value="Website",
+ link="https://v-mem.github.io/",
+ icon="https://simpleicons.org/icons/googlechrome.svg",
+ elem_classes=["header-button"],
+ size="md",
+ min_width=0,
+ )
+ gr.Button(
+ value="Paper",
+ link="https://arxiv.org/abs/2502.06764",
+ icon="https://simpleicons.org/icons/arxiv.svg",
+ elem_classes=["header-button"],
+ size="md",
+ min_width=0,
+ )
+ with gr.Column(elem_classes=["header-button-column"], min_width=0):
+ gr.Button(
+ value="Code",
+ link="https://github.com/kwsong0113/diffusion-forcing-transformer",
+ icon="https://simpleicons.org/icons/github.svg",
+ elem_classes=["header-button"],
+ size="md",
+ min_width=0,
+ )
+ gr.Button(
+ value="Weights",
+ link="https://huggingface.co/liguang0115/vmem",
+ icon="https://simpleicons.org/icons/huggingface.svg",
+ elem_classes=["header-button"],
+ size="md",
+ min_width=0,
+ )
+ gr.Markdown("---")
+ gr.Markdown("#### Choose a Demo ↓")
+ with gr.Column(elem_classes=["demo-button-column"]):
+ @gr.render(inputs=[demo_idx])
+ def render_demo_tabs(idx):
+ demo_tab_button3 = gr.Button(
+ "Navigate Image",
+ size="md", elem_classes=["demo-button"], **{"elem_id": "selected-demo-button"} if idx == 3 else {}
+ ).click(
+ fn=lambda: 3,
+ outputs=demo_idx
+ )
+ gr.Markdown("---")
+ gr.Markdown("#### Troubleshooting ↓")
+ with gr.Group():
+ with gr.Accordion("Error or Unexpected Results?", open=False):
+ gr.Markdown("Please try again after refreshing the page and ensure you do not click the same button multiple times.")
+ with gr.Accordion("Too Slow or No GPU Allocation?", open=False):
+ gr.Markdown(
+ "Consider running the demo locally (click the dots in the top-right corner). Alternatively, you can subscribe to Hugging Face Pro for an increased GPU quota."
+ )
+
+
+ demo3_stage = gr.State(value="Selection")
+ demo3_selected_index = gr.State(value=None)
+ demo3_current_video = gr.State(value=None)
+ demo3_current_poses = gr.State(value=None)
+
+ @gr.render(inputs=[demo_idx, demo3_stage, demo3_selected_index])
+ def render_demo(
+ _demo_idx, _demo3_stage, _demo3_selected_index
+ ):
+ match _demo_idx:
+ case 3:
+ render_demo3(_demo3_stage, _demo3_selected_index, demo3_stage, demo3_selected_index, demo3_current_video, demo3_current_poses)
+
+
+if __name__ == "__main__":
+ demo.launch(debug=True,
+ share=True,
+ max_threads=1, # Limit concurrent processing
+ show_error=True, # Show detailed error messages
+ )
diff --git a/configs/inference/inference.yaml b/configs/inference/inference.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..4e603e2f341832779730789ff0310f14501ab3ac
--- /dev/null
+++ b/configs/inference/inference.yaml
@@ -0,0 +1,69 @@
+
+model:
+ height: 576
+ width: 576
+ original_height: 288
+ original_width: 512
+ cache_dir: "/homes/55/runjia/storage/svd_weights"
+ # pretrained_model_path: "stabilityai/stable-diffusion-2-1"
+ # pretrained_video_model_path: "stabilityai/stable-video-diffusion-img2vid"
+
+ context_num_frames: 4
+ target_num_frames: 4
+ num_frames: 8
+ vae_spatial_scale: 8
+ latent_channels: 4
+ # num_ray_blocks: 2
+ vae_scale_factor: 8
+ inference_mode: false
+
+ temporal_only: false
+ use_non_maximum_suppression: true
+ translation_distance_weight: 0.1
+
+ camera_scale: 2.0
+ inference_num_steps: 50
+ cfg_min: 1.2
+ cfg: 3.0
+ guider_types: 1
+
+ samples_dir: "./visualization"
+ save_flag: false
+ use_wandb: false
+
+
+
+ # model_path: "/homes/55/runjia/storage/simview_weights/2025-04-30_12-08-55/checkpoint_230000.pth"
+ model_path: "liguang0115/vmem"
+
+
+surfel:
+ use_surfel: true
+ shrink_factor: 0.05
+ radius_scale: 0.5
+ conf_thresh: 1
+ merge_position_threshold: 0.2
+ merge_normal_threshold: 0.6
+ lr: 0.01
+ niter: 1000
+ model_path: "./extern/CUT3R/src/cut3r_512_dpt_4_64.pth"
+ width: 512
+ height: 288
+
+inference:
+ visualize: true
+ visualize_pointcloud: false
+ visualize_surfel: false
+ save_surfels: false
+ image_dir: "/homes/55/runjia/storage/realestate10k/video_data/test"
+ meta_info_dir: "/homes/55/runjia/storage/realestate10k/RealEstate10K/test"
+
+
+
+
+
+
+
+
+visualization_dir: "./visualization"
+seed: 42
\ No newline at end of file
diff --git a/extern/CUT3R/.gitignore b/extern/CUT3R/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..0427a6e035828ae7266caf30e87b845857a17647
--- /dev/null
+++ b/extern/CUT3R/.gitignore
@@ -0,0 +1,55 @@
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+
+# C extensions
+*.so
+
+# Distribution / packaging
+bin/
+build/
+develop-eggs/
+dist/
+eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+*.egg-info/
+.installed.cfg
+*.egg
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+.tox/
+.coverage
+.cache
+nosetests.xml
+coverage.xml
+
+# Translations
+*.mo
+
+# Mr Developer
+.mr.developer.cfg
+.project
+.pydevproject
+
+# Rope
+.ropeproject
+
+# Django stuff:
+*.log
+*.pot
+
+# Sphinx documentation
+docs/_build/
+
+# Ignore data and ckpts
+*.pth
+data
+src/checkpoints
\ No newline at end of file
diff --git a/extern/CUT3R/LICENSE b/extern/CUT3R/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..9dbb7ace0da6c2662916e038eee55f4f218f2f95
--- /dev/null
+++ b/extern/CUT3R/LICENSE
@@ -0,0 +1,6 @@
+Copyright [2025–present]
+
+CUT3R is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.
+
+To view a copy of the CC BY-NC-SA 4.0, visit:
+https://creativecommons.org/licenses/by-nc-sa/4.0/
\ No newline at end of file
diff --git a/extern/CUT3R/README.md b/extern/CUT3R/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..2d06fbcfdde95d7e25173f41efc1efedb82e7307
--- /dev/null
+++ b/extern/CUT3R/README.md
@@ -0,0 +1,208 @@
+# Continuous 3D Perception Model with Persistent State
+
+

+
+
+
+
+
+Official implementation of Continuous 3D Perception Model with Persistent State, CVPR 2025 (Oral)
+
+[*QianqianWang**](https://qianqianwang68.github.io/),
+[*Yifei Zhang**](https://forrest-110.github.io/),
+[*Aleksander Holynski*](https://holynski.org/),
+[*Alexei A Efros*](https://people.eecs.berkeley.edu/~efros/),
+[*Angjoo Kanazawa*](https://people.eecs.berkeley.edu/~kanazawa/)
+
+
+(*: equal contribution)
+
+
+
+
+
+
+## Table of Contents
+- [TODO](#todo)
+- [Get Started](#getting-started)
+ - [Installation](#installation)
+ - [Checkpoints](#download-checkpoints)
+ - [Inference](#inference)
+- [Datasets](#datasets)
+- [Evaluation](#evaluation)
+ - [Datasets](#datasets-1)
+ - [Evaluation Scripts](#evaluation-scripts)
+- [Training and Fine-tuning](#training-and-fine-tuning)
+- [Acknowledgements](#acknowledgements)
+- [Citation](#citation)
+
+## TODO
+- [x] Release multi-view stereo results of DL3DV dataset.
+- [ ] Online demo integrated with WebCam
+
+## Getting Started
+
+### Installation
+
+1. Clone CUT3R.
+```bash
+git clone https://github.com/CUT3R/CUT3R.git
+cd CUT3R
+```
+
+2. Create the environment.
+```bash
+conda create -n cut3r python=3.11 cmake=3.14.0
+conda activate cut3r
+conda install pytorch torchvision pytorch-cuda=12.1 -c pytorch -c nvidia # use the correct version of cuda for your system
+pip install -r requirements.txt
+# issues with pytorch dataloader, see https://github.com/pytorch/pytorch/issues/99625
+conda install 'llvm-openmp<16'
+# for training logging
+pip install git+https://github.com/nerfstudio-project/gsplat.git
+# for evaluation
+pip install evo
+pip install open3d
+```
+
+3. Compile the cuda kernels for RoPE (as in CroCo v2).
+```bash
+cd src/croco/models/curope/
+python setup.py build_ext --inplace
+cd ../../../../
+```
+
+### Download Checkpoints
+
+We currently provide checkpoints on Google Drive:
+
+| Modelname | Training resolutions | #Views| Head |
+|-------------|----------------------|-------|------|
+| [`cut3r_224_linear_4.pth`](https://drive.google.com/file/d/11dAgFkWHpaOHsR6iuitlB_v4NFFBrWjy/view?usp=drive_link) | 224x224 | 16 | Linear |
+| [`cut3r_512_dpt_4_64.pth`](https://drive.google.com/file/d/1Asz-ZB3FfpzZYwunhQvNPZEUA8XUNAYD/view?usp=drive_link) | 512x384, 512x336, 512x288, 512x256, 512x160, 384x512, 336x512, 288x512, 256x512, 160x512 | 4-64 | DPT |
+
+> `cut3r_224_linear_4.pth` is our intermediate checkpoint and `cut3r_512_dpt_4_64.pth` is our final checkpoint.
+
+To download the weights, run the following commands:
+```bash
+cd src
+# for 224 linear ckpt
+gdown --fuzzy https://drive.google.com/file/d/11dAgFkWHpaOHsR6iuitlB_v4NFFBrWjy/view?usp=drive_link
+# for 512 dpt ckpt
+gdown --fuzzy https://drive.google.com/file/d/1Asz-ZB3FfpzZYwunhQvNPZEUA8XUNAYD/view?usp=drive_link
+cd ..
+```
+
+### Inference
+
+To run the inference code, you can use the following command:
+```bash
+# the following script will run inference offline and visualize the output with viser on port 8080
+python demo.py --model_path MODEL_PATH --seq_path SEQ_PATH --size SIZE --vis_threshold VIS_THRESHOLD --output_dir OUT_DIR # input can be a folder or a video
+# Example:
+# python demo.py --model_path src/cut3r_512_dpt_4_64.pth --size 512 \
+# --seq_path examples/001 --vis_threshold 1.5 --output_dir tmp
+#
+# python demo.py --model_path src/cut3r_224_linear_4.pth --size 224 \
+# --seq_path examples/001 --vis_threshold 1.5 --output_dir tmp
+
+# the following script will run inference with global alignment and visualize the output with viser on port 8080
+python demo_ga.py --model_path MODEL_PATH --seq_path SEQ_PATH --size SIZE --vis_threshold VIS_THRESHOLD --output_dir OUT_DIR
+```
+Output results will be saved to `output_dir`.
+
+> Currently, we accelerate the feedforward process by processing inputs in parallel within the encoder, which results in linear memory consumption as the number of frames increases.
+
+## Datasets
+Our training data includes 32 datasets listed below. We provide processing scripts for all of them. Please download the datasets from their official sources, and refer to [preprocess.md](docs/preprocess.md) for processing scripts and more information about the datasets.
+
+ - [ARKitScenes](https://github.com/apple/ARKitScenes)
+ - [BlendedMVS](https://github.com/YoYo000/BlendedMVS)
+ - [CO3Dv2](https://github.com/facebookresearch/co3d)
+ - [MegaDepth](https://www.cs.cornell.edu/projects/megadepth/)
+ - [ScanNet++](https://kaldir.vc.in.tum.de/scannetpp/)
+ - [ScanNet](http://www.scan-net.org/ScanNet/)
+ - [WayMo Open dataset](https://github.com/waymo-research/waymo-open-dataset)
+ - [WildRGB-D](https://github.com/wildrgbd/wildrgbd/)
+ - [Map-free](https://research.nianticlabs.com/mapfree-reloc-benchmark/dataset)
+ - [TartanAir](https://theairlab.org/tartanair-dataset/)
+ - [UnrealStereo4K](https://github.com/fabiotosi92/SMD-Nets)
+ - [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/)
+ - [3D Ken Burns](https://github.com/sniklaus/3d-ken-burns.git)
+ - [BEDLAM](https://bedlam.is.tue.mpg.de/)
+ - [COP3D](https://github.com/facebookresearch/cop3d)
+ - [DL3DV](https://github.com/DL3DV-10K/Dataset)
+ - [Dynamic Replica](https://github.com/facebookresearch/dynamic_stereo)
+ - [EDEN](https://lhoangan.github.io/eden/)
+ - [Hypersim](https://github.com/apple/ml-hypersim)
+ - [IRS](https://github.com/HKBU-HPML/IRS)
+ - [Matterport3D](https://niessner.github.io/Matterport/)
+ - [MVImgNet](https://github.com/GAP-LAB-CUHK-SZ/MVImgNet)
+ - [MVS-Synth](https://phuang17.github.io/DeepMVS/mvs-synth.html)
+ - [OmniObject3D](https://omniobject3d.github.io/)
+ - [PointOdyssey](https://pointodyssey.com/)
+ - [RealEstate10K](https://google.github.io/realestate10k/)
+ - [SmartPortraits](https://mobileroboticsskoltech.github.io/SmartPortraits/)
+ - [Spring](https://spring-benchmark.org/)
+ - [Synscapes](https://synscapes.on.liu.se/)
+ - [UASOL](https://osf.io/64532/)
+ - [UrbanSyn](https://www.urbansyn.org/)
+ - [HOI4D](https://hoi4d.github.io/)
+
+
+## Evaluation
+
+### Datasets
+Please follow [MonST3R](https://github.com/Junyi42/monst3r/blob/main/data/evaluation_script.md) and [Spann3R](https://github.com/HengyiWang/spann3r/blob/main/docs/data_preprocess.md) to prepare **Sintel**, **Bonn**, **KITTI**, **NYU-v2**, **TUM-dynamics**, **ScanNet**, **7scenes** and **Neural-RGBD** datasets.
+
+The datasets should be organized as follows:
+```
+data/
+├── 7scenes
+├── bonn
+├── kitti
+├── neural_rgbd
+├── nyu-v2
+├── scannetv2
+├── sintel
+└── tum
+```
+
+### Evaluation Scripts
+Please refer to the [eval.md](docs/eval.md) for more details.
+
+## Training and Fine-tuning
+Please refer to the [train.md](docs/train.md) for more details.
+
+## Acknowledgements
+Our code is based on the following awesome repositories:
+
+- [DUSt3R](https://github.com/naver/dust3r)
+- [MonST3R](https://github.com/Junyi42/monst3r.git)
+- [Spann3R](https://github.com/HengyiWang/spann3r.git)
+- [Viser](https://github.com/nerfstudio-project/viser)
+
+We thank the authors for releasing their code!
+
+
+
+## Citation
+
+If you find our work useful, please cite:
+
+```bibtex
+@article{wang2025continuous,
+ title={Continuous 3D Perception Model with Persistent State},
+ author={Wang, Qianqian and Zhang, Yifei and Holynski, Aleksander and Efros, Alexei A and Kanazawa, Angjoo},
+ journal={arXiv preprint arXiv:2501.12387},
+ year={2025}
+}
+```
+
diff --git a/extern/CUT3R/add_ckpt_path.py b/extern/CUT3R/add_ckpt_path.py
new file mode 100644
index 0000000000000000000000000000000000000000..e03e0e9e4f67499185f6d7a36cacaa04256b74af
--- /dev/null
+++ b/extern/CUT3R/add_ckpt_path.py
@@ -0,0 +1,9 @@
+import sys
+import os
+import os.path as path
+
+
+def add_path_to_dust3r(ckpt):
+ HERE_PATH = os.path.dirname(os.path.abspath(ckpt))
+ # workaround for sibling import
+ sys.path.insert(0, HERE_PATH)
diff --git a/extern/CUT3R/cloud_opt/base_opt.py b/extern/CUT3R/cloud_opt/base_opt.py
new file mode 100644
index 0000000000000000000000000000000000000000..8fce7c57ed32ff0863dd58b97331c03b6e667c80
--- /dev/null
+++ b/extern/CUT3R/cloud_opt/base_opt.py
@@ -0,0 +1,301 @@
+from copy import deepcopy
+import cv2
+import numpy as np
+import torch
+import torch.nn as nn
+import roma
+from copy import deepcopy
+import tqdm
+import os
+import matplotlib.pyplot as plt
+
+from cloud_opt.utils import *
+from cloud_opt.utils import _check_edges, _compute_img_conf
+import cloud_opt.init_all as init_fun
+
+
+class BaseOptimizer(nn.Module):
+ """Optimize a global scene, given a graph-organized observations.
+ Graph node: images
+ Graph edges: observations = (pred1, pred2), pred2 is in pred1's coordinate
+ """
+
+ def __init__(self, *args, **kwargs):
+ pass
+
+ def _init_from_views(
+ self,
+ view1s,
+ view2s,
+ pred1s,
+ pred2s, # whatever predictions, they should be organized into pairwise for graph optimization
+ dist="l1",
+ conf="log",
+ min_conf_thr=3,
+ thr_for_init_conf=False,
+ base_scale=0.5,
+ allow_pw_adaptors=False,
+ pw_break=20,
+ rand_pose=torch.randn,
+ empty_cache=False,
+ verbose=True,
+ ):
+ super().__init__()
+ self.edges = [
+ (int(view1["idx"]), int(view2["idx"]))
+ for view1, view2 in zip(view1s, view2s)
+ ]
+ self.dist = ALL_DISTS[dist]
+ self.n_imgs = _check_edges(self.edges)
+
+ self.edge2pts_i = NoGradParamDict(
+ {ij: pred1s[n]["pts3d_is_self_view"] for n, ij in enumerate(self.str_edges)}
+ ) # ij: the name of the edge
+ self.edge2pts_j = NoGradParamDict(
+ {
+ ij: pred2s[n]["pts3d_in_other_view"]
+ for n, ij in enumerate(self.str_edges)
+ }
+ )
+ self.edge2conf_i = NoGradParamDict(
+ {ij: pred1s[n]["conf_self"] for n, ij in enumerate(self.str_edges)}
+ )
+ self.edge2conf_j = NoGradParamDict(
+ {ij: pred2s[n]["conf"] for n, ij in enumerate(self.str_edges)}
+ )
+
+ self.imshapes = get_imshapes(self.edges, pred1s, pred2s)
+ self.min_conf_thr = min_conf_thr
+ self.thr_for_init_conf = thr_for_init_conf
+ self.conf_trf = get_conf_trf(conf)
+
+ self.im_conf = _compute_img_conf(
+ self.imshapes, self.device, self.edges, self.edge2conf_i, self.edge2conf_j
+ )
+ for i in range(len(self.im_conf)):
+ self.im_conf[i].requires_grad = False
+
+ self.init_conf_maps = [c.clone() for c in self.im_conf]
+
+ self.base_scale = base_scale
+ self.norm_pw_scale = True
+ self.pw_break = pw_break
+ self.POSE_DIM = 7
+ self.pw_poses = nn.Parameter(
+ rand_pose((self.n_edges, 1 + self.POSE_DIM))
+ ) # pairwise poses
+ self.pw_adaptors = nn.Parameter(
+ torch.zeros((self.n_edges, 2))
+ ) # slight xy/z adaptation
+ self.pw_adaptors.requires_grad_(allow_pw_adaptors)
+ self.has_im_poses = False
+ self.rand_pose = rand_pose
+
+ def get_known_poses(self):
+ if self.has_im_poses:
+ known_poses_msk = torch.tensor(
+ [not (p.requires_grad) for p in self.im_poses]
+ )
+ known_poses = self.get_im_poses()
+ return known_poses_msk.sum(), known_poses_msk, known_poses
+ else:
+ return 0, None, None
+
+ def get_pw_norm_scale_factor(self):
+ if self.norm_pw_scale:
+ # normalize scales so that things cannot go south
+ # we want that exp(scale) ~= self.base_scale
+ return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp()
+ else:
+ return 1 # don't norm scale for known poses
+
+ def _set_pose(self, poses, idx, R, T=None, scale=None, force=False):
+ # all poses == cam-to-world
+ pose = poses[idx]
+ if not (pose.requires_grad or force):
+ return pose
+
+ if R.shape == (4, 4):
+ assert T is None
+ T = R[:3, 3]
+ R = R[:3, :3]
+
+ if R is not None:
+ pose.data[0:4] = roma.rotmat_to_unitquat(R)
+ if T is not None:
+ pose.data[4:7] = signed_log1p(
+ T / (scale or 1)
+ ) # translation is function of scale
+
+ if scale is not None:
+ assert poses.shape[-1] in (8, 13)
+ pose.data[-1] = np.log(float(scale))
+ return pose
+
+ def forward(self, ret_details=False):
+ pw_poses = self.get_pw_poses() # cam-to-world
+ pw_adapt = self.get_adaptors()
+ proj_pts3d = self.get_pts3d()
+ # pre-compute pixel weights
+ weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()}
+ weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()}
+
+ loss = 0
+ if ret_details:
+ details = -torch.ones((self.n_imgs, self.n_imgs))
+
+ for e, (i, j) in enumerate(self.edges):
+ i_j = edge_str(i, j)
+ # distance in image i and j
+ aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j])
+ aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j])
+ li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean()
+ lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean()
+ loss = loss + li + lj
+
+ if ret_details:
+ details[i, j] = li + lj
+ loss /= self.n_edges # average over all pairs
+
+ if ret_details:
+ return loss, details
+ return loss
+
+ @torch.cuda.amp.autocast(enabled=False)
+ def compute_global_alignment(self, init=None, niter_PnP=10, **kw):
+ if init is None:
+ pass
+ elif init == "msp" or init == "mst":
+ init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP)
+ elif init == "known_poses":
+ raise NotImplementedError
+ self.preset_pose(known_poses=self.camera_poses, requires_grad=True)
+ init_fun.init_from_known_poses(
+ self, min_conf_thr=self.min_conf_thr, niter_PnP=niter_PnP
+ )
+ else:
+ raise ValueError(f"bad value for {init=}")
+
+ return global_alignment_loop(self, **kw)
+
+ @property
+ def str_edges(self):
+ return [edge_str(i, j) for i, j in self.edges]
+
+ @property
+ def n_edges(self):
+ return len(self.edges)
+
+
+def global_alignment_loop(
+ net,
+ lr=0.01,
+ niter=300,
+ schedule="cosine",
+ lr_min=1e-3,
+ temporal_smoothing_weight=0,
+ depth_map_save_dir=None,
+):
+ params = [p for p in net.parameters() if p.requires_grad]
+ if not params:
+ return net
+
+ verbose = net.verbose
+ if verbose:
+ print("Global alignement - optimizing for:")
+ print([name for name, value in net.named_parameters() if value.requires_grad])
+
+ lr_base = lr
+ optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9))
+
+ loss = float("inf")
+ if verbose:
+ with tqdm.tqdm(total=niter) as bar:
+ while bar.n < bar.total:
+ if bar.n % 500 == 0 and depth_map_save_dir is not None:
+ if not os.path.exists(depth_map_save_dir):
+ os.makedirs(depth_map_save_dir)
+ # visualize the depthmaps
+ depth_maps = net.get_depthmaps()
+ for i, depth_map in enumerate(depth_maps):
+ depth_map_save_path = os.path.join(
+ depth_map_save_dir, f"depthmaps_{i}_iter_{bar.n}.png"
+ )
+ plt.imsave(
+ depth_map_save_path,
+ depth_map.detach().cpu().numpy(),
+ cmap="jet",
+ )
+ print(
+ f"Saved depthmaps at iteration {bar.n} to {depth_map_save_dir}"
+ )
+ loss, lr = global_alignment_iter(
+ net,
+ bar.n,
+ niter,
+ lr_base,
+ lr_min,
+ optimizer,
+ schedule,
+ temporal_smoothing_weight=temporal_smoothing_weight,
+ )
+ bar.set_postfix_str(f"{lr=:g} loss={loss:g}")
+ bar.update()
+ else:
+ for n in range(niter):
+ loss, _ = global_alignment_iter(
+ net,
+ n,
+ niter,
+ lr_base,
+ lr_min,
+ optimizer,
+ schedule,
+ temporal_smoothing_weight=temporal_smoothing_weight,
+ )
+ return loss
+
+
+def global_alignment_iter(
+ net,
+ cur_iter,
+ niter,
+ lr_base,
+ lr_min,
+ optimizer,
+ schedule,
+ temporal_smoothing_weight=0,
+):
+ t = cur_iter / niter
+ if schedule == "cosine":
+ lr = cosine_schedule(t, lr_base, lr_min)
+ elif schedule == "linear":
+ lr = linear_schedule(t, lr_base, lr_min)
+ elif schedule.startswith("cycle"):
+ try:
+ num_cycles = int(schedule[5:])
+ except ValueError:
+ num_cycles = 2
+ lr = cycled_linear_schedule(t, lr_base, lr_min, num_cycles=num_cycles)
+ else:
+ raise ValueError(f"bad lr {schedule=}")
+
+ adjust_learning_rate_by_lr(optimizer, lr)
+ optimizer.zero_grad()
+
+ if net.empty_cache:
+ torch.cuda.empty_cache()
+
+ loss = net(epoch=cur_iter)
+
+ if net.empty_cache:
+ torch.cuda.empty_cache()
+
+ loss.backward()
+
+ if net.empty_cache:
+ torch.cuda.empty_cache()
+
+ optimizer.step()
+
+ return float(loss), lr
diff --git a/extern/CUT3R/cloud_opt/commons.py b/extern/CUT3R/cloud_opt/commons.py
new file mode 100644
index 0000000000000000000000000000000000000000..1c1fb51aab60eea36b059f191efa1c0c048c14b7
--- /dev/null
+++ b/extern/CUT3R/cloud_opt/commons.py
@@ -0,0 +1,102 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# utility functions for global alignment
+# --------------------------------------------------------
+import torch
+import torch.nn as nn
+import numpy as np
+
+
+def edge_str(i, j):
+ return f"{i}_{j}"
+
+
+def i_j_ij(ij):
+ return edge_str(*ij), ij
+
+
+def edge_conf(conf_i, conf_j, edge):
+ return float(conf_i[edge].mean() * conf_j[edge].mean())
+
+
+def compute_edge_scores(edges, conf_i, conf_j):
+ return {(i, j): edge_conf(conf_i, conf_j, e) for e, (i, j) in edges}
+
+
+def NoGradParamDict(x):
+ assert isinstance(x, dict)
+ return nn.ParameterDict(x).requires_grad_(False)
+
+
+def get_imshapes(edges, pred_i, pred_j):
+ n_imgs = max(max(e) for e in edges) + 1
+ imshapes = [None] * n_imgs
+ for e, (i, j) in enumerate(edges):
+ shape_i = tuple(pred_i[e].shape[0:2])
+ shape_j = tuple(pred_j[e].shape[0:2])
+ if imshapes[i]:
+ assert imshapes[i] == shape_i, f"incorrect shape for image {i}"
+ if imshapes[j]:
+ assert imshapes[j] == shape_j, f"incorrect shape for image {j}"
+ imshapes[i] = shape_i
+ imshapes[j] = shape_j
+ return imshapes
+
+
+def get_conf_trf(mode):
+ if mode == "log":
+
+ def conf_trf(x):
+ return x.log()
+
+ elif mode == "sqrt":
+
+ def conf_trf(x):
+ return x.sqrt()
+
+ elif mode == "m1":
+
+ def conf_trf(x):
+ return x - 1
+
+ elif mode in ("id", "none"):
+
+ def conf_trf(x):
+ return x
+
+ else:
+ raise ValueError(f"bad mode for {mode=}")
+ return conf_trf
+
+
+def l2_dist(a, b, weight):
+ return (a - b).square().sum(dim=-1) * weight
+
+
+def l1_dist(a, b, weight):
+ return (a - b).norm(dim=-1) * weight
+
+
+ALL_DISTS = dict(l1=l1_dist, l2=l2_dist)
+
+
+def signed_log1p(x):
+ sign = torch.sign(x)
+ return sign * torch.log1p(torch.abs(x))
+
+
+def signed_expm1(x):
+ sign = torch.sign(x)
+ return sign * torch.expm1(torch.abs(x))
+
+
+def cosine_schedule(t, lr_start, lr_end):
+ assert 0 <= t <= 1
+ return lr_end + (lr_start - lr_end) * (1 + np.cos(t * np.pi)) / 2
+
+
+def linear_schedule(t, lr_start, lr_end):
+ assert 0 <= t <= 1
+ return lr_start + (lr_end - lr_start) * t
diff --git a/extern/CUT3R/cloud_opt/dust3r_opt/__init__.py b/extern/CUT3R/cloud_opt/dust3r_opt/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d2b5dfafd9e75c96c58367352d78d35f91d1fc0b
--- /dev/null
+++ b/extern/CUT3R/cloud_opt/dust3r_opt/__init__.py
@@ -0,0 +1,31 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# global alignment optimization wrapper function
+# --------------------------------------------------------
+from enum import Enum
+
+from .optimizer import PointCloudOptimizer
+
+
+class GlobalAlignerMode(Enum):
+ PointCloudOptimizer = "PointCloudOptimizer"
+ ModularPointCloudOptimizer = "ModularPointCloudOptimizer"
+ PairViewer = "PairViewer"
+
+
+def global_aligner(
+ dust3r_output, device, mode=GlobalAlignerMode.PointCloudOptimizer, **optim_kw
+):
+ # extract all inputs
+ view1, view2, pred1, pred2 = [
+ dust3r_output[k] for k in "view1 view2 pred1 pred2".split()
+ ]
+ # build the optimizer
+ if mode == GlobalAlignerMode.PointCloudOptimizer:
+ net = PointCloudOptimizer(view1, view2, pred1, pred2, **optim_kw).to(device)
+ else:
+ raise NotImplementedError(f"Unknown mode {mode}")
+
+ return net
diff --git a/extern/CUT3R/cloud_opt/dust3r_opt/base_opt.py b/extern/CUT3R/cloud_opt/dust3r_opt/base_opt.py
new file mode 100644
index 0000000000000000000000000000000000000000..1395a87c1bc7c456ce158a34705181af6ccbdc46
--- /dev/null
+++ b/extern/CUT3R/cloud_opt/dust3r_opt/base_opt.py
@@ -0,0 +1,620 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Base class for the global alignement procedure
+# --------------------------------------------------------
+from copy import deepcopy
+
+import numpy as np
+import torch
+import torch.nn as nn
+import roma
+from copy import deepcopy
+import tqdm
+import cv2
+from PIL import Image
+from dust3r.utils.geometry import inv, geotrf
+from dust3r.utils.device import to_numpy
+from dust3r.utils.image import rgb
+from dust3r.viz import SceneViz, segment_sky, auto_cam_size
+
+from cloud_opt.dust3r_opt.commons import (
+ edge_str,
+ ALL_DISTS,
+ NoGradParamDict,
+ get_imshapes,
+ signed_expm1,
+ signed_log1p,
+ cosine_schedule,
+ linear_schedule,
+ get_conf_trf,
+)
+import cloud_opt.dust3r_opt.init_im_poses as init_fun
+from pathlib import Path
+from scipy.spatial.transform import Rotation
+from evo.core.trajectory import PosePath3D, PoseTrajectory3D
+
+
+def adjust_learning_rate_by_lr(optimizer, lr):
+ for param_group in optimizer.param_groups:
+ if "lr_scale" in param_group:
+ param_group["lr"] = lr * param_group["lr_scale"]
+ else:
+ param_group["lr"] = lr
+
+
+def make_traj(args) -> PoseTrajectory3D:
+ if isinstance(args, tuple) or isinstance(args, list):
+ traj, tstamps = args
+ return PoseTrajectory3D(
+ positions_xyz=traj[:, :3],
+ orientations_quat_wxyz=traj[:, 3:],
+ timestamps=tstamps,
+ )
+ assert isinstance(args, PoseTrajectory3D), type(args)
+ return deepcopy(args)
+
+
+def save_trajectory_tum_format(traj, filename):
+ traj = make_traj(traj)
+ tostr = lambda a: " ".join(map(str, a))
+ with Path(filename).open("w") as f:
+ for i in range(traj.num_poses):
+ f.write(
+ f"{traj.timestamps[i]} {tostr(traj.positions_xyz[i])} {tostr(traj.orientations_quat_wxyz[i][[0,1,2,3]])}\n"
+ )
+ print(f"Saved trajectory to {filename}")
+
+
+def c2w_to_tumpose(c2w):
+ """
+ Convert a camera-to-world matrix to a tuple of translation and rotation
+
+ input: c2w: 4x4 matrix
+ output: tuple of translation and rotation (x y z qw qx qy qz)
+ """
+ # convert input to numpy
+ c2w = to_numpy(c2w)
+ xyz = c2w[:3, -1]
+ rot = Rotation.from_matrix(c2w[:3, :3])
+ qx, qy, qz, qw = rot.as_quat()
+ tum_pose = np.concatenate([xyz, [qw, qx, qy, qz]])
+ return tum_pose
+
+
+class BasePCOptimizer(nn.Module):
+ """Optimize a global scene, given a list of pairwise observations.
+ Graph node: images
+ Graph edges: observations = (pred1, pred2)
+ """
+
+ def __init__(self, *args, **kwargs):
+ if len(args) == 1 and len(kwargs) == 0:
+ other = deepcopy(args[0])
+ attrs = """edges is_symmetrized dist n_imgs pred_i pred_j imshapes
+ min_conf_thr conf_thr conf_i conf_j im_conf
+ base_scale norm_pw_scale POSE_DIM pw_poses
+ pw_adaptors pw_adaptors has_im_poses rand_pose imgs verbose""".split()
+ self.__dict__.update({k: other[k] for k in attrs})
+ else:
+ self._init_from_views(*args, **kwargs)
+
+ def _init_from_views(
+ self,
+ view1,
+ view2,
+ pred1,
+ pred2,
+ dist="l1",
+ conf="log",
+ min_conf_thr=3,
+ base_scale=0.5,
+ allow_pw_adaptors=False,
+ pw_break=20,
+ rand_pose=torch.randn,
+ iterationsCount=None,
+ verbose=True,
+ ):
+ super().__init__()
+ if not isinstance(view1["idx"], list):
+ view1["idx"] = view1["idx"].tolist()
+ if not isinstance(view2["idx"], list):
+ view2["idx"] = view2["idx"].tolist()
+ self.edges = [(int(i), int(j)) for i, j in zip(view1["idx"], view2["idx"])]
+ self.is_symmetrized = set(self.edges) == {(j, i) for i, j in self.edges}
+ self.dist = ALL_DISTS[dist]
+ self.verbose = verbose
+
+ self.n_imgs = self._check_edges()
+
+ # input data
+ pred1_pts = pred1["pts3d_in_self_view"]
+ pred2_pts = pred2["pts3d_in_other_view"]
+ self.pred_i = NoGradParamDict(
+ {ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)}
+ )
+ self.pred_j = NoGradParamDict(
+ {ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)}
+ )
+ self.imshapes = get_imshapes(self.edges, pred1_pts, pred2_pts)
+
+ # work in log-scale with conf
+ pred1_conf = pred1["conf_self"]
+ pred2_conf = pred2["conf"]
+ self.min_conf_thr = min_conf_thr
+ self.conf_trf = get_conf_trf(conf)
+
+ self.conf_i = NoGradParamDict(
+ {ij: pred1_conf[n] for n, ij in enumerate(self.str_edges)}
+ )
+ self.conf_j = NoGradParamDict(
+ {ij: pred2_conf[n] for n, ij in enumerate(self.str_edges)}
+ )
+ self.im_conf = self._compute_img_conf(pred1_conf, pred2_conf)
+ for i in range(len(self.im_conf)):
+ self.im_conf[i].requires_grad = False
+
+ # pairwise pose parameters
+ self.base_scale = base_scale
+ self.norm_pw_scale = True
+ self.pw_break = pw_break
+ self.POSE_DIM = 7
+ self.pw_poses = nn.Parameter(
+ rand_pose((self.n_edges, 1 + self.POSE_DIM))
+ ) # pairwise poses
+ self.pw_adaptors = nn.Parameter(
+ torch.zeros((self.n_edges, 2))
+ ) # slight xy/z adaptation
+ self.pw_adaptors.requires_grad_(allow_pw_adaptors)
+ self.has_im_poses = False
+ self.rand_pose = rand_pose
+
+ # possibly store images for show_pointcloud
+ self.imgs = None
+ if "img" in view1 and "img" in view2:
+ imgs = [torch.zeros((3,) + hw) for hw in self.imshapes]
+ for v in range(len(self.edges)):
+ idx = view1["idx"][v]
+ imgs[idx] = view1["img"][v]
+ idx = view2["idx"][v]
+ imgs[idx] = view2["img"][v]
+ self.imgs = rgb(imgs)
+
+ @property
+ def n_edges(self):
+ return len(self.edges)
+
+ @property
+ def str_edges(self):
+ return [edge_str(i, j) for i, j in self.edges]
+
+ @property
+ def imsizes(self):
+ return [(w, h) for h, w in self.imshapes]
+
+ @property
+ def device(self):
+ return next(iter(self.parameters())).device
+
+ def state_dict(self, trainable=True):
+ all_params = super().state_dict()
+ return {
+ k: v
+ for k, v in all_params.items()
+ if k.startswith(("_", "pred_i.", "pred_j.", "conf_i.", "conf_j."))
+ != trainable
+ }
+
+ def load_state_dict(self, data):
+ return super().load_state_dict(self.state_dict(trainable=False) | data)
+
+ def _check_edges(self):
+ indices = sorted({i for edge in self.edges for i in edge})
+ assert indices == list(range(len(indices))), "bad pair indices: missing values "
+ return len(indices)
+
+ @torch.no_grad()
+ def _compute_img_conf(self, pred1_conf, pred2_conf):
+ im_conf = nn.ParameterList(
+ [torch.zeros(hw, device=self.device) for hw in self.imshapes]
+ )
+ for e, (i, j) in enumerate(self.edges):
+ im_conf[i] = torch.maximum(im_conf[i], pred1_conf[e])
+ im_conf[j] = torch.maximum(im_conf[j], pred2_conf[e])
+ return im_conf
+
+ def get_adaptors(self):
+ adapt = self.pw_adaptors
+ adapt = torch.cat(
+ (adapt[:, 0:1], adapt), dim=-1
+ ) # (scale_xy, scale_xy, scale_z)
+ if self.norm_pw_scale: # normalize so that the product == 1
+ adapt = adapt - adapt.mean(dim=1, keepdim=True)
+ return (adapt / self.pw_break).exp()
+
+ def _get_poses(self, poses):
+ # normalize rotation
+ Q = poses[:, :4]
+ T = signed_expm1(poses[:, 4:7])
+ RT = roma.RigidUnitQuat(Q, T).normalize().to_homogeneous()
+ return RT
+
+ def _set_pose(self, poses, idx, R, T=None, scale=None, force=False):
+ # all poses == cam-to-world
+ pose = poses[idx]
+ if not (pose.requires_grad or force):
+ return pose
+
+ if R.shape == (4, 4):
+ assert T is None
+ T = R[:3, 3]
+ R = R[:3, :3]
+
+ if R is not None:
+ pose.data[0:4] = roma.rotmat_to_unitquat(R)
+ if T is not None:
+ pose.data[4:7] = signed_log1p(
+ T / (scale or 1)
+ ) # translation is function of scale
+
+ if scale is not None:
+ assert poses.shape[-1] in (8, 13)
+ pose.data[-1] = np.log(float(scale))
+ return pose
+
+ def get_pw_norm_scale_factor(self):
+ if self.norm_pw_scale:
+ # normalize scales so that things cannot go south
+ # we want that exp(scale) ~= self.base_scale
+ return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp()
+ else:
+ return 1 # don't norm scale for known poses
+
+ def get_pw_scale(self):
+ scale = self.pw_poses[:, -1].exp() # (n_edges,)
+ scale = scale * self.get_pw_norm_scale_factor()
+ return scale
+
+ def get_pw_poses(self): # cam to world
+ RT = self._get_poses(self.pw_poses)
+ scaled_RT = RT.clone()
+ scaled_RT[:, :3] *= self.get_pw_scale().view(
+ -1, 1, 1
+ ) # scale the rotation AND translation
+ return scaled_RT
+
+ def get_masks(self):
+ return [(conf > self.min_conf_thr) for conf in self.im_conf]
+
+ def depth_to_pts3d(self):
+ raise NotImplementedError()
+
+ def get_pts3d(self, raw=False):
+ res = self.depth_to_pts3d()
+ if not raw:
+ res = [dm[: h * w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
+ return res
+
+ def _set_focal(self, idx, focal, force=False):
+ raise NotImplementedError()
+
+ def get_focals(self):
+ raise NotImplementedError()
+
+ def get_known_focal_mask(self):
+ raise NotImplementedError()
+
+ def get_principal_points(self):
+ raise NotImplementedError()
+
+ def get_conf(self, mode=None):
+ trf = self.conf_trf if mode is None else get_conf_trf(mode)
+ return [trf(c) for c in self.im_conf]
+
+ def get_im_poses(self):
+ raise NotImplementedError()
+
+ def _set_depthmap(self, idx, depth, force=False):
+ raise NotImplementedError()
+
+ def get_depthmaps(self, raw=False):
+ raise NotImplementedError()
+
+ def save_depth_maps(self, path):
+ depth_maps = self.get_depthmaps()
+ images = []
+
+ for i, depth_map in enumerate(depth_maps):
+ # Apply color map to depth map
+ depth_map_colored = cv2.applyColorMap(
+ (depth_map * 255).detach().cpu().numpy().astype(np.uint8),
+ cv2.COLORMAP_JET,
+ )
+ img_path = f"{path}/frame_{(i):04d}.png"
+ cv2.imwrite(img_path, depth_map_colored)
+ images.append(Image.open(img_path))
+ np.save(f"{path}/frame_{(i):04d}.npy", depth_map.detach().cpu().numpy())
+
+ images[0].save(
+ f"{path}/_depth_maps.gif",
+ save_all=True,
+ append_images=images[1:],
+ duration=100,
+ loop=0,
+ )
+
+ return depth_maps
+
+ def clean_pointcloud(self, **kw):
+ cams = inv(self.get_im_poses())
+ K = self.get_intrinsics()
+ depthmaps = self.get_depthmaps()
+ all_pts3d = self.get_pts3d()
+
+ new_im_confs = clean_pointcloud(
+ self.im_conf, K, cams, depthmaps, all_pts3d, **kw
+ )
+ for i, new_conf in enumerate(new_im_confs):
+ self.im_conf[i].data[:] = new_conf
+ return self
+
+ def get_tum_poses(self):
+ poses = self.get_im_poses()
+ tt = np.arange(len(poses)).astype(float)
+ tum_poses = [c2w_to_tumpose(p) for p in poses]
+ tum_poses = np.stack(tum_poses, 0)
+ return [tum_poses, tt]
+
+ def save_tum_poses(self, path):
+ traj = self.get_tum_poses()
+ save_trajectory_tum_format(traj, path)
+ return traj[0] # return the poses
+
+ def save_focals(self, path):
+ # convert focal to txt
+ focals = self.get_focals()
+ np.savetxt(path, focals.detach().cpu().numpy(), fmt="%.6f")
+ return focals
+
+ def save_intrinsics(self, path):
+ K_raw = self.get_intrinsics()
+ K = K_raw.reshape(-1, 9)
+ np.savetxt(path, K.detach().cpu().numpy(), fmt="%.6f")
+ return K_raw
+
+ def save_conf_maps(self, path):
+ conf = self.get_conf()
+ for i, c in enumerate(conf):
+ np.save(f"{path}/conf_{i}.npy", c.detach().cpu().numpy())
+ return conf
+
+ def save_init_conf_maps(self, path):
+ conf = self.get_init_conf()
+ for i, c in enumerate(conf):
+ np.save(f"{path}/init_conf_{i}.npy", c.detach().cpu().numpy())
+ return conf
+
+ def save_rgb_imgs(self, path):
+ imgs = self.imgs
+ for i, img in enumerate(imgs):
+ # convert from rgb to bgr
+ img = img[..., ::-1]
+ cv2.imwrite(f"{path}/frame_{i:04d}.png", img * 255)
+ return imgs
+
+ def save_dynamic_masks(self, path):
+ dynamic_masks = (
+ self.dynamic_masks
+ if getattr(self, "sam2_dynamic_masks", None) is None
+ else self.sam2_dynamic_masks
+ )
+ for i, dynamic_mask in enumerate(dynamic_masks):
+ cv2.imwrite(
+ f"{path}/dynamic_mask_{i}.png",
+ (dynamic_mask * 255).detach().cpu().numpy().astype(np.uint8),
+ )
+ return dynamic_masks
+
+ def save_depth_maps(self, path):
+ depth_maps = self.get_depthmaps()
+ images = []
+
+ for i, depth_map in enumerate(depth_maps):
+ # Apply color map to depth map
+ depth_map_colored = cv2.applyColorMap(
+ (depth_map * 255).detach().cpu().numpy().astype(np.uint8),
+ cv2.COLORMAP_JET,
+ )
+ img_path = f"{path}/frame_{(i):04d}.png"
+ cv2.imwrite(img_path, depth_map_colored)
+ images.append(Image.open(img_path))
+ np.save(f"{path}/frame_{(i):04d}.npy", depth_map.detach().cpu().numpy())
+
+ images[0].save(
+ f"{path}/_depth_maps.gif",
+ save_all=True,
+ append_images=images[1:],
+ duration=100,
+ loop=0,
+ )
+
+ return depth_maps
+
+ def forward(self, ret_details=False):
+ pw_poses = self.get_pw_poses() # cam-to-world
+ pw_adapt = self.get_adaptors()
+ proj_pts3d = self.get_pts3d()
+ # pre-compute pixel weights
+ weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()}
+ weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()}
+
+ loss = 0
+ if ret_details:
+ details = -torch.ones((self.n_imgs, self.n_imgs))
+
+ for e, (i, j) in enumerate(self.edges):
+ i_j = edge_str(i, j)
+ # distance in image i and j
+ aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j])
+ aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j])
+ li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean()
+ lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean()
+ loss = loss + li + lj
+
+ if ret_details:
+ details[i, j] = li + lj
+ loss /= self.n_edges # average over all pairs
+
+ if ret_details:
+ return loss, details
+ return loss
+
+ @torch.cuda.amp.autocast(enabled=False)
+ def compute_global_alignment(self, init=None, niter_PnP=10, **kw):
+ if init is None:
+ pass
+ elif init == "msp" or init == "mst":
+ init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP)
+ elif init == "known_poses":
+ init_fun.init_from_known_poses(
+ self, min_conf_thr=self.min_conf_thr, niter_PnP=niter_PnP
+ )
+ else:
+ raise ValueError(f"bad value for {init=}")
+ return global_alignment_loop(self, **kw)
+
+ @torch.no_grad()
+ def mask_sky(self):
+ res = deepcopy(self)
+ for i in range(self.n_imgs):
+ sky = segment_sky(self.imgs[i])
+ res.im_conf[i][sky] = 0
+ return res
+
+ def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw):
+ viz = SceneViz()
+ if self.imgs is None:
+ colors = np.random.randint(0, 256, size=(self.n_imgs, 3))
+ colors = list(map(tuple, colors.tolist()))
+ for n in range(self.n_imgs):
+ viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n])
+ else:
+ viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks())
+ colors = np.random.randint(256, size=(self.n_imgs, 3))
+
+ # camera poses
+ im_poses = to_numpy(self.get_im_poses())
+ if cam_size is None:
+ cam_size = auto_cam_size(im_poses)
+ viz.add_cameras(
+ im_poses,
+ self.get_focals(),
+ colors=colors,
+ images=self.imgs,
+ imsizes=self.imsizes,
+ cam_size=cam_size,
+ )
+ if show_pw_cams:
+ pw_poses = self.get_pw_poses()
+ viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size)
+
+ if show_pw_pts3d:
+ pts = [
+ geotrf(pw_poses[e], self.pred_i[edge_str(i, j)])
+ for e, (i, j) in enumerate(self.edges)
+ ]
+ viz.add_pointcloud(pts, (128, 0, 128))
+
+ viz.show(**kw)
+ return viz
+
+
+def global_alignment_loop(net, lr=0.01, niter=300, schedule="cosine", lr_min=1e-6):
+ params = [p for p in net.parameters() if p.requires_grad]
+ if not params:
+ return net
+
+ verbose = net.verbose
+ if verbose:
+ print("Global alignement - optimizing for:")
+ print([name for name, value in net.named_parameters() if value.requires_grad])
+
+ lr_base = lr
+ optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9))
+
+ loss = float("inf")
+ if verbose:
+ with tqdm.tqdm(total=niter) as bar:
+ while bar.n < bar.total:
+ loss, lr = global_alignment_iter(
+ net, bar.n, niter, lr_base, lr_min, optimizer, schedule
+ )
+ bar.set_postfix_str(f"{lr=:g} loss={loss:g}")
+ bar.update()
+ else:
+ for n in range(niter):
+ loss, _ = global_alignment_iter(
+ net, n, niter, lr_base, lr_min, optimizer, schedule
+ )
+ return loss
+
+
+def global_alignment_iter(net, cur_iter, niter, lr_base, lr_min, optimizer, schedule):
+ t = cur_iter / niter
+ if schedule == "cosine":
+ lr = cosine_schedule(t, lr_base, lr_min)
+ elif schedule == "linear":
+ lr = linear_schedule(t, lr_base, lr_min)
+ else:
+ raise ValueError(f"bad lr {schedule=}")
+ adjust_learning_rate_by_lr(optimizer, lr)
+ optimizer.zero_grad()
+ loss = net()
+ loss.backward()
+ optimizer.step()
+
+ return float(loss), lr
+
+
+@torch.no_grad()
+def clean_pointcloud(
+ im_confs, K, cams, depthmaps, all_pts3d, tol=0.001, bad_conf=0, dbg=()
+):
+ """Method:
+ 1) express all 3d points in each camera coordinate frame
+ 2) if they're in front of a depthmap --> then lower their confidence
+ """
+ assert len(im_confs) == len(cams) == len(K) == len(depthmaps) == len(all_pts3d)
+ assert 0 <= tol < 1
+ res = [c.clone() for c in im_confs]
+
+ # reshape appropriately
+ all_pts3d = [p.view(*c.shape, 3) for p, c in zip(all_pts3d, im_confs)]
+ depthmaps = [d.view(*c.shape) for d, c in zip(depthmaps, im_confs)]
+
+ for i, pts3d in enumerate(all_pts3d):
+ for j in range(len(all_pts3d)):
+ if i == j:
+ continue
+
+ # project 3dpts in other view
+ proj = geotrf(cams[j], pts3d)
+ proj_depth = proj[:, :, 2]
+ u, v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1)
+
+ # check which points are actually in the visible cone
+ H, W = im_confs[j].shape
+ msk_i = (proj_depth > 0) & (0 <= u) & (u < W) & (0 <= v) & (v < H)
+ msk_j = v[msk_i], u[msk_i]
+
+ # find bad points = those in front but less confident
+ bad_points = (proj_depth[msk_i] < (1 - tol) * depthmaps[j][msk_j]) & (
+ res[i][msk_i] < res[j][msk_j]
+ )
+
+ bad_msk_i = msk_i.clone()
+ bad_msk_i[msk_i] = bad_points
+ res[i][bad_msk_i] = res[i][bad_msk_i].clip_(max=bad_conf)
+
+ return res
diff --git a/extern/CUT3R/cloud_opt/dust3r_opt/commons.py b/extern/CUT3R/cloud_opt/dust3r_opt/commons.py
new file mode 100644
index 0000000000000000000000000000000000000000..1c1fb51aab60eea36b059f191efa1c0c048c14b7
--- /dev/null
+++ b/extern/CUT3R/cloud_opt/dust3r_opt/commons.py
@@ -0,0 +1,102 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# utility functions for global alignment
+# --------------------------------------------------------
+import torch
+import torch.nn as nn
+import numpy as np
+
+
+def edge_str(i, j):
+ return f"{i}_{j}"
+
+
+def i_j_ij(ij):
+ return edge_str(*ij), ij
+
+
+def edge_conf(conf_i, conf_j, edge):
+ return float(conf_i[edge].mean() * conf_j[edge].mean())
+
+
+def compute_edge_scores(edges, conf_i, conf_j):
+ return {(i, j): edge_conf(conf_i, conf_j, e) for e, (i, j) in edges}
+
+
+def NoGradParamDict(x):
+ assert isinstance(x, dict)
+ return nn.ParameterDict(x).requires_grad_(False)
+
+
+def get_imshapes(edges, pred_i, pred_j):
+ n_imgs = max(max(e) for e in edges) + 1
+ imshapes = [None] * n_imgs
+ for e, (i, j) in enumerate(edges):
+ shape_i = tuple(pred_i[e].shape[0:2])
+ shape_j = tuple(pred_j[e].shape[0:2])
+ if imshapes[i]:
+ assert imshapes[i] == shape_i, f"incorrect shape for image {i}"
+ if imshapes[j]:
+ assert imshapes[j] == shape_j, f"incorrect shape for image {j}"
+ imshapes[i] = shape_i
+ imshapes[j] = shape_j
+ return imshapes
+
+
+def get_conf_trf(mode):
+ if mode == "log":
+
+ def conf_trf(x):
+ return x.log()
+
+ elif mode == "sqrt":
+
+ def conf_trf(x):
+ return x.sqrt()
+
+ elif mode == "m1":
+
+ def conf_trf(x):
+ return x - 1
+
+ elif mode in ("id", "none"):
+
+ def conf_trf(x):
+ return x
+
+ else:
+ raise ValueError(f"bad mode for {mode=}")
+ return conf_trf
+
+
+def l2_dist(a, b, weight):
+ return (a - b).square().sum(dim=-1) * weight
+
+
+def l1_dist(a, b, weight):
+ return (a - b).norm(dim=-1) * weight
+
+
+ALL_DISTS = dict(l1=l1_dist, l2=l2_dist)
+
+
+def signed_log1p(x):
+ sign = torch.sign(x)
+ return sign * torch.log1p(torch.abs(x))
+
+
+def signed_expm1(x):
+ sign = torch.sign(x)
+ return sign * torch.expm1(torch.abs(x))
+
+
+def cosine_schedule(t, lr_start, lr_end):
+ assert 0 <= t <= 1
+ return lr_end + (lr_start - lr_end) * (1 + np.cos(t * np.pi)) / 2
+
+
+def linear_schedule(t, lr_start, lr_end):
+ assert 0 <= t <= 1
+ return lr_start + (lr_end - lr_start) * t
diff --git a/extern/CUT3R/cloud_opt/dust3r_opt/init_im_poses.py b/extern/CUT3R/cloud_opt/dust3r_opt/init_im_poses.py
new file mode 100644
index 0000000000000000000000000000000000000000..41ce872a8abd8105c54040d21272517f315e0962
--- /dev/null
+++ b/extern/CUT3R/cloud_opt/dust3r_opt/init_im_poses.py
@@ -0,0 +1,382 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Initialization functions for global alignment
+# --------------------------------------------------------
+from functools import cache
+
+import numpy as np
+import scipy.sparse as sp
+import torch
+import cv2
+import roma
+from tqdm import tqdm
+
+from dust3r.utils.geometry import geotrf, inv, get_med_dist_between_poses
+from dust3r.post_process import estimate_focal_knowing_depth
+from dust3r.viz import to_numpy
+
+from cloud_opt.commons import edge_str, i_j_ij, compute_edge_scores
+
+
+@torch.no_grad()
+def init_from_known_poses(self, niter_PnP=10, min_conf_thr=3):
+ device = self.device
+
+ # indices of known poses
+ nkp, known_poses_msk, known_poses = get_known_poses(self)
+ assert nkp == self.n_imgs, "not all poses are known"
+
+ # get all focals
+ nkf, _, im_focals = get_known_focals(self)
+ assert nkf == self.n_imgs
+ im_pp = self.get_principal_points()
+
+ best_depthmaps = {}
+ # init all pairwise poses
+ for e, (i, j) in enumerate(tqdm(self.edges, disable=not self.verbose)):
+ i_j = edge_str(i, j)
+
+ # find relative pose for this pair
+ P1 = torch.eye(4, device=device)
+ msk = self.conf_i[i_j] > min(min_conf_thr, self.conf_i[i_j].min() - 0.1)
+ _, P2 = fast_pnp(
+ self.pred_j[i_j],
+ float(im_focals[i].mean()),
+ pp=im_pp[i],
+ msk=msk,
+ device=device,
+ niter_PnP=niter_PnP,
+ )
+
+ # align the two predicted camera with the two gt cameras
+ s, R, T = align_multiple_poses(torch.stack((P1, P2)), known_poses[[i, j]])
+ # normally we have known_poses[i] ~= sRT_to_4x4(s,R,T,device) @ P1
+ # and geotrf(sRT_to_4x4(1,R,T,device), s*P2[:3,3])
+ self._set_pose(self.pw_poses, e, R, T, scale=s)
+
+ # remember if this is a good depthmap
+ score = float(self.conf_i[i_j].mean())
+ if score > best_depthmaps.get(i, (0,))[0]:
+ best_depthmaps[i] = score, i_j, s
+
+ # init all image poses
+ for n in range(self.n_imgs):
+ assert known_poses_msk[n]
+ _, i_j, scale = best_depthmaps[n]
+ depth = self.pred_i[i_j][:, :, 2]
+ self._set_depthmap(n, depth * scale)
+
+
+@torch.no_grad()
+def init_minimum_spanning_tree(self, **kw):
+ """Init all camera poses (image-wise and pairwise poses) given
+ an initial set of pairwise estimations.
+ """
+ device = self.device
+ pts3d, _, im_focals, im_poses = minimum_spanning_tree(
+ self.imshapes,
+ self.edges,
+ self.pred_i,
+ self.pred_j,
+ self.conf_i,
+ self.conf_j,
+ self.im_conf,
+ self.min_conf_thr,
+ device,
+ has_im_poses=self.has_im_poses,
+ verbose=self.verbose,
+ **kw,
+ )
+
+ return init_from_pts3d(self, pts3d, im_focals, im_poses)
+
+
+def init_from_pts3d(self, pts3d, im_focals, im_poses):
+ # init poses
+ nkp, known_poses_msk, known_poses = get_known_poses(self)
+ if nkp == 1:
+ raise NotImplementedError(
+ "Would be simpler to just align everything afterwards on the single known pose"
+ )
+ elif nkp > 1:
+ # global rigid SE3 alignment
+ s, R, T = align_multiple_poses(
+ im_poses[known_poses_msk], known_poses[known_poses_msk]
+ )
+ trf = sRT_to_4x4(s, R, T, device=known_poses.device)
+
+ # rotate everything
+ im_poses = trf @ im_poses
+ im_poses[:, :3, :3] /= s # undo scaling on the rotation part
+ for img_pts3d in pts3d:
+ img_pts3d[:] = geotrf(trf, img_pts3d)
+
+ # set all pairwise poses
+ for e, (i, j) in enumerate(self.edges):
+ i_j = edge_str(i, j)
+ # compute transform that goes from cam to world
+ s, R, T = rigid_points_registration(
+ self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j]
+ )
+ self._set_pose(self.pw_poses, e, R, T, scale=s)
+
+ # take into account the scale normalization
+ s_factor = self.get_pw_norm_scale_factor()
+ im_poses[:, :3, 3] *= s_factor # apply downscaling factor
+ for img_pts3d in pts3d:
+ img_pts3d *= s_factor
+
+ # init all image poses
+ if self.has_im_poses:
+ for i in range(self.n_imgs):
+ cam2world = im_poses[i]
+ depth = geotrf(inv(cam2world), pts3d[i])[..., 2]
+ self._set_depthmap(i, depth)
+ self._set_pose(self.im_poses, i, cam2world)
+ if im_focals[i] is not None:
+ self._set_focal(i, im_focals[i])
+
+ if self.verbose:
+ pass
+ # print(' init loss =', float(self()))
+
+
+def minimum_spanning_tree(
+ imshapes,
+ edges,
+ pred_i,
+ pred_j,
+ conf_i,
+ conf_j,
+ im_conf,
+ min_conf_thr,
+ device,
+ has_im_poses=True,
+ niter_PnP=10,
+ verbose=True,
+):
+ n_imgs = len(imshapes)
+ sparse_graph = -dict_to_sparse_graph(
+ compute_edge_scores(map(i_j_ij, edges), conf_i, conf_j)
+ )
+ print(sparse_graph)
+ msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo()
+
+ # temp variable to store 3d points
+ pts3d = [None] * len(imshapes)
+
+ todo = sorted(zip(-msp.data, msp.row, msp.col)) # sorted edges
+ im_poses = [None] * n_imgs
+ im_focals = [None] * n_imgs
+
+ # init with strongest edge
+ score, i, j = todo.pop()
+ if verbose:
+ print(f" init edge ({i}*,{j}*) {score=}")
+ i_j = edge_str(i, j)
+ pts3d[i] = pred_i[i_j].clone()
+ pts3d[j] = pred_j[i_j].clone()
+ done = {i, j}
+ if has_im_poses:
+ im_poses[i] = torch.eye(4, device=device)
+ im_focals[i] = estimate_focal(pred_i[i_j])
+
+ # set initial pointcloud based on pairwise graph
+ msp_edges = [(i, j)]
+ while todo:
+ # each time, predict the next one
+ score, i, j = todo.pop()
+
+ if im_focals[i] is None:
+ im_focals[i] = estimate_focal(pred_i[i_j])
+
+ if i in done:
+ if verbose:
+ print(f" init edge ({i},{j}*) {score=}")
+ assert j not in done
+ # align pred[i] with pts3d[i], and then set j accordingly
+ i_j = edge_str(i, j)
+ s, R, T = rigid_points_registration(pred_i[i_j], pts3d[i], conf=conf_i[i_j])
+ trf = sRT_to_4x4(s, R, T, device)
+ pts3d[j] = geotrf(trf, pred_j[i_j])
+ done.add(j)
+ msp_edges.append((i, j))
+
+ if has_im_poses and im_poses[i] is None:
+ im_poses[i] = sRT_to_4x4(1, R, T, device)
+
+ elif j in done:
+ if verbose:
+ print(f" init edge ({i}*,{j}) {score=}")
+ assert i not in done
+ i_j = edge_str(i, j)
+ s, R, T = rigid_points_registration(pred_j[i_j], pts3d[j], conf=conf_j[i_j])
+ trf = sRT_to_4x4(s, R, T, device)
+ pts3d[i] = geotrf(trf, pred_i[i_j])
+ done.add(i)
+ msp_edges.append((i, j))
+
+ if has_im_poses and im_poses[i] is None:
+ im_poses[i] = sRT_to_4x4(1, R, T, device)
+ else:
+ # let's try again later
+ todo.insert(0, (score, i, j))
+
+ if has_im_poses:
+ # complete all missing informations
+ pair_scores = list(
+ sparse_graph.values()
+ ) # already negative scores: less is best
+ edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[
+ np.argsort(pair_scores)
+ ]
+ for i, j in edges_from_best_to_worse.tolist():
+ if im_focals[i] is None:
+ im_focals[i] = estimate_focal(pred_i[edge_str(i, j)])
+
+ for i in range(n_imgs):
+ if im_poses[i] is None:
+ msk = im_conf[i] > min_conf_thr
+ res = fast_pnp(
+ pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP
+ )
+ if res:
+ im_focals[i], im_poses[i] = res
+ if im_poses[i] is None:
+ im_poses[i] = torch.eye(4, device=device)
+ im_poses = torch.stack(im_poses)
+ else:
+ im_poses = im_focals = None
+
+ return pts3d, msp_edges, im_focals, im_poses
+
+
+def dict_to_sparse_graph(dic):
+ n_imgs = max(max(e) for e in dic) + 1
+ res = sp.dok_array((n_imgs, n_imgs))
+ for edge, value in dic.items():
+ res[edge] = value
+ return res
+
+
+def rigid_points_registration(pts1, pts2, conf):
+ R, T, s = roma.rigid_points_registration(
+ pts1.reshape(-1, 3),
+ pts2.reshape(-1, 3),
+ weights=conf.ravel(),
+ compute_scaling=True,
+ )
+ return s, R, T # return un-scaled (R, T)
+
+
+def sRT_to_4x4(scale, R, T, device):
+ trf = torch.eye(4, device=device)
+ trf[:3, :3] = R * scale
+ trf[:3, 3] = T.ravel() # doesn't need scaling
+ return trf
+
+
+def estimate_focal(pts3d_i, pp=None):
+ if pp is None:
+ H, W, THREE = pts3d_i.shape
+ assert THREE == 3
+ pp = torch.tensor((W / 2, H / 2), device=pts3d_i.device)
+ focal = estimate_focal_knowing_depth(
+ pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode="weiszfeld"
+ ).ravel()
+ return float(focal)
+
+
+@cache
+def pixel_grid(H, W):
+ return np.mgrid[:W, :H].T.astype(np.float32)
+
+
+def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10):
+ # extract camera poses and focals with RANSAC-PnP
+ if msk.sum() < 4:
+ return None # we need at least 4 points for PnP
+ pts3d, msk = map(to_numpy, (pts3d, msk))
+
+ H, W, THREE = pts3d.shape
+ assert THREE == 3
+ pixels = pixel_grid(H, W)
+
+ if focal is None:
+ S = max(W, H)
+ tentative_focals = np.geomspace(S / 2, S * 3, 21)
+ else:
+ tentative_focals = [focal]
+
+ if pp is None:
+ pp = (W / 2, H / 2)
+ else:
+ pp = to_numpy(pp)
+
+ best = (0,)
+ for focal in tentative_focals:
+ K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])
+ try:
+ success, R, T, inliers = cv2.solvePnPRansac(
+ pts3d[msk],
+ pixels[msk],
+ K,
+ None,
+ iterationsCount=niter_PnP,
+ reprojectionError=5,
+ flags=cv2.SOLVEPNP_SQPNP,
+ )
+ if not success:
+ continue
+ except:
+ continue
+
+ score = len(inliers)
+ if success and score > best[0]:
+ best = score, R, T, focal
+
+ if not best[0]:
+ return None
+
+ _, R, T, best_focal = best
+ R = cv2.Rodrigues(R)[0] # world to cam
+ R, T = map(torch.from_numpy, (R, T))
+ return best_focal, inv(sRT_to_4x4(1, R, T, device)) # cam to world
+
+
+def get_known_poses(self):
+ if self.has_im_poses:
+ known_poses_msk = torch.tensor([not (p.requires_grad) for p in self.im_poses])
+ known_poses = self.get_im_poses()
+ return known_poses_msk.sum(), known_poses_msk, known_poses
+ else:
+ return 0, None, None
+
+
+def get_known_focals(self):
+ if self.has_im_poses:
+ known_focal_msk = self.get_known_focal_mask()
+ known_focals = self.get_focals()
+ return known_focal_msk.sum(), known_focal_msk, known_focals
+ else:
+ return 0, None, None
+
+
+def align_multiple_poses(src_poses, target_poses):
+ N = len(src_poses)
+ assert src_poses.shape == target_poses.shape == (N, 4, 4)
+
+ def center_and_z(poses):
+ # Add small epsilon to prevent division by zero when all poses are at origin
+ eps = max(get_med_dist_between_poses(poses) / 100, 1e-6)
+ return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps * poses[:, :3, 2]))
+
+ R, T, s = roma.rigid_points_registration(
+ center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True
+ )
+ # If scale is too small (near zero), set it to 1 to prevent numerical issues
+ if abs(s) < 1e-6:
+ s = 1.0
+ return s, R, T
diff --git a/extern/CUT3R/cloud_opt/dust3r_opt/optimizer.py b/extern/CUT3R/cloud_opt/dust3r_opt/optimizer.py
new file mode 100644
index 0000000000000000000000000000000000000000..7dcbae8746929bf2f9d1d62ebefcbf32bf857146
--- /dev/null
+++ b/extern/CUT3R/cloud_opt/dust3r_opt/optimizer.py
@@ -0,0 +1,341 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Main class for the implementation of the global alignment
+# --------------------------------------------------------
+import numpy as np
+import torch
+import torch.nn as nn
+
+from cloud_opt.dust3r_opt.base_opt import BasePCOptimizer
+from dust3r.utils.geometry import xy_grid, geotrf
+from dust3r.utils.device import to_cpu, to_numpy
+
+
+class PointCloudOptimizer(BasePCOptimizer):
+ """Optimize a global scene, given a list of pairwise observations.
+ Graph node: images
+ Graph edges: observations = (pred1, pred2)
+ """
+
+ def __init__(self, *args, optimize_pp=False, focal_break=20, **kwargs):
+ super().__init__(*args, **kwargs)
+
+ self.has_im_poses = True # by definition of this class
+ self.focal_break = focal_break
+
+ # adding thing to optimize
+ self.im_depthmaps = nn.ParameterList(
+ torch.randn(H, W) / 10 - 3 for H, W in self.imshapes
+ ) # log(depth)
+ self.im_poses = nn.ParameterList(
+ self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)
+ ) # camera poses
+ self.im_focals = nn.ParameterList(
+ torch.FloatTensor([self.focal_break * np.log(max(H, W))])
+ for H, W in self.imshapes
+ ) # camera intrinsics
+ self.im_pp = nn.ParameterList(
+ torch.zeros((2,)) for _ in range(self.n_imgs)
+ ) # camera intrinsics
+ self.im_pp.requires_grad_(optimize_pp)
+
+ self.imshape = self.imshapes[0]
+ im_areas = [h * w for h, w in self.imshapes]
+ self.max_area = max(im_areas)
+
+ # adding thing to optimize
+ # self.im_depthmaps = ParameterStack(
+ # self.im_depthmaps, is_param=True, fill=self.max_area
+ # )
+
+ self.im_poses = ParameterStack(self.im_poses, is_param=True)
+ self.im_focals = ParameterStack(self.im_focals, is_param=True)
+ self.im_pp = ParameterStack(self.im_pp, is_param=True)
+ self.register_buffer(
+ "_pp", torch.tensor([(w / 2, h / 2) for h, w in self.imshapes])
+ )
+ self.register_buffer(
+ "_grid",
+ ParameterStack(
+ [xy_grid(W, H, device=self.device) for H, W in self.imshapes],
+ fill=self.max_area,
+ ),
+ )
+
+ # pre-compute pixel weights
+ self.register_buffer(
+ "_weight_i",
+ ParameterStack(
+ [self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges],
+ fill=self.max_area,
+ ),
+ )
+ self.register_buffer(
+ "_weight_j",
+ ParameterStack(
+ [self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges],
+ fill=self.max_area,
+ ),
+ )
+
+ # precompute aa
+ self.register_buffer(
+ "_stacked_pred_i",
+ ParameterStack(self.pred_i, self.str_edges, fill=self.max_area),
+ )
+ self.register_buffer(
+ "_stacked_pred_j",
+ ParameterStack(self.pred_j, self.str_edges, fill=self.max_area),
+ )
+ self.register_buffer("_ei", torch.tensor([i for i, j in self.edges]))
+ self.register_buffer("_ej", torch.tensor([j for i, j in self.edges]))
+ self.total_area_i = sum([im_areas[i] for i, j in self.edges])
+ self.total_area_j = sum([im_areas[j] for i, j in self.edges])
+
+ def _check_all_imgs_are_selected(self, msk):
+ assert np.all(
+ self._get_msk_indices(msk) == np.arange(self.n_imgs)
+ ), "incomplete mask!"
+
+ def preset_pose(self, known_poses, pose_msk=None): # cam-to-world
+ self._check_all_imgs_are_selected(pose_msk)
+
+ if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2:
+ known_poses = [known_poses]
+ for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses):
+ if self.verbose:
+ print(f" (setting pose #{idx} = {pose[:3,3]})")
+ self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose)))
+
+ # normalize scale if there's less than 1 known pose
+ self.im_poses.requires_grad_(False)
+ for p in self.im_poses:
+ print(p.requires_grad)
+ print(p.data)
+ n_known_poses = sum((p.requires_grad is False) for p in self.im_poses)
+ self.norm_pw_scale = n_known_poses <= 1
+
+
+ self.norm_pw_scale = False
+
+ def preset_focal(self, known_focals, msk=None):
+ self._check_all_imgs_are_selected(msk)
+
+ for idx, focal in zip(self._get_msk_indices(msk), known_focals):
+ if self.verbose:
+ print(f" (setting focal #{idx} = {focal})")
+ self._no_grad(self._set_focal(idx, focal))
+
+ self.im_focals.requires_grad_(False)
+
+ def preset_principal_point(self, known_pp, msk=None):
+ self._check_all_imgs_are_selected(msk)
+
+ for idx, pp in zip(self._get_msk_indices(msk), known_pp):
+ if self.verbose:
+ print(f" (setting principal point #{idx} = {pp})")
+ self._no_grad(self._set_principal_point(idx, pp))
+
+ self.im_pp.requires_grad_(False)
+
+
+
+
+ def _get_msk_indices(self, msk):
+ if msk is None:
+ return range(self.n_imgs)
+ elif isinstance(msk, int):
+ return [msk]
+ elif isinstance(msk, (tuple, list)):
+ return self._get_msk_indices(np.array(msk))
+ elif msk.dtype in (bool, torch.bool, np.bool_):
+ assert len(msk) == self.n_imgs
+ return np.where(msk)[0]
+ elif np.issubdtype(msk.dtype, np.integer):
+ return msk
+ else:
+ raise ValueError(f"bad {msk=}")
+
+ def _no_grad(self, tensor):
+ assert (
+ tensor.requires_grad
+ ), "it must be True at this point, otherwise no modification occurs"
+
+ def _set_focal(self, idx, focal, force=False):
+ param = self.im_focals[idx]
+ if (
+ param.requires_grad or force
+ ): # can only init a parameter not already initialized
+ param.data[:] = self.focal_break * np.log(focal)
+ return param
+
+ def get_focals(self):
+ log_focals = torch.stack(list(self.im_focals), dim=0)
+ return (log_focals / self.focal_break).exp()
+
+ def get_known_focal_mask(self):
+ return torch.tensor([not (p.requires_grad) for p in self.im_focals])
+
+ def _set_principal_point(self, idx, pp, force=False):
+ param = self.im_pp[idx]
+ H, W = self.imshapes[idx]
+ if (
+ param.requires_grad or force
+ ): # can only init a parameter not already initialized
+ param.data[:] = to_cpu(to_numpy(pp) - (W / 2, H / 2)) / 10
+ return param
+
+ def get_principal_points(self):
+ return self._pp + 10 * self.im_pp
+
+ def get_intrinsics(self):
+ K = torch.zeros((self.n_imgs, 3, 3), device=self.device)
+ focals = self.get_focals().flatten()
+ K[:, 0, 0] = K[:, 1, 1] = focals
+ K[:, :2, 2] = self.get_principal_points()
+ K[:, 2, 2] = 1
+ return K
+
+ def get_im_poses(self): # cam to world
+ cam2world = self._get_poses(self.im_poses)
+ return cam2world
+
+
+ def preset_depth(self, known_depths, msk=None):
+ """Preset known depth maps for specified images.
+
+ Args:
+ known_depths: List of depth maps or single depth map (should be in normal depth space, not log space)
+ msk: Mask or indices indicating which images to preset. If None, applies to all images.
+ """
+ self._check_all_imgs_are_selected(msk)
+
+ if isinstance(known_depths, (torch.Tensor, np.ndarray)) and known_depths.ndim == 2:
+ known_depths = [known_depths]
+
+ for idx, depth in zip(self._get_msk_indices(msk), known_depths):
+ if self.verbose:
+ print(f" (setting depth #{idx})")
+ # No need to take log here since _set_depthmap already expects depths in normal space
+ depth = _ravel_hw(depth, self.max_area).view(self.imshapes[idx])
+ self._no_grad(self._set_depthmap(idx, torch.tensor(depth)))
+ self.im_depthmaps[idx].requires_grad_(False)
+
+
+ def _set_depthmap(self, idx, depth, force=False):
+ """Set a depth map for an image.
+
+ Args:
+ idx: Image index
+ depth: Depth map in normal space (not log space)
+ force: Whether to force setting even if already initialized
+ """
+ depth = _ravel_hw(depth, self.max_area)
+ depth = depth.view(self.imshapes[idx])
+ depth = depth.nan_to_num(neginf=0)
+ param = self.im_depthmaps[idx]
+ if (
+ param.requires_grad or force
+ ): # can only init a parameter not already initialized
+ param.data[:] = depth.log().nan_to_num(neginf=0) # Store in log space
+ return param
+
+ def get_depthmaps(self, raw=False):
+ res = ParameterStack(self.im_depthmaps, is_param=False).exp()
+ if not raw:
+ res = [dm[: h * w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
+ return res
+
+ def depth_to_pts3d(self):
+ # Get depths and projection params if not provided
+ focals = self.get_focals()
+ pp = self.get_principal_points()
+ im_poses = self.get_im_poses()
+ depth = self.get_depthmaps(raw=True)
+
+ # get pointmaps in camera frame
+ rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp)
+ # project to world frame
+ return geotrf(im_poses, rel_ptmaps)
+
+ def get_pts3d(self, raw=False):
+ res = self.depth_to_pts3d()
+ if not raw:
+ res = [dm[: h * w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
+ return res
+
+ def forward(self):
+ pw_poses = self.get_pw_poses() # cam-to-world
+ pw_adapt = self.get_adaptors().unsqueeze(1)
+ proj_pts3d = self.get_pts3d(raw=True)
+
+ # rotate pairwise prediction according to pw_poses
+ aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i)
+ aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j)
+
+ # compute the less
+ li = (
+ self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum()
+ / self.total_area_i
+ )
+ lj = (
+ self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum()
+ / self.total_area_j
+ )
+
+ return li + lj
+
+
+def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp):
+ pp = pp.unsqueeze(1)
+ focal = focal.unsqueeze(1)
+ if depth.ndim == 3:
+ depth = depth.view(depth.shape[0], -1)
+ assert focal.shape == (len(depth), 1, 1)
+ assert pp.shape == (len(depth), 1, 2)
+ assert pixel_grid.shape == depth.shape + (2,)
+ depth = depth.unsqueeze(-1)
+ return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1)
+
+
+def ParameterStack(params, keys=None, is_param=None, fill=0):
+ if keys is not None:
+ params = [params[k] for k in keys]
+
+ if fill > 0:
+ params = [_ravel_hw(p, fill) for p in params]
+
+ requires_grad = params[0].requires_grad
+ assert all(p.requires_grad == requires_grad for p in params) if is_param else True
+
+ params = torch.stack(list(params)).float().detach()
+ if is_param or requires_grad:
+ params = nn.Parameter(params)
+ params.requires_grad_(requires_grad)
+ return params
+
+
+def _ravel_hw(tensor, fill=0):
+ # ravel H,W
+ tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])
+
+ if len(tensor) < fill:
+ tensor = torch.cat(
+ (tensor, tensor.new_zeros((fill - len(tensor),) + tensor.shape[1:]))
+ )
+ return tensor
+
+
+def acceptable_focal_range(H, W, minf=0.5, maxf=3.5):
+ focal_base = max(H, W) / (
+ 2 * np.tan(np.deg2rad(60) / 2)
+ ) # size / 1.1547005383792515
+ return minf * focal_base, maxf * focal_base
+
+
+def apply_mask(img, msk):
+ img = img.copy()
+ img[msk] = 0
+ return img
diff --git a/extern/CUT3R/cloud_opt/init_all.py b/extern/CUT3R/cloud_opt/init_all.py
new file mode 100644
index 0000000000000000000000000000000000000000..090cc4c52683a83e19ea0bff0bb908987c64c05d
--- /dev/null
+++ b/extern/CUT3R/cloud_opt/init_all.py
@@ -0,0 +1,222 @@
+from functools import cache
+import numpy as np
+import scipy.sparse as sp
+import torch
+import cv2
+import roma
+from tqdm import tqdm
+
+from cloud_opt.utils import *
+
+
+def compute_edge_scores(edges, edge2conf_i, edge2conf_j):
+ """
+ edges: 'i_j', (i,j)
+ """
+ score_dict = {
+ (i, j): edge_conf(edge2conf_i[e], edge2conf_j[e]) for e, (i, j) in edges
+ }
+ return score_dict
+
+
+def dict_to_sparse_graph(dic):
+ n_imgs = max(max(e) for e in dic) + 1
+ res = sp.dok_array((n_imgs, n_imgs))
+ for edge, value in dic.items():
+ res[edge] = value
+ return res
+
+
+@torch.no_grad()
+def init_minimum_spanning_tree(self, **kw):
+ """Init all camera poses (image-wise and pairwise poses) given
+ an initial set of pairwise estimations.
+ """
+ device = self.device
+ pts3d, _, im_focals, im_poses = minimum_spanning_tree(
+ self.imshapes,
+ self.edges,
+ self.edge2pts_i,
+ self.edge2pts_j,
+ self.edge2conf_i,
+ self.edge2conf_j,
+ self.im_conf,
+ self.min_conf_thr,
+ device,
+ has_im_poses=self.has_im_poses,
+ verbose=self.verbose,
+ **kw,
+ )
+
+ return init_from_pts3d(self, pts3d, im_focals, im_poses)
+
+
+def minimum_spanning_tree(
+ imshapes,
+ edges,
+ edge2pred_i,
+ edge2pred_j,
+ edge2conf_i,
+ edge2conf_j,
+ im_conf,
+ min_conf_thr,
+ device,
+ has_im_poses=True,
+ niter_PnP=10,
+ verbose=True,
+ save_score_path=None,
+):
+ n_imgs = len(imshapes)
+ eadge_and_scores = compute_edge_scores(map(i_j_ij, edges), edge2conf_i, edge2conf_j)
+ sparse_graph = -dict_to_sparse_graph(eadge_and_scores)
+ msp = sp.csgraph.minimum_spanning_tree(sparse_graph).tocoo()
+
+ # temp variable to store 3d points
+ pts3d = [None] * len(imshapes)
+
+ todo = sorted(zip(-msp.data, msp.row, msp.col)) # sorted edges
+ im_poses = [None] * n_imgs
+ im_focals = [None] * n_imgs
+
+ # init with strongest edge
+ score, i, j = todo.pop()
+ if verbose:
+ print(f" init edge ({i}*,{j}*) {score=}")
+ i_j = edge_str(i, j)
+
+ pts3d[i] = edge2pred_i[i_j].clone()
+ pts3d[j] = edge2pred_j[i_j].clone()
+ done = {i, j}
+ if has_im_poses:
+ im_poses[i] = torch.eye(4, device=device)
+ im_focals[i] = estimate_focal(edge2pred_i[i_j])
+
+ # set initial pointcloud based on pairwise graph
+ msp_edges = [(i, j)]
+ while todo:
+ # each time, predict the next one
+ score, i, j = todo.pop()
+
+ if im_focals[i] is None:
+ im_focals[i] = estimate_focal(edge2pred_i[i_j])
+
+ if i in done:
+ if verbose:
+ print(f" init edge ({i},{j}*) {score=}")
+ assert j not in done
+ # align pred[i] with pts3d[i], and then set j accordingly
+ i_j = edge_str(i, j)
+ s, R, T = rigid_points_registration(
+ edge2pred_i[i_j], pts3d[i], conf=edge2conf_i[i_j]
+ )
+ trf = sRT_to_4x4(s, R, T, device)
+ pts3d[j] = geotrf(trf, edge2pred_j[i_j])
+ done.add(j)
+ msp_edges.append((i, j))
+
+ if has_im_poses and im_poses[i] is None:
+ im_poses[i] = sRT_to_4x4(1, R, T, device)
+
+ elif j in done:
+ if verbose:
+ print(f" init edge ({i}*,{j}) {score=}")
+ assert i not in done
+ i_j = edge_str(i, j)
+ s, R, T = rigid_points_registration(
+ edge2pred_j[i_j], pts3d[j], conf=edge2conf_j[i_j]
+ )
+ trf = sRT_to_4x4(s, R, T, device)
+ pts3d[i] = geotrf(trf, edge2pred_i[i_j])
+ done.add(i)
+ msp_edges.append((i, j))
+
+ if has_im_poses and im_poses[i] is None:
+ im_poses[i] = sRT_to_4x4(1, R, T, device)
+ else:
+ # let's try again later
+ todo.insert(0, (score, i, j))
+
+ if has_im_poses:
+ # complete all missing informations
+ pair_scores = list(
+ sparse_graph.values()
+ ) # already negative scores: less is best
+ edges_from_best_to_worse = np.array(list(sparse_graph.keys()))[
+ np.argsort(pair_scores)
+ ]
+ for i, j in edges_from_best_to_worse.tolist():
+ if im_focals[i] is None:
+ im_focals[i] = estimate_focal(edge2pred_i[edge_str(i, j)])
+
+ for i in range(n_imgs):
+ if im_poses[i] is None:
+ msk = im_conf[i] > min_conf_thr
+ res = fast_pnp(
+ pts3d[i], im_focals[i], msk=msk, device=device, niter_PnP=niter_PnP
+ )
+ if res:
+ im_focals[i], im_poses[i] = res
+ if im_poses[i] is None:
+ im_poses[i] = torch.eye(4, device=device)
+ im_poses = torch.stack(im_poses)
+ else:
+ im_poses = im_focals = None
+
+ return pts3d, msp_edges, im_focals, im_poses
+
+
+def init_from_pts3d(self, pts3d, im_focals, im_poses):
+ # init poses
+ nkp, known_poses_msk, known_poses = self.get_known_poses()
+ if nkp == 1:
+ raise NotImplementedError(
+ "Would be simpler to just align everything afterwards on the single known pose"
+ )
+ elif nkp > 1:
+ # global rigid SE3 alignment
+ s, R, T = align_multiple_poses(
+ im_poses[known_poses_msk], known_poses[known_poses_msk]
+ )
+ trf = sRT_to_4x4(s, R, T, device=known_poses.device)
+
+ # rotate everything
+ im_poses = trf @ im_poses
+ im_poses[:, :3, :3] /= s # undo scaling on the rotation part
+ for img_pts3d in pts3d:
+ img_pts3d[:] = geotrf(trf, img_pts3d)
+ else:
+ pass # no known poses
+
+ # set all pairwise poses
+ for e, (i, j) in enumerate(self.edges):
+ i_j = edge_str(i, j)
+ # compute transform that goes from cam to world
+ s, R, T = rigid_points_registration(
+ self.pred_i[i_j], pts3d[i], conf=self.conf_i[i_j]
+ )
+ self._set_pose(self.pw_poses, e, R, T, scale=s)
+
+ # take into account the scale normalization
+ s_factor = self.get_pw_norm_scale_factor()
+ im_poses[:, :3, 3] *= s_factor # apply downscaling factor
+ for img_pts3d in pts3d:
+ img_pts3d *= s_factor
+
+ # init all image poses
+ if self.has_im_poses:
+ for i in range(self.n_imgs):
+ cam2world = im_poses[i]
+ depth = geotrf(inv(cam2world), pts3d[i])[..., 2]
+ self._set_depthmap(i, depth)
+ self._set_pose(self.im_poses, i, cam2world)
+ if im_focals[i] is not None:
+ if not self.shared_focal:
+ self._set_focal(i, im_focals[i])
+ if self.shared_focal:
+ self._set_focal(0, sum(im_focals) / self.n_imgs)
+ if self.n_imgs > 2:
+ self._set_init_depthmap()
+
+ if self.verbose:
+ with torch.no_grad():
+ print(" init loss =", float(self()))
diff --git a/extern/CUT3R/cloud_opt/utils.py b/extern/CUT3R/cloud_opt/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..f685265072ad78345b5cd6fd13e8e7b28a3a030d
--- /dev/null
+++ b/extern/CUT3R/cloud_opt/utils.py
@@ -0,0 +1,443 @@
+import torch.nn as nn
+import torch
+import roma
+import numpy as np
+import cv2
+from functools import cache
+
+
+def todevice(batch, device, callback=None, non_blocking=False):
+ """Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy).
+
+ batch: list, tuple, dict of tensors or other things
+ device: pytorch device or 'numpy'
+ callback: function that would be called on every sub-elements.
+ """
+ if callback:
+ batch = callback(batch)
+
+ if isinstance(batch, dict):
+ return {k: todevice(v, device) for k, v in batch.items()}
+
+ if isinstance(batch, (tuple, list)):
+ return type(batch)(todevice(x, device) for x in batch)
+
+ x = batch
+ if device == "numpy":
+ if isinstance(x, torch.Tensor):
+ x = x.detach().cpu().numpy()
+ elif x is not None:
+ if isinstance(x, np.ndarray):
+ x = torch.from_numpy(x)
+ if torch.is_tensor(x):
+ x = x.to(device, non_blocking=non_blocking)
+ return x
+
+
+to_device = todevice # alias
+
+
+def to_numpy(x):
+ return todevice(x, "numpy")
+
+
+def to_cpu(x):
+ return todevice(x, "cpu")
+
+
+def to_cuda(x):
+ return todevice(x, "cuda")
+
+
+def signed_log1p(x):
+ sign = torch.sign(x)
+ return sign * torch.log1p(torch.abs(x))
+
+
+def l2_dist(a, b, weight):
+ return (a - b).square().sum(dim=-1) * weight
+
+
+def l1_dist(a, b, weight):
+ return (a - b).norm(dim=-1) * weight
+
+
+ALL_DISTS = dict(l1=l1_dist, l2=l2_dist)
+
+
+def _check_edges(edges):
+ indices = sorted({i for edge in edges for i in edge})
+ assert indices == list(range(len(indices))), "bad pair indices: missing values "
+ return len(indices)
+
+
+def NoGradParamDict(x):
+ assert isinstance(x, dict)
+ return nn.ParameterDict(x).requires_grad_(False)
+
+
+def edge_str(i, j):
+ return f"{i}_{j}"
+
+
+def i_j_ij(ij):
+ # inputs are (i, j)
+ return edge_str(*ij), ij
+
+
+def edge_conf(conf_i, conf_j):
+ score = float(conf_i.mean() * conf_j.mean())
+ return score
+
+
+def get_imshapes(edges, pred_i, pred_j):
+ n_imgs = max(max(e) for e in edges) + 1
+ imshapes = [None] * n_imgs
+ for e, (i, j) in enumerate(edges):
+ shape_i = tuple(pred_i[e]["pts3d_is_self_view"].shape[0:2])
+ shape_j = tuple(pred_j[e]["pts3d_in_other_view"].shape[0:2])
+ if imshapes[i]:
+ assert imshapes[i] == shape_i, f"incorrect shape for image {i}"
+ if imshapes[j]:
+ assert imshapes[j] == shape_j, f"incorrect shape for image {j}"
+ imshapes[i] = shape_i
+ imshapes[j] = shape_j
+ return imshapes
+
+
+def get_conf_trf(mode):
+ if mode == "log":
+
+ def conf_trf(x):
+ return x.log()
+
+ elif mode == "sqrt":
+
+ def conf_trf(x):
+ return x.sqrt()
+
+ elif mode == "m1":
+
+ def conf_trf(x):
+ return x - 1
+
+ elif mode in ("id", "none"):
+
+ def conf_trf(x):
+ return x
+
+ else:
+ raise ValueError(f"bad mode for {mode=}")
+ return conf_trf
+
+
+@torch.no_grad()
+def _compute_img_conf(imshapes, device, edges, edge2conf_i, edge2conf_j):
+ im_conf = nn.ParameterList([torch.zeros(hw, device=device) for hw in imshapes])
+ for e, (i, j) in enumerate(edges):
+ im_conf[i] = torch.maximum(im_conf[i], edge2conf_i[edge_str(i, j)])
+ im_conf[j] = torch.maximum(im_conf[j], edge2conf_j[edge_str(i, j)])
+ return im_conf
+
+
+def xy_grid(
+ W,
+ H,
+ device=None,
+ origin=(0, 0),
+ unsqueeze=None,
+ cat_dim=-1,
+ homogeneous=False,
+ **arange_kw,
+):
+ """Output a (H,W,2) array of int32
+ with output[j,i,0] = i + origin[0]
+ output[j,i,1] = j + origin[1]
+ """
+ if device is None:
+ # numpy
+ arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones
+ else:
+ # torch
+ arange = lambda *a, **kw: torch.arange(*a, device=device, **kw)
+ meshgrid, stack = torch.meshgrid, torch.stack
+ ones = lambda *a: torch.ones(*a, device=device)
+
+ tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)]
+ grid = meshgrid(tw, th, indexing="xy")
+ if homogeneous:
+ grid = grid + (ones((H, W)),)
+ if unsqueeze is not None:
+ grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze))
+ if cat_dim is not None:
+ grid = stack(grid, cat_dim)
+ return grid
+
+
+def estimate_focal_knowing_depth(
+ pts3d, pp, focal_mode="median", min_focal=0.0, max_focal=np.inf
+):
+ """Reprojection method, for when the absolute depth is known:
+ 1) estimate the camera focal using a robust estimator
+ 2) reproject points onto true rays, minimizing a certain error
+ """
+ B, H, W, THREE = pts3d.shape
+ assert THREE == 3
+
+ # centered pixel grid
+ pixels = xy_grid(W, H, device=pts3d.device).view(1, -1, 2) - pp.view(
+ -1, 1, 2
+ ) # B,HW,2
+ pts3d = pts3d.flatten(1, 2) # (B, HW, 3)
+
+ if focal_mode == "median":
+ with torch.no_grad():
+ # direct estimation of focal
+ u, v = pixels.unbind(dim=-1)
+ x, y, z = pts3d.unbind(dim=-1)
+ fx_votes = (u * z) / x
+ fy_votes = (v * z) / y
+
+ # assume square pixels, hence same focal for X and Y
+ f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1)
+ focal = torch.nanmedian(f_votes, dim=-1).values
+
+ elif focal_mode == "weiszfeld":
+ # init focal with l2 closed form
+ # we try to find focal = argmin Sum | pixel - focal * (x,y)/z|
+ xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(
+ posinf=0, neginf=0
+ ) # homogeneous (x,y,1)
+
+ dot_xy_px = (xy_over_z * pixels).sum(dim=-1)
+ dot_xy_xy = xy_over_z.square().sum(dim=-1)
+
+ focal = dot_xy_px.mean(dim=1) / dot_xy_xy.mean(dim=1)
+
+ # iterative re-weighted least-squares
+ for iter in range(10):
+ # re-weighting by inverse of distance
+ dis = (pixels - focal.view(-1, 1, 1) * xy_over_z).norm(dim=-1)
+ # print(dis.nanmean(-1))
+ w = dis.clip(min=1e-8).reciprocal()
+ # update the scaling with the new weights
+ focal = (w * dot_xy_px).mean(dim=1) / (w * dot_xy_xy).mean(dim=1)
+ else:
+ raise ValueError(f"bad {focal_mode=}")
+
+ focal_base = max(H, W) / (
+ 2 * np.tan(np.deg2rad(60) / 2)
+ ) # size / 1.1547005383792515
+ focal = focal.clip(min=min_focal * focal_base, max=max_focal * focal_base)
+ # print(focal)
+ return focal
+
+
+def estimate_focal(pts3d_i, pp=None):
+ if pp is None:
+ H, W, THREE = pts3d_i.shape
+ assert THREE == 3
+ pp = torch.tensor((W / 2, H / 2), device=pts3d_i.device)
+ focal = estimate_focal_knowing_depth(
+ pts3d_i.unsqueeze(0), pp.unsqueeze(0), focal_mode="weiszfeld"
+ ).ravel()
+ return float(focal)
+
+
+def rigid_points_registration(pts1, pts2, conf):
+ R, T, s = roma.rigid_points_registration(
+ pts1.reshape(-1, 3),
+ pts2.reshape(-1, 3),
+ weights=conf.ravel(),
+ compute_scaling=True,
+ )
+ return s, R, T # return un-scaled (R, T)
+
+
+def sRT_to_4x4(scale, R, T, device):
+ trf = torch.eye(4, device=device)
+ trf[:3, :3] = R * scale
+ trf[:3, 3] = T.ravel() # doesn't need scaling
+ return trf
+
+
+def geotrf(Trf, pts, ncol=None, norm=False):
+ """Apply a geometric transformation to a list of 3-D points.
+
+ H: 3x3 or 4x4 projection matrix (typically a Homography)
+ p: numpy/torch/tuple of coordinates. Shape must be (...,2) or (...,3)
+
+ ncol: int. number of columns of the result (2 or 3)
+ norm: float. if != 0, the resut is projected on the z=norm plane.
+
+ Returns an array of projected 2d points.
+ """
+ assert Trf.ndim >= 2
+ if isinstance(Trf, np.ndarray):
+ pts = np.asarray(pts)
+ elif isinstance(Trf, torch.Tensor):
+ pts = torch.as_tensor(pts, dtype=Trf.dtype)
+
+ # adapt shape if necessary
+ output_reshape = pts.shape[:-1]
+ ncol = ncol or pts.shape[-1]
+
+ # optimized code
+ if (
+ isinstance(Trf, torch.Tensor)
+ and isinstance(pts, torch.Tensor)
+ and Trf.ndim == 3
+ and pts.ndim == 4
+ ):
+ d = pts.shape[3]
+ if Trf.shape[-1] == d:
+ pts = torch.einsum("bij, bhwj -> bhwi", Trf, pts)
+ elif Trf.shape[-1] == d + 1:
+ pts = (
+ torch.einsum("bij, bhwj -> bhwi", Trf[:, :d, :d], pts)
+ + Trf[:, None, None, :d, d]
+ )
+ else:
+ raise ValueError(f"bad shape, not ending with 3 or 4, for {pts.shape=}")
+ else:
+ if Trf.ndim >= 3:
+ n = Trf.ndim - 2
+ assert Trf.shape[:n] == pts.shape[:n], "batch size does not match"
+ Trf = Trf.reshape(-1, Trf.shape[-2], Trf.shape[-1])
+
+ if pts.ndim > Trf.ndim:
+ # Trf == (B,d,d) & pts == (B,H,W,d) --> (B, H*W, d)
+ pts = pts.reshape(Trf.shape[0], -1, pts.shape[-1])
+ elif pts.ndim == 2:
+ # Trf == (B,d,d) & pts == (B,d) --> (B, 1, d)
+ pts = pts[:, None, :]
+
+ if pts.shape[-1] + 1 == Trf.shape[-1]:
+ Trf = Trf.swapaxes(-1, -2) # transpose Trf
+ pts = pts @ Trf[..., :-1, :] + Trf[..., -1:, :]
+ elif pts.shape[-1] == Trf.shape[-1]:
+ Trf = Trf.swapaxes(-1, -2) # transpose Trf
+ pts = pts @ Trf
+ else:
+ pts = Trf @ pts.T
+ if pts.ndim >= 2:
+ pts = pts.swapaxes(-1, -2)
+
+ if norm:
+ pts = pts / pts[..., -1:] # DONT DO /= BECAUSE OF WEIRD PYTORCH BUG
+ if norm != 1:
+ pts *= norm
+
+ res = pts[..., :ncol].reshape(*output_reshape, ncol)
+ return res
+
+
+def inv(mat):
+ """Invert a torch or numpy matrix"""
+ if isinstance(mat, torch.Tensor):
+ return torch.linalg.inv(mat)
+ if isinstance(mat, np.ndarray):
+ return np.linalg.inv(mat)
+ raise ValueError(f"bad matrix type = {type(mat)}")
+
+
+@cache
+def pixel_grid(H, W):
+ return np.mgrid[:W, :H].T.astype(np.float32)
+
+
+def fast_pnp(pts3d, focal, msk, device, pp=None, niter_PnP=10):
+ # extract camera poses and focals with RANSAC-PnP
+ if msk.sum() < 4:
+ return None # we need at least 4 points for PnP
+ pts3d, msk = map(to_numpy, (pts3d, msk))
+
+ H, W, THREE = pts3d.shape
+ assert THREE == 3
+ pixels = pixel_grid(H, W)
+
+ if focal is None:
+ S = max(W, H)
+ tentative_focals = np.geomspace(S / 2, S * 3, 21)
+ else:
+ tentative_focals = [focal]
+
+ if pp is None:
+ pp = (W / 2, H / 2)
+ else:
+ pp = to_numpy(pp)
+
+ best = (0,)
+ for focal in tentative_focals:
+ K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])
+
+ success, R, T, inliers = cv2.solvePnPRansac(
+ pts3d[msk],
+ pixels[msk],
+ K,
+ None,
+ iterationsCount=niter_PnP,
+ reprojectionError=5,
+ flags=cv2.SOLVEPNP_SQPNP,
+ )
+ if not success:
+ continue
+
+ score = len(inliers)
+ if success and score > best[0]:
+ best = score, R, T, focal
+
+ if not best[0]:
+ return None
+
+ _, R, T, best_focal = best
+ R = cv2.Rodrigues(R)[0] # world to cam
+ R, T = map(torch.from_numpy, (R, T))
+ return best_focal, inv(sRT_to_4x4(1, R, T, device)) # cam to world
+
+
+def get_med_dist_between_poses(poses):
+ from scipy.spatial.distance import pdist
+
+ return np.median(pdist([to_numpy(p[:3, 3]) for p in poses]))
+
+
+def align_multiple_poses(src_poses, target_poses):
+ N = len(src_poses)
+ assert src_poses.shape == target_poses.shape == (N, 4, 4)
+
+ def center_and_z(poses):
+ eps = get_med_dist_between_poses(poses) / 100
+ return torch.cat((poses[:, :3, 3], poses[:, :3, 3] + eps * poses[:, :3, 2]))
+
+ R, T, s = roma.rigid_points_registration(
+ center_and_z(src_poses), center_and_z(target_poses), compute_scaling=True
+ )
+ return s, R, T
+
+
+def cosine_schedule(t, lr_start, lr_end):
+ assert 0 <= t <= 1
+ return lr_end + (lr_start - lr_end) * (1 + np.cos(t * np.pi)) / 2
+
+
+def linear_schedule(t, lr_start, lr_end):
+ assert 0 <= t <= 1
+ return lr_start + (lr_end - lr_start) * t
+
+
+def cycled_linear_schedule(t, lr_start, lr_end, num_cycles=2):
+ assert 0 <= t <= 1
+ cycle_t = t * num_cycles
+ cycle_t = cycle_t - int(cycle_t)
+ if t == 1:
+ cycle_t = 1
+ return linear_schedule(cycle_t, lr_start, lr_end)
+
+
+def adjust_learning_rate_by_lr(optimizer, lr):
+ for param_group in optimizer.param_groups:
+ if "lr_scale" in param_group:
+ param_group["lr"] = lr * param_group["lr_scale"]
+ else:
+ param_group["lr"] = lr
diff --git a/extern/CUT3R/config/dpt_512_vary_4_64.yaml b/extern/CUT3R/config/dpt_512_vary_4_64.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..20c64b00a9b8b30b9fa19bf3bc462c4199a58013
--- /dev/null
+++ b/extern/CUT3R/config/dpt_512_vary_4_64.yaml
@@ -0,0 +1,103 @@
+model: "ARCroco3DStereo(ARCroco3DStereoConfig(freeze='encoder', state_size=768, state_pe='2d', pos_embed='RoPE100', rgb_head=True, pose_head=True, patch_embed_cls='ManyAR_PatchEmbed', img_size=(512, 512), head_type='dpt', output_mode='pts3d+pose', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), pose_mode=('exp', -inf, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, landscape_only=False))"
+pretrained: cut3r_512_dpt_4_64.pth
+load_only_encoder: False
+long_context: True
+fixed_length: False
+resume: null
+benchmark: False
+num_views : 64
+num_test_views : 4
+n_corres_train: 0
+n_corres_test: 0
+
+train_criterion: ConfLoss(Regr3DPoseBatchList(L21, norm_mode='?avg_dis'), alpha=0.2) + RGBLoss(MSE)
+test_criterion: Regr3DPose(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + Regr3DPose_ScaleInv(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + RGBLoss(L21)
+
+resolution: [(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)]
+
+allow_repeat: True
+dataset1: Co3d_Multi(allow_repeat=${allow_repeat}, split='train', ROOT='../../data/dust3r_data/processed_co3d/', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset2: WildRGBD_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/dust3r_data/processed_wildrgbd", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset3: ARKitScenes_Multi(allow_repeat=${allow_repeat}, split='train', ROOT='../../data/dust3r_data/processed_arkitscenes/', aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset4: ARKitScenesHighRes_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/dust3r_data/processed_arkitscenes_highres", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset5: ScanNetpp_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/dust3r_data/processed_scannetpp/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset6: ScanNet_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/dust3r_data/processed_scannet/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset7: HyperSim_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_hypersim", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset8: BlendedMVS_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/dust3r_data/processed_blendedmvs/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset9: MegaDepth_Multi(allow_repeat=${allow_repeat}, split="train", ROOT="../../data/dust3r_data/processed_megadepth", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset10: MapFree_Multi(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/mast3r_data/processed_mapfree/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset11: Waymo_Multi(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/dust3r_data/processed_waymo/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset12: VirtualKITTI2_Multi(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/mast3r_data/processed_vkitti", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset13: UnReal4K_Multi(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/mast3r_data/processed_unreal4k/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset14: TartanAir_Multi(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/mast3r_data/processed_tartanair/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset15: DL3DV_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_dl3dv", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset16: Cop3D_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_cop3d/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset17: MVImgNet_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_mvimgnet/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset18: RE10K_Multi(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/custom_data/processed_re10k/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset19: OmniObject3D_Multi(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/custom_data/processed_omniobject3d/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset20: ThreeDKenBurns(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/custom_data/processed_3dkb/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset21: IRS(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/custom_data/processed_irs/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset22: SynScapes(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/custom_data/processed_synscapes/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset23: UrbanSyn(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/custom_data/processed_urbansyn/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset24: EDEN_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_eden", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset25: SmartPortraits_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_smartportraits", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset26: DynamicReplica(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_dynamic_replica/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset27: Spring(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/custom_data/processed_spring/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset28: BEDLAM_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_bedlam", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset29: MVS_Synth_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_mvs_synth", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset30: PointOdyssey_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_point_odyssey", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset31: UASOL_Multi(allow_repeat=${allow_repeat}, split='train', ROOT="../../data/custom_data/processed_uasol", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset32: MP3D_Multi(allow_repeat=${allow_repeat}, split=None, ROOT="../../data/custom_data/processed_mp3d/", aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208), (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+train_dataset: 44800 @ ${dataset1} + 56000 @ ${dataset2} + 56000 @ ${dataset3} + 22400 @ ${dataset4}
+ + 16800 @ ${dataset5} + 22400 @ ${dataset6} + 11200 @ ${dataset7}
+ + 22400 @ ${dataset8} + 22400 @ ${dataset9} + 84000 @ ${dataset10} + 56000 @ ${dataset11}
+ + 5600 @ ${dataset12} + 168 @ ${dataset13} + 56000 @ ${dataset14} + 84000 @ ${dataset15}
+ + 480 @ ${dataset16} + 19200 @ ${dataset17} + 4800 @ ${dataset18} + 38400 @ ${dataset19}
+ + 26400 @ ${dataset26} + 1200 @ ${dataset27} + 36000 @ ${dataset28} + 2400 @ ${dataset29}
+ + 24000 @ ${dataset30} + 14400 @ ${dataset31} + 28800 @ ${dataset32}
+test_dataset: 1000 @ ARKitScenes_Multi(split='test', ROOT='../../data/dust3r_data/processed_arkitscenes/', resolution=(512, 384), num_views=${num_test_views}, seed=42, n_corres=${n_corres_test})
+
+seed: 0
+batch_size: 4
+accum_iter: 4
+gradient_checkpointing: True
+epochs: 10
+start_epoch: 0
+weight_decay: 0.05
+lr: 1e-6
+min_lr: 1e-7
+warmup_epochs: 0.5
+amp: 1
+
+num_workers: 4
+world_size: 1
+local-rank: -1
+dist_url: 'env://'
+rank: 0
+gpu: 0
+distributed: False
+dist_backend: 'nccl'
+
+eval_freq: 1
+save_freq: 0.1
+keep_freq: 1
+print_freq: 10
+print_img_freq: 50000000
+num_imgs_vis: 4
+save_dir: 'checkpoints'
+exp_name: 'dpt_512_vary_4_64'
+task: 'cut3r'
+logdir: ./${save_dir}/${exp_name}/logs
+output_dir: ./${save_dir}/${exp_name}/
+hydra:
+ verbose: True
+ run:
+ dir: ./${save_dir}/${exp_name}
\ No newline at end of file
diff --git a/extern/CUT3R/config/linear_224_fixed_16.yaml b/extern/CUT3R/config/linear_224_fixed_16.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1690a287e90b165e01ed9471fd6ff34a0b353552
--- /dev/null
+++ b/extern/CUT3R/config/linear_224_fixed_16.yaml
@@ -0,0 +1,99 @@
+model: "ARCroco3DStereo(ARCroco3DStereoConfig(freeze='encoder', state_size=768, state_pe='2d', pos_embed='RoPE100', rgb_head=True, pose_head=True, img_size=(224, 224), head_type='linear', output_mode='pts3d+pose', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), pose_mode=('exp', -inf, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12))"
+pretrained: cut3r_224_linear_4.pth
+load_only_encoder: False
+long_context: False
+fixed_length: True
+resume: null
+benchmark: True
+num_views : 16
+num_test_views : 4
+n_corres_train: 0
+n_corres_test: 0
+
+train_criterion: ConfLoss(Regr3DPoseBatchList(L21, norm_mode='?avg_dis'), alpha=0.2) + RGBLoss(MSE)
+test_criterion: Regr3DPose(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + Regr3DPose_ScaleInv(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + RGBLoss(L21)
+
+
+dataset1: Co3d_Multi(allow_repeat=False, split='train', ROOT='../../data/dust3r_data/processed_co3d/', aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset2: WildRGBD_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_wildrgbd", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset3: ARKitScenes_Multi(allow_repeat=False, split='train', ROOT='../../data/dust3r_data/processed_arkitscenes/', aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset4: ARKitScenesHighRes_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_arkitscenes_highres", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset5: ScanNetpp_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_scannetpp/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset6: ScanNet_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_scannet/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset7: HyperSim_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_hypersim", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset8: BlendedMVS_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_blendedmvs/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset9: MegaDepth_Multi(allow_repeat=False, split="train", ROOT="../../data/dust3r_data/processed_megadepth", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset10: MapFree_Multi(allow_repeat=False, split=None, ROOT="../../data/mast3r_data/processed_mapfree/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset11: Waymo_Multi(allow_repeat=False, split=None, ROOT="../../data/dust3r_data/processed_waymo/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset12: VirtualKITTI2_Multi(allow_repeat=False, split=None, ROOT="../../data/mast3r_data/processed_vkitti", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset13: UnReal4K_Multi(allow_repeat=False, split=None, ROOT="../../data/mast3r_data/processed_unreal4k/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset14: TartanAir_Multi(allow_repeat=False, split=None, ROOT="../../data/mast3r_data/processed_tartanair/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset15: DL3DV_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_dl3dv", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset16: Cop3D_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_cop3d/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset17: MVImgNet_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_mvimgnet/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset18: RE10K_Multi(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_re10k/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset19: OmniObject3D_Multi(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_omniobject3d/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset20: ThreeDKenBurns(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_3dkb/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset21: IRS(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_irs/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset22: SynScapes(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_synscapes/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset23: UrbanSyn(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_urbansyn/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset24: EDEN_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_eden", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset25: SmartPortraits_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_smartportraits", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset26: DynamicReplica(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_dynamic_replica/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset27: Spring(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_spring/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset28: BEDLAM_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_bedlam", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset29: MVS_Synth_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_mvs_synth", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset30: PointOdyssey_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_point_odyssey", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset31: UASOL_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_uasol", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset32: MP3D_Multi(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_mp3d/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset33: HOI4D_Multi(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_hoi4d/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+train_dataset: 44800 @ ${dataset1} + 56000 @ ${dataset2} + 56000 @ ${dataset3} + 5600 @ ${dataset4} + 5600 @ ${dataset5} + 140000 @ ${dataset6} + 5600 @ ${dataset7} + 22400 @ ${dataset8} + 16800 @ ${dataset9} + 56000 @ ${dataset10} + 42000 @ ${dataset11} + 5600 @ ${dataset12} + 168 @ ${dataset13} + 84000 @ ${dataset14} + 84000 @ ${dataset15} + 7200 @ ${dataset16} + 19200 @ ${dataset17} + 9600 @ ${dataset18} + 24000 @ ${dataset19} + 33600 @ ${dataset26} + 2400 @ ${dataset27} + 9600 @ ${dataset28} + 4800 @ ${dataset29} + 28800 @ ${dataset30} + 14400 @ ${dataset31} + 19200 @ ${dataset32}
+
+
+test_dataset: 1000 @ ARKitScenes_Multi(split='test', ROOT='../../data/dust3r_data/processed_arkitscenes/', resolution=224, num_views=${num_test_views}, seed=42, n_corres=${n_corres_test})
+
+seed: 0
+batch_size: 6
+accum_iter: 2
+gradient_checkpointing: False
+epochs: 10
+start_epoch: 0
+weight_decay: 0.05
+lr: 1e-6
+min_lr: 1e-7
+warmup_epochs: 0.5
+amp: 1
+
+num_workers: 16
+world_size: 1
+local-rank: -1
+dist_url: 'env://'
+rank: 0
+gpu: 0
+distributed: False
+dist_backend: 'nccl'
+
+eval_freq: 1
+save_freq: 0.1
+keep_freq: 1
+print_freq: 10
+print_img_freq: 50000000
+num_imgs_vis: 4
+save_dir: 'checkpoints'
+exp_name: 'linear_224_fixed_16'
+task: 'cut3r'
+logdir: ./${save_dir}/${exp_name}/logs
+output_dir: ./${save_dir}/${exp_name}/
+hydra:
+ verbose: True
+ run:
+ dir: ./${save_dir}/${exp_name}
\ No newline at end of file
diff --git a/extern/CUT3R/config/stage1.yaml b/extern/CUT3R/config/stage1.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3e4897e7f26b7576fd779bdaac8d2f68512de2e9
--- /dev/null
+++ b/extern/CUT3R/config/stage1.yaml
@@ -0,0 +1,74 @@
+model: "ARCroco3DStereo(ARCroco3DStereoConfig(state_size=768, state_pe='2d', pos_embed='RoPE100', rgb_head=True, pose_head=True, img_size=(224, 224), head_type='linear', output_mode='pts3d+pose', depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), pose_mode=('exp', -inf, inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12))"
+pretrained: null
+load_only_encoder: False
+long_context: False
+fixed_length: True
+resume: null
+benchmark: True
+num_views : 4
+num_test_views : 4
+n_corres_train: 0
+n_corres_test: 0
+
+train_criterion: ConfLoss(Regr3DPose(L21, norm_mode='?avg_dis'), alpha=0.2) + RGBLoss(MSE)
+test_criterion: Regr3DPose(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + Regr3DPose_ScaleInv(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + RGBLoss(L21)
+
+dataset1: Co3d_Multi(split='train', ROOT='../../data/dust3r_data/processed_co3d/', aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset2: WildRGBD_Multi(split='train', ROOT="../../data/dust3r_data/processed_wildrgbd", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset3: ARKitScenes_Multi(split='train', ROOT='../../data/dust3r_data/processed_arkitscenes/', aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset4: ARKitScenesHighRes_Multi(split='train', ROOT="../../data/dust3r_data/processed_arkitscenes_highres", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset5: ScanNetpp_Multi(split='train', ROOT="../../data/dust3r_data/processed_scannetpp/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset6: ScanNet_Multi(split='train', ROOT="../../data/dust3r_data/processed_scannet/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset7: HyperSim_Multi(split='train', ROOT="../../data/custom_data/processed_hypersim", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset8: BlendedMVS_Multi(split='train', ROOT="../../data/dust3r_data/processed_blendedmvs/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset9: MegaDepth_Multi(split="train", ROOT="../../data/dust3r_data/processed_megadepth", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset10: MapFree_Multi(split=None, ROOT="../../data/mast3r_data/processed_mapfree/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset11: Waymo_Multi(split=None, ROOT="../../data/dust3r_data/processed_waymo/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset12: VirtualKITTI2_Multi(split=None, ROOT="../../data/mast3r_data/processed_vkitti", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset13: UnReal4K_Multi(split=None, ROOT="../../data/mast3r_data/processed_unreal4k/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset14: TartanAir_Multi(split=None, ROOT="../../data/mast3r_data/processed_tartanair/", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+dataset15: DL3DV_Multi(split='train', ROOT="../../data/custom_data/processed_dl3dv", aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+
+train_dataset: 32000 @ ${dataset1} + 48000 @ ${dataset2} + 100800 @ ${dataset3} + 56000 @ ${dataset4} + 33600 @ ${dataset5} + 56000 @ ${dataset6} + 33600 @ ${dataset7} + 33600 @ ${dataset8} + 33600 @ ${dataset9} + 100800 @ ${dataset10} + 78400 @ ${dataset11} + 5000 @ ${dataset12} + 1000 @ ${dataset13} + 33600 @ ${dataset14} + 160000 @ ${dataset15}
+test_dataset: 1000 @ ARKitScenes_Multi(split='test', ROOT='../../data/dust3r_data/processed_arkitscenes/', resolution=224, num_views=4, seed=42, n_corres=0)
+
+
+seed: 0
+batch_size: 16
+accum_iter: 1
+gradient_checkpointing: False
+epochs: 100
+start_epoch: 0
+weight_decay: 0.05
+lr: 1e-4
+min_lr: 1e-6
+warmup_epochs: 10
+amp: 1
+
+num_workers: 8
+world_size: 1
+local-rank: -1
+dist_url: 'env://'
+rank: 0
+gpu: 0
+distributed: False
+dist_backend: 'nccl'
+
+eval_freq: 1
+save_freq: 1
+keep_freq: 10
+print_freq: 10
+print_img_freq: 500
+num_imgs_vis: 4
+save_dir: 'checkpoints'
+exp_name: 'train_first_stage'
+task: 'cut3r'
+logdir: ./${save_dir}/${exp_name}/logs
+output_dir: ./${save_dir}/${exp_name}/
+hydra:
+ verbose: True
+ run:
+ dir: ./${save_dir}/${exp_name}
\ No newline at end of file
diff --git a/extern/CUT3R/config/stage2.yaml b/extern/CUT3R/config/stage2.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..10fec1d29a33bbf7484d537076e334aaf1c94fd7
--- /dev/null
+++ b/extern/CUT3R/config/stage2.yaml
@@ -0,0 +1,132 @@
+model: ARCroco3DStereo(ARCroco3DStereoConfig(state_size=768, state_pe='2d', pos_embed='RoPE100',
+ rgb_head=True, pose_head=True, img_size=(224, 224), head_type='linear', output_mode='pts3d+pose',
+ depth_mode=('exp', -inf, inf), conf_mode=('exp', 1, inf), pose_mode=('exp', -inf,
+ inf), enc_embed_dim=1024, enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12,
+ dec_num_heads=12))
+pretrained: checkpoints/train_first_stage/checkpoint-final.pth
+load_only_encoder: False
+long_context: False
+fixed_length: True
+resume: null
+benchmark: True
+num_views : 4
+num_test_views : 4
+n_corres_train: 0
+n_corres_test: 0
+
+
+train_criterion: ConfLoss(Regr3DPoseBatchList(L21, norm_mode='?avg_dis'), alpha=0.2) + RGBLoss(MSE)
+test_criterion: Regr3DPose(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + Regr3DPose_ScaleInv(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + RGBLoss(L21)
+
+
+dataset1: Co3d_Multi(split='train', ROOT='../../data/dust3r_data/processed_co3d/',
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset2: WildRGBD_Multi(split='train', ROOT="../../data/dust3r_data/processed_wildrgbd",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset3: ARKitScenes_Multi(split='train', ROOT='../../data/dust3r_data/processed_arkitscenes/',
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset4: ARKitScenesHighRes_Multi(split='train', ROOT="../../data/dust3r_data/processed_arkitscenes_highres",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset5: ScanNetpp_Multi(split='train', ROOT="../../data/dust3r_data/processed_scannetpp/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset6: ScanNet_Multi(split='train', ROOT="../../data/dust3r_data/processed_scannet/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset7: HyperSim_Multi(split='train', ROOT="../../data/custom_data/processed_hypersim",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset8: BlendedMVS_Multi(split='train', ROOT="../../data/dust3r_data/processed_blendedmvs/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset9: MegaDepth_Multi(split="train", ROOT="../../data/dust3r_data/processed_megadepth",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset10: MapFree_Multi(split=None, ROOT="../../data/mast3r_data/processed_mapfree/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset11: Waymo_Multi(split=None, ROOT="../../data/dust3r_data/processed_waymo/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset12: VirtualKITTI2_Multi(split=None, ROOT="../../data/mast3r_data/processed_vkitti",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset13: UnReal4K_Multi(split=None, ROOT="../../data/mast3r_data/processed_unreal4k/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset14: TartanAir_Multi(split=None, ROOT="../../data/mast3r_data/processed_tartanair/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset15: DL3DV_Multi(split='train', ROOT="../../data/custom_data/processed_dl3dv",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset16: Cop3D_Multi(split='train', ROOT="../../data/custom_data/processed_cop3d/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset17: MVImgNet_Multi(split='train', ROOT="../../data/custom_data/processed_mvimgnet/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset18: RE10K_Multi(split=None, ROOT="../../data/custom_data/processed_re10k/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset19: OmniObject3D_Multi(split=None, ROOT="../../data/custom_data/processed_omniobject3d/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset20: ThreeDKenBurns(split=None, ROOT="../../data/custom_data/processed_3dkb/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset21: IRS(split=None, ROOT="../../data/custom_data/processed_irs/", aug_crop=16,
+ resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset22: SynScapes(split=None, ROOT="../../data/custom_data/processed_synscapes/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset23: UrbanSyn(split=None, ROOT="../../data/custom_data/processed_urbansyn/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset24: EDEN_Multi(split='train', ROOT="../../data/custom_data/processed_eden",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset25: SmartPortraits_Multi(split='train', ROOT="../../data/custom_data/processed_smartportraits",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset26: DynamicReplica(split='train', ROOT="../../data/custom_data/processed_dynamic_replica/",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset27: Spring(split=None, ROOT="../../data/custom_data/processed_spring/", aug_crop=16,
+ resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset28: BEDLAM_Multi(split='train', ROOT="../../data/custom_data/processed_bedlam",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset29: MVS_Synth_Multi(split='train', ROOT="../../data/custom_data/processed_mvs_synth",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset30: PointOdyssey_Multi(split='train', ROOT="../../data/custom_data/processed_point_odyssey",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset31: UASOL_Multi(split='train', ROOT="../../data/custom_data/processed_uasol",
+ aug_crop=16, resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+dataset32: MP3D_Multi(split=None, ROOT="../../data/custom_data/processed_mp3d/", aug_crop=16,
+ resolution=224, transform=SeqColorJitter, num_views=${num_views}, n_corres=${n_corres_train})
+train_dataset: 48000 @ ${dataset1} + 60000 @ ${dataset2} + 54000 @ ${dataset3} + 18000
+ @ ${dataset4} + 6000 @ ${dataset5} + 42000 @ ${dataset6} + 12000 @ ${dataset7} +
+ 6000 @ ${dataset8} + 6000 @ ${dataset9} + 60000 @ ${dataset10} + 48000 @ ${dataset11}
+ + 2400 @ ${dataset12} + 180 @ ${dataset13} + 18000 @ ${dataset14} + 222000 @ ${dataset15}
+ + 400 @ ${dataset16} + 16000 @ ${dataset17} + 4000 @ ${dataset18} + 32000 @ ${dataset19}
+ + 4000 @ ${dataset20} + 2000 @ ${dataset21} + 2000 @ ${dataset22} + 500 @ ${dataset23}
+ + 12000 @ ${dataset24} + 16000 @ ${dataset25} + 20000 @ ${dataset26} + 400 @ ${dataset27}
+ + 32000 @ ${dataset28} + 2000 @ ${dataset29} + 20000 @ ${dataset30} + 12000 @ ${dataset31}
+ + 24000 @ ${dataset32}
+test_dataset: 1000 @ ARKitScenes_Multi(split='test', ROOT='../../data/dust3r_data/processed_arkitscenes/', resolution=224, num_views=4, seed=42, n_corres=0)
+
+seed: 0
+batch_size: 16
+accum_iter: 1
+gradient_checkpointing: false
+epochs: 35
+start_epoch: 0
+weight_decay: 0.05
+lr: 5.0e-06
+min_lr: 1.0e-06
+warmup_epochs: 1
+amp: 1
+
+num_workers: 8
+world_size: 1
+local-rank: -1
+dist_url: 'env://'
+rank: 0
+gpu: 0
+distributed: False
+dist_backend: 'nccl'
+
+eval_freq: 1
+save_freq: 1
+keep_freq: 10
+print_freq: 10
+print_img_freq: 500
+num_imgs_vis: 4
+save_dir: 'checkpoints'
+exp_name: 'train_second_stage'
+task: 'cut3r'
+logdir: ./${save_dir}/${exp_name}/logs
+output_dir: ./${save_dir}/${exp_name}/
+hydra:
+ verbose: True
+ run:
+ dir: ./${save_dir}/${exp_name}
\ No newline at end of file
diff --git a/extern/CUT3R/config/stage3.yaml b/extern/CUT3R/config/stage3.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..88cafa0e1a6afe2761e1b81742876ed2cbd77068
--- /dev/null
+++ b/extern/CUT3R/config/stage3.yaml
@@ -0,0 +1,219 @@
+model: ARCroco3DStereo(ARCroco3DStereoConfig(state_size=768, state_pe='2d', pos_embed='RoPE100',
+ rgb_head=True, pose_head=True, patch_embed_cls='ManyAR_PatchEmbed', img_size=(512,
+ 512), head_type='dpt', output_mode='pts3d+pose', depth_mode=('exp', -inf, inf),
+ conf_mode=('exp', 1, inf), pose_mode=('exp', -inf, inf), enc_embed_dim=1024, enc_depth=24,
+ enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12, landscape_only=False))
+pretrained: checkpoints/train_second_stage/checkpoint-final.pth
+load_only_encoder: False
+long_context: False
+fixed_length: True
+resume: null
+benchmark: True
+num_views : 4
+num_test_views : 4
+n_corres_train: 0
+n_corres_test: 0
+
+
+train_criterion: ConfLoss(Regr3DPoseBatchList(L21, norm_mode='?avg_dis'), alpha=0.2) + RGBLoss(MSE)
+test_criterion: Regr3DPose(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + Regr3DPose_ScaleInv(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0) + RGBLoss(L21)
+
+resolution:
+- (512
+- 384)
+- (512
+- 336)
+- (512
+- 288)
+- (512
+- 256)
+- (512
+- 208)
+- (512
+- 144)
+- (384
+- 512)
+- (336
+- 512)
+- (288
+- 512)
+- (256
+- 512)
+dataset1: Co3d_Multi(allow_repeat=True, split='train', ROOT='../../data/dust3r_data/processed_co3d/',
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset2: WildRGBD_Multi(allow_repeat=True, split='train', ROOT="../../data/dust3r_data/processed_wildrgbd",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset3: ARKitScenes_Multi(allow_repeat=True, split='train', ROOT='../../data/dust3r_data/processed_arkitscenes/',
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset4: ARKitScenesHighRes_Multi(allow_repeat=True, split='train', ROOT="../../data/dust3r_data/processed_arkitscenes_highres",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset5: ScanNetpp_Multi(allow_repeat=True, split='train', ROOT="../../data/dust3r_data/processed_scannetpp/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset6: ScanNet_Multi(allow_repeat=True, split='train', ROOT="../../data/dust3r_data/processed_scannet/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset7: HyperSim_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_hypersim",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset8: BlendedMVS_Multi(allow_repeat=True, split='train', ROOT="../../data/dust3r_data/processed_blendedmvs/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset9: MegaDepth_Multi(allow_repeat=True, split="train", ROOT="../../data/dust3r_data/processed_megadepth",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset10: MapFree_Multi(allow_repeat=True, split=None, ROOT="../../data/mast3r_data/processed_mapfree/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset11: Waymo_Multi(allow_repeat=True, split=None, ROOT="../../data/dust3r_data/processed_waymo/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset12: VirtualKITTI2_Multi(allow_repeat=True, split=None, ROOT="../../data/mast3r_data/processed_vkitti",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset13: UnReal4K_Multi(allow_repeat=True, split=None, ROOT="../../data/mast3r_data/processed_unreal4k/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset14: TartanAir_Multi(allow_repeat=True, split=None, ROOT="../../data/mast3r_data/processed_tartanair/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset15: DL3DV_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_dl3dv",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset16: Cop3D_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_cop3d/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset17: MVImgNet_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_mvimgnet/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset18: RE10K_Multi(allow_repeat=True, split=None, ROOT="../../data/custom_data/processed_re10k/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset19: OmniObject3D_Multi(allow_repeat=True, split=None, ROOT="../../data/custom_data/processed_omniobject3d/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset20: ThreeDKenBurns(allow_repeat=True, split=None, ROOT="../../data/custom_data/processed_3dkb/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset21: IRS(allow_repeat=True, split=None, ROOT="../../data/custom_data/processed_irs/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset22: SynScapes(allow_repeat=True, split=None, ROOT="../../data/custom_data/processed_synscapes/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset23: UrbanSyn(allow_repeat=True, split=None, ROOT="../../data/custom_data/processed_urbansyn/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset24: EDEN_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_eden",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset25: SmartPortraits_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_smartportraits",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset26: DynamicReplica(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_dynamic_replica/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset27: Spring(allow_repeat=True, split=None, ROOT="../../data/custom_data/processed_spring/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset28: BEDLAM_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_bedlam",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset29: MVS_Synth_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_mvs_synth",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset30: PointOdyssey_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_point_odyssey",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset31: UASOL_Multi(allow_repeat=True, split='train', ROOT="../../data/custom_data/processed_uasol",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset32: MP3D_Multi(allow_repeat=True, split=None, ROOT="../../data/custom_data/processed_mp3d/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset33: HOI4D_Multi(allow_repeat=True, split=None, ROOT="../../data/custom_data/processed_hoi4d/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+train_dataset: 44800 @ ${dataset1} + 56000 @ ${dataset2} + 56000 @ ${dataset3} + 22400
+ @ ${dataset4} + 16800 @ ${dataset5} + 38400 @ ${dataset6} + 11200 @ ${dataset7}
+ + 22400 @ ${dataset8} + 22400 @ ${dataset9} + 84000 @ ${dataset10} + 20000 @ ${dataset11}
+ + 5600 @ ${dataset12} + 168 @ ${dataset13} + 56000 @ ${dataset14} + 74000 @ ${dataset15}
+ + 480 @ ${dataset16} + 19200 @ ${dataset17} + 4800 @ ${dataset18} + 4800 @ ${dataset20}
+ + 2400 @ ${dataset21} + 2400 @ ${dataset22} + 600 @ ${dataset23} + 19200 @ ${dataset25}
+ + 36000 @ ${dataset26} + 9400 @ ${dataset27} + 36000 @ ${dataset28} + 1400 @ ${dataset29}
+ + 7200 @ ${dataset30} + 14400 @ ${dataset31} + 28800 @ ${dataset32} + 12000 @ ${dataset33}
+test_dataset: 1000 @ ARKitScenes_Multi(split='test', ROOT='../../data/dust3r_data/processed_arkitscenes/', resolution=224, num_views=4, seed=42, n_corres=0)
+
+seed: 0
+batch_size: 16
+accum_iter: 1
+gradient_checkpointing: true
+epochs: 40
+start_epoch: 0
+weight_decay: 0.05
+lr: 1.0e-05
+min_lr: 1.0e-06
+warmup_epochs: 2
+amp: 1
+
+num_workers: 8
+world_size: 1
+local-rank: -1
+dist_url: 'env://'
+rank: 0
+gpu: 0
+distributed: False
+dist_backend: 'nccl'
+
+eval_freq: 1
+save_freq: 1
+keep_freq: 10
+print_freq: 10
+print_img_freq: 500
+num_imgs_vis: 4
+save_dir: 'checkpoints'
+exp_name: 'train_third_stage'
+task: 'cut3r'
+logdir: ./${save_dir}/${exp_name}/logs
+output_dir: ./${save_dir}/${exp_name}/
+hydra:
+ verbose: True
+ run:
+ dir: ./${save_dir}/${exp_name}
\ No newline at end of file
diff --git a/extern/CUT3R/config/stage4.yaml b/extern/CUT3R/config/stage4.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..3cdebc13d3998e833b0bacd28d7d001b2c1950ae
--- /dev/null
+++ b/extern/CUT3R/config/stage4.yaml
@@ -0,0 +1,219 @@
+model: ARCroco3DStereo(ARCroco3DStereoConfig(freeze='encoder', state_size=768, state_pe='2d',
+ pos_embed='RoPE100', rgb_head=True, pose_head=True, patch_embed_cls='ManyAR_PatchEmbed',
+ img_size=(512, 512), head_type='dpt', output_mode='pts3d+pose', depth_mode=('exp',
+ -inf, inf), conf_mode=('exp', 1, inf), pose_mode=('exp', -inf, inf), enc_embed_dim=1024,
+ enc_depth=24, enc_num_heads=16, dec_embed_dim=768, dec_depth=12, dec_num_heads=12,
+ landscape_only=False))
+pretrained: checkpoints/train_third_stage/checkpoint-final.pth
+load_only_encoder: False
+long_context: True
+fixed_length: True
+resume: null
+benchmark: True
+num_views : 32
+num_test_views : 4
+n_corres_train: 0
+n_corres_test: 0
+
+train_criterion: ConfLoss(Regr3DPose(L21, norm_mode='?avg_dis'), alpha=0.2) + RGBLoss(MSE)
+test_criterion: Regr3DPose(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0)
+ + Regr3DPose_ScaleInv(L21, norm_mode='?avg_dis', gt_scale=True, sky_loss_value=0)
+ + RGBLoss(L21)
+resolution:
+- (512
+- 384)
+- (512
+- 336)
+- (512
+- 288)
+- (512
+- 256)
+- (512
+- 208)
+- (512
+- 144)
+- (384
+- 512)
+- (336
+- 512)
+- (288
+- 512)
+- (256
+- 512)
+dataset1: Co3d_Multi(allow_repeat=False, split='train', ROOT='../../data/dust3r_data/processed_co3d/',
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset2: WildRGBD_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_wildrgbd",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset3: ARKitScenes_Multi(allow_repeat=False, split='train', ROOT='../../data/dust3r_data/processed_arkitscenes/',
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset4: ARKitScenesHighRes_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_arkitscenes_highres",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset5: ScanNetpp_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_scannetpp/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset6: ScanNet_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_scannet/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset7: HyperSim_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_hypersim",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset8: BlendedMVS_Multi(allow_repeat=False, split='train', ROOT="../../data/dust3r_data/processed_blendedmvs/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset9: MegaDepth_Multi(allow_repeat=False, split="train", ROOT="../../data/dust3r_data/processed_megadepth",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset10: MapFree_Multi(allow_repeat=False, split=None, ROOT="../../data/mast3r_data/processed_mapfree/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset11: Waymo_Multi(allow_repeat=False, split=None, ROOT="../../data/dust3r_data/processed_waymo/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset12: VirtualKITTI2_Multi(allow_repeat=False, split=None, ROOT="../../data/mast3r_data/processed_vkitti",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset13: UnReal4K_Multi(allow_repeat=False, split=None, ROOT="../../data/mast3r_data/processed_unreal4k/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset14: TartanAir_Multi(allow_repeat=False, split=None, ROOT="../../data/mast3r_data/processed_tartanair/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset15: DL3DV_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_dl3dv",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset16: Cop3D_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_cop3d/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset17: MVImgNet_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_mvimgnet/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset18: RE10K_Multi(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_re10k/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset19: OmniObject3D_Multi(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_omniobject3d/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset20: ThreeDKenBurns(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_3dkb/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset21: IRS(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_irs/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset22: SynScapes(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_synscapes/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset23: UrbanSyn(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_urbansyn/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset24: EDEN_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_eden",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset25: SmartPortraits_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_smartportraits",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset26: DynamicReplica(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_dynamic_replica/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset27: Spring(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_spring/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset28: BEDLAM_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_bedlam",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset29: MVS_Synth_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_mvs_synth",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset30: PointOdyssey_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_point_odyssey",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset31: UASOL_Multi(allow_repeat=False, split='train', ROOT="../../data/custom_data/processed_uasol",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset32: MP3D_Multi(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_mp3d/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+dataset33: HOI4D_Multi(allow_repeat=False, split=None, ROOT="../../data/custom_data/processed_hoi4d/",
+ aug_crop=16, resolution=[(512, 384), (512, 336), (512, 288), (512, 256), (512, 208),
+ (512, 144), (384, 512), (336, 512), (288, 512), (256, 512)], transform=SeqColorJitter,
+ num_views=${num_views}, n_corres=${n_corres_train})
+train_dataset: 22400 @ ${dataset1} + 28000 @ ${dataset2} + 28000 @ ${dataset3} + 2800
+ @ ${dataset4} + 2800 @ ${dataset5} + 70000 @ ${dataset6} + 2800 @ ${dataset7} +
+ 11200 @ ${dataset8} + 8400 @ ${dataset9} + 28000 @ ${dataset10} + 21000 @ ${dataset11}
+ + 2800 @ ${dataset12} + 84 @ ${dataset13} + 42000 @ ${dataset14} + 42000 @ ${dataset15}
+ + 3600 @ ${dataset16} + 9600 @ ${dataset17} + 4800 @ ${dataset18} + 12000 @ ${dataset19}
+ + 16800 @ ${dataset26} + 1200 @ ${dataset27} + 4800 @ ${dataset28} + 2400 @ ${dataset29}
+ + 14400 @ ${dataset30} + 7200 @ ${dataset31} + 9600 @ ${dataset32}
+test_dataset: 1000 @ ARKitScenes_Multi(split='test', ROOT='../../data/dust3r_data/processed_arkitscenes/', resolution=224, num_views=4, seed=42, n_corres=0)
+
+seed: 0
+batch_size: 16
+accum_iter: 1
+gradient_checkpointing: true
+epochs: 10
+start_epoch: 0
+weight_decay: 0.05
+lr: 1.0e-06
+min_lr: 1.0e-07
+warmup_epochs: 0.5
+amp: 1
+
+num_workers: 8
+world_size: 1
+local-rank: -1
+dist_url: 'env://'
+rank: 0
+gpu: 0
+distributed: False
+dist_backend: 'nccl'
+
+eval_freq: 1
+save_freq: 1
+keep_freq: 10
+print_freq: 10
+print_img_freq: 500
+num_imgs_vis: 4
+save_dir: 'checkpoints'
+exp_name: 'train_final_stage'
+task: 'cut3r'
+logdir: ./${save_dir}/${exp_name}/logs
+output_dir: ./${save_dir}/${exp_name}/
+hydra:
+ verbose: True
+ run:
+ dir: ./${save_dir}/${exp_name}
\ No newline at end of file
diff --git a/extern/CUT3R/datasets_preprocess/custom_convert2TUM.py b/extern/CUT3R/datasets_preprocess/custom_convert2TUM.py
new file mode 100644
index 0000000000000000000000000000000000000000..afea80e75ede4a25254b45d4e1077333cef9ca3e
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/custom_convert2TUM.py
@@ -0,0 +1,262 @@
+import os
+import json
+import shutil
+import numpy as np
+import cv2 as cv
+import imageio
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor, as_completed
+import open3d as o3d
+import scipy.ndimage
+import pickle
+
+# Set environment variable to limit OpenBLAS threads
+os.environ["OPENBLAS_NUM_THREADS"] = "1"
+
+DEPTH_SCALE_FACTOR = 5000
+
+
+# Point cloud from depth
+def pointcloudify_depth(depth, intrinsics, dist_coeff, undistort=True):
+ shape = depth.shape[::-1]
+
+ if undistort:
+ undist_intrinsics, _ = cv.getOptimalNewCameraMatrix(
+ intrinsics, dist_coeff, shape, 1, shape
+ )
+ inv_undist_intrinsics = np.linalg.inv(undist_intrinsics)
+
+ map_x, map_y = cv.initUndistortRectifyMap(
+ intrinsics, dist_coeff, None, undist_intrinsics, shape, cv.CV_32FC1
+ )
+ undist_depth = cv.remap(depth, map_x, map_y, cv.INTER_NEAREST)
+ else:
+ inv_undist_intrinsics = np.linalg.inv(intrinsics)
+ undist_depth = depth
+
+ # Generate x,y grid for H x W image
+ grid_x, grid_y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]))
+ grid = np.stack((grid_x, grid_y, np.ones_like(grid_x)), axis=-1)
+
+ # Reshape and compute local grid
+ grid_flat = grid.reshape(-1, 3).T
+ local_grid = inv_undist_intrinsics @ grid_flat
+
+ # Multiply by depth
+ local_grid = local_grid.T * undist_depth.reshape(-1, 1)
+
+ return local_grid.astype(np.float32)
+
+
+def project_pcd_to_depth(pcd, undist_intrinsics, img_size, config):
+ h, w = img_size
+ points = np.asarray(pcd.points)
+ d = points[:, 2]
+ normalized_points = points / points[:, 2][:, np.newaxis]
+ proj_pcd = np.round((undist_intrinsics @ normalized_points.T).T).astype(np.int64)
+ proj_mask = (
+ (proj_pcd[:, 0] >= 0)
+ & (proj_pcd[:, 0] < w)
+ & (proj_pcd[:, 1] >= 0)
+ & (proj_pcd[:, 1] < h)
+ )
+ proj_pcd = proj_pcd[proj_mask]
+ d = d[proj_mask]
+ pcd_image = np.zeros((config["res_h"], config["res_w"]), dtype=np.float32)
+ pcd_image[proj_pcd[:, 1], proj_pcd[:, 0]] = d
+ return pcd_image
+
+
+def smooth_depth(depth):
+ MAX_DEPTH_VAL = 1e5
+ KERNEL_SIZE = 11
+ depth = depth.copy()
+ depth[depth == 0] = MAX_DEPTH_VAL
+ smoothed_depth = scipy.ndimage.minimum_filter(depth, KERNEL_SIZE)
+ smoothed_depth[smoothed_depth == MAX_DEPTH_VAL] = 0
+ return smoothed_depth
+
+
+def align_rgb_depth(rgb, depth, roi, config, rgb_cnf, config_dict, T):
+ # Undistort rgb image
+ undist_rgb = cv.undistort(
+ rgb,
+ rgb_cnf["intrinsics"],
+ rgb_cnf["dist_coeff"],
+ None,
+ rgb_cnf["undist_intrinsics"],
+ )
+
+ # Create point cloud from depth
+ pcd = o3d.geometry.PointCloud()
+ points = pointcloudify_depth(
+ depth, config_dict["depth"]["dist_mtx"], config_dict["depth"]["dist_coef"]
+ )
+ pcd.points = o3d.utility.Vector3dVector(points)
+ # Align point cloud with depth reference frame
+ pcd.transform(T)
+
+ # Project aligned point cloud to rgb
+ aligned_depth = project_pcd_to_depth(
+ pcd, rgb_cnf["undist_intrinsics"], rgb.shape[:2], config
+ )
+
+ smoothed_aligned_depth = smooth_depth(aligned_depth)
+ x, y, w, h = roi
+
+ depth_res = smoothed_aligned_depth[y : y + h, x : x + w]
+ rgb_res = undist_rgb[y : y + h, x : x + w]
+ return rgb_res, depth_res, rgb_cnf["undist_intrinsics"]
+
+
+def process_pair(args):
+ (
+ pair,
+ smartphone_folder,
+ azure_depth_folder,
+ final_folder,
+ config,
+ rgb_cnf,
+ config_dict,
+ T,
+ ) = args
+ try:
+ rgb_image = cv.imread(os.path.join(smartphone_folder, f"{pair[0]}.png"))
+ depth_array = np.load(
+ os.path.join(azure_depth_folder, f"{pair[1]}.npy"), allow_pickle=True
+ )
+
+ rgb_image_aligned, depth_array_aligned, intrinsics = align_rgb_depth(
+ rgb_image,
+ depth_array,
+ (0, 0, config["res_w"], config["res_h"]),
+ config,
+ rgb_cnf,
+ config_dict,
+ T,
+ )
+ # Save rgb as 8-bit png
+ cv.imwrite(
+ os.path.join(final_folder, "rgb", f"{pair[0]}.png"), rgb_image_aligned
+ )
+
+ # # Save depth as 16-bit unsigned int with scale factor
+ # depth_array_aligned = (depth_array_aligned *
+ # DEPTH_SCALE_FACTOR).astype(np.uint16)
+ # imageio.imwrite(os.path.join(final_folder, 'depth', f"{pair[1]}.png"), depth_array_aligned)
+ np.save(
+ os.path.join(final_folder, "depth", f"{pair[0]}.npy"), depth_array_aligned
+ )
+ np.savez(
+ os.path.join(final_folder, "cam", f"{pair[0]}.npz"), intrinsics=intrinsics
+ )
+ except Exception as e:
+ return f"Error processing pair {pair}: {e}"
+ return None
+
+
+def main():
+ DATA_DIR_ = "data_smartportraits/SmartPortraits" # REPLACE WITH YOUR OWN DATA PATH!
+ DATA_DIR = DATA_DIR_.rstrip("/")
+ print(f"{DATA_DIR_} {DATA_DIR}/")
+
+ # Folder where the data in TUM format will be put
+ curr_dir = os.path.dirname(os.path.abspath(__file__))
+ with open(os.path.join(curr_dir, "config.json")) as conf_f:
+ config = json.load(conf_f)
+
+ # Pre-load shared data
+ with open(os.path.join(curr_dir, config["depth_conf"]), "rb") as config_f:
+ config_dict = pickle.load(config_f)
+
+ rgb_cnf = np.load(
+ os.path.join(curr_dir, config["rgb_intristics"]), allow_pickle=True
+ ).item()
+
+ T = np.load(os.path.join(curr_dir, config["transform_intristics"]))
+
+ final_root = "processed_smartportraits1" # REPLACE WITH YOUR OWN DATA PATH!
+
+ seqs = []
+ for scene in os.listdir(DATA_DIR):
+ scene_path = os.path.join(DATA_DIR, scene)
+ if not os.path.isdir(scene_path):
+ continue
+ for s in os.listdir(scene_path):
+ s_path = os.path.join(scene_path, s)
+ if not os.path.isdir(s_path):
+ continue
+ for date in os.listdir(s_path):
+ date_path = os.path.join(s_path, date)
+ if os.path.isdir(date_path):
+ seqs.append((scene, s, date))
+
+ for seq in tqdm(seqs):
+ scene, s, date = seq
+ dataset_path = os.path.join(DATA_DIR, scene, s, date)
+ final_folder = os.path.join(final_root, "_".join([scene, s, date]))
+
+ azure_depth_folder = os.path.join(dataset_path, "_azure_depth_image_raw")
+ smartphone_folder = os.path.join(dataset_path, "smartphone_video_frames")
+
+ depth_files = [
+ file for file in os.listdir(azure_depth_folder) if file.endswith(".npy")
+ ]
+ depth_ts = np.array([int(file.split(".")[0]) for file in depth_files])
+ depth_ts.sort()
+
+ rgb_files = [
+ file for file in os.listdir(smartphone_folder) if file.endswith(".png")
+ ]
+ rgb_ts = np.array([int(file.split(".")[0]) for file in rgb_files])
+ rgb_ts.sort()
+
+ print(
+ f"Depth timestamps from {depth_ts[0]} to {depth_ts[-1]} (cnt {len(depth_ts)})"
+ )
+ print(f"RGB timestamps from {rgb_ts[0]} to {rgb_ts[-1]} (cnt {len(rgb_ts)})")
+
+ # Build correspondences between depth and rgb by nearest neighbour algorithm
+ rgbd_pairs = []
+ for depth_t in depth_ts:
+ idx = np.argmin(np.abs(rgb_ts - depth_t))
+ closest_rgb_t = rgb_ts[idx]
+ rgbd_pairs.append((closest_rgb_t, depth_t))
+
+ # Prepare folder infrastructure
+ if os.path.exists(final_folder):
+ shutil.rmtree(final_folder)
+ os.makedirs(os.path.join(final_folder, "depth"), exist_ok=True)
+ os.makedirs(os.path.join(final_folder, "rgb"), exist_ok=True)
+ os.makedirs(os.path.join(final_folder, "cam"), exist_ok=True)
+
+ # Prepare arguments for processing
+ tasks = [
+ (
+ pair,
+ smartphone_folder,
+ azure_depth_folder,
+ final_folder,
+ config,
+ rgb_cnf,
+ config_dict,
+ T,
+ )
+ for pair in rgbd_pairs
+ ]
+
+ num_workers = os.cpu_count()
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ futures = {executor.submit(process_pair, task): task[0] for task in tasks}
+ for future in tqdm(
+ as_completed(futures),
+ total=len(futures),
+ desc=f"Processing {scene}_{s}_{date}",
+ ):
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/flow_IO.py b/extern/CUT3R/datasets_preprocess/flow_IO.py
new file mode 100644
index 0000000000000000000000000000000000000000..1979b245f410be4ce31fcb69cc87b5a55c2c4b49
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/flow_IO.py
@@ -0,0 +1,476 @@
+import struct
+import numpy as np
+import png
+import re
+import sys
+import csv
+from PIL import Image
+import h5py
+
+
+FLO_TAG_FLOAT = (
+ 202021.25 # first 4 bytes in flo file; check for this when READING the file
+)
+FLO_TAG_STRING = "PIEH" # first 4 bytes in flo file; use this when WRITING the file
+FLO_UNKNOWN_FLOW_THRESH = 1e9 # flo format threshold for unknown values
+FLO_UNKNOWN_FLOW = 1e10 # value to use to represent unknown flow in flo file format
+
+
+def readFlowFile(filepath):
+ """read flow files in several formats. The resulting flow has shape height x width x 2.
+ For positions where there is no groundtruth available, the flow is set to np.nan.
+ Supports flo (Sintel), png (KITTI), npy (numpy), pfm (FlyingThings3D) and flo5 (Spring) file format.
+ filepath: path to the flow file
+ returns: flow with shape height x width x 2
+ """
+ if filepath.endswith(".flo"):
+ return readFloFlow(filepath)
+ elif filepath.endswith(".png"):
+ return readPngFlow(filepath)
+ elif filepath.endswith(".npy"):
+ return readNpyFlow(filepath)
+ elif filepath.endswith(".pfm"):
+ return readPfmFlow(filepath)
+ elif filepath.endswith(".flo5"):
+ return readFlo5Flow(filepath)
+ else:
+ raise ValueError(f"readFlowFile: Unknown file format for {filepath}")
+
+
+def writeFlowFile(flow, filepath):
+ """write optical flow to file. Supports flo (Sintel), png (KITTI) and npy (numpy) file format.
+ flow: optical flow with shape height x width x 2. Invalid values should be represented as np.nan
+ filepath: file path where to write the flow
+ """
+ if not filepath:
+ raise ValueError("writeFlowFile: empty filepath")
+
+ if len(flow.shape) != 3 or flow.shape[2] != 2:
+ raise IOError(
+ f"writeFlowFile {filepath}: expected shape height x width x 2 but received {flow.shape}"
+ )
+
+ if flow.shape[0] > flow.shape[1]:
+ print(
+ f"write flo file {filepath}: Warning: Are you writing an upright image? Expected shape height x width x 2, got {flow.shape}"
+ )
+
+ if filepath.endswith(".flo"):
+ return writeFloFlow(flow, filepath)
+ elif filepath.endswith(".png"):
+ return writePngFlow(flow, filepath)
+ elif filepath.endswith(".npy"):
+ return writeNpyFile(flow, filepath)
+ elif filepath.endswith(".flo5"):
+ return writeFlo5File(flow, filepath)
+ else:
+ raise ValueError(f"writeFlowFile: Unknown file format for {filepath}")
+
+
+def readFloFlow(filepath):
+ """read optical flow from file stored in .flo file format as used in the Sintel dataset (Butler et al., 2012)
+ filepath: path to file where to read from
+ returns: flow as a numpy array with shape height x width x 2
+ ---
+ ".flo" file format used for optical flow evaluation
+
+ Stores 2-band float image for horizontal (u) and vertical (v) flow components.
+ Floats are stored in little-endian order.
+ A flow value is considered "unknown" if either |u| or |v| is greater than 1e9.
+
+ bytes contents
+
+ 0-3 tag: "PIEH" in ASCII, which in little endian happens to be the float 202021.25
+ (just a sanity check that floats are represented correctly)
+ 4-7 width as an integer
+ 8-11 height as an integer
+ 12-end data (width*height*2*4 bytes total)
+ the float values for u and v, interleaved, in row order, i.e.,
+ u[row0,col0], v[row0,col0], u[row0,col1], v[row0,col1], ...
+ """
+ if filepath is None:
+ raise IOError("read flo file: empty filename")
+
+ if not filepath.endswith(".flo"):
+ raise IOError(f"read flo file ({filepath}): extension .flo expected")
+
+ with open(filepath, "rb") as stream:
+ tag = struct.unpack("f", stream.read(4))[0]
+ width = struct.unpack("i", stream.read(4))[0]
+ height = struct.unpack("i", stream.read(4))[0]
+
+ if tag != FLO_TAG_FLOAT: # simple test for correct endian-ness
+ raise IOError(
+ f"read flo file({filepath}): wrong tag (possibly due to big-endian machine?)"
+ )
+
+ # another sanity check to see that integers were read correctly (99999 should do the trick...)
+ if width < 1 or width > 99999:
+ raise IOError(f"read flo file({filepath}): illegal width {width}")
+
+ if height < 1 or height > 99999:
+ raise IOError(f"read flo file({filepath}): illegal height {height}")
+
+ nBands = 2
+ flow = []
+
+ n = nBands * width
+ for _ in range(height):
+ data = stream.read(n * 4)
+ if data is None:
+ raise IOError(f"read flo file({filepath}): file is too short")
+ data = np.asarray(struct.unpack(f"{n}f", data))
+ data = data.reshape((width, nBands))
+ flow.append(data)
+
+ if stream.read(1) != b"":
+ raise IOError(f"read flo file({filepath}): file is too long")
+
+ flow = np.asarray(flow)
+ # unknown values are set to nan
+ flow[np.abs(flow) > FLO_UNKNOWN_FLOW_THRESH] = np.nan
+
+ return flow
+
+
+def writeFloFlow(flow, filepath):
+ """
+ write optical flow in .flo format to file as used in the Sintel dataset (Butler et al., 2012)
+ flow: optical flow with shape height x width x 2
+ filepath: optical flow file path to be saved
+ ---
+ ".flo" file format used for optical flow evaluation
+
+ Stores 2-band float image for horizontal (u) and vertical (v) flow components.
+ Floats are stored in little-endian order.
+ A flow value is considered "unknown" if either |u| or |v| is greater than 1e9.
+
+ bytes contents
+
+ 0-3 tag: "PIEH" in ASCII, which in little endian happens to be the float 202021.25
+ (just a sanity check that floats are represented correctly)
+ 4-7 width as an integer
+ 8-11 height as an integer
+ 12-end data (width*height*2*4 bytes total)
+ the float values for u and v, interleaved, in row order, i.e.,
+ u[row0,col0], v[row0,col0], u[row0,col1], v[row0,col1], ...
+ """
+
+ height, width, nBands = flow.shape
+
+ with open(filepath, "wb") as f:
+ if f is None:
+ raise IOError(f"write flo file {filepath}: file could not be opened")
+
+ # write header
+ result = f.write(FLO_TAG_STRING.encode("ascii"))
+ result += f.write(struct.pack("i", width))
+ result += f.write(struct.pack("i", height))
+ if result != 12:
+ raise IOError(f"write flo file {filepath}: problem writing header")
+
+ # write content
+ n = nBands * width
+ for i in range(height):
+ data = flow[i, :, :].flatten()
+ data[np.isnan(data)] = FLO_UNKNOWN_FLOW
+ result = f.write(struct.pack(f"{n}f", *data))
+ if result != n * 4:
+ raise IOError(f"write flo file {filepath}: problem writing row {i}")
+
+
+def readPngFlow(filepath):
+ """read optical flow from file stored in png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
+ filepath: path to file where to read from
+ returns: flow as a numpy array with shape height x width x 2. Invalid values are represented as np.nan
+ """
+ # adapted from https://github.com/liruoteng/OpticalFlowToolkit
+ flow_object = png.Reader(filename=filepath)
+ flow_direct = flow_object.asDirect()
+ flow_data = list(flow_direct[2])
+ (w, h) = flow_direct[3]["size"]
+ flow = np.zeros((h, w, 3), dtype=np.float64)
+ for i in range(len(flow_data)):
+ flow[i, :, 0] = flow_data[i][0::3]
+ flow[i, :, 1] = flow_data[i][1::3]
+ flow[i, :, 2] = flow_data[i][2::3]
+
+ invalid_idx = flow[:, :, 2] == 0
+ flow[:, :, 0:2] = (flow[:, :, 0:2] - 2**15) / 64.0
+ flow[invalid_idx, 0] = np.nan
+ flow[invalid_idx, 1] = np.nan
+ return flow[:, :, :2]
+
+
+def writePngFlow(flow, filename):
+ """write optical flow to file png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
+ flow: optical flow in shape height x width x 2, invalid values should be represented as np.nan
+ filepath: path to file where to write to
+ """
+ flow = 64.0 * flow + 2**15
+ width = flow.shape[1]
+ height = flow.shape[0]
+ valid_map = np.ones([flow.shape[0], flow.shape[1], 1])
+ valid_map[np.isnan(flow[:, :, 0]) | np.isnan(flow[:, :, 1])] = 0
+ flow = np.nan_to_num(flow)
+ flow = np.concatenate([flow, valid_map], axis=-1)
+ flow = np.clip(flow, 0, 2**16 - 1)
+ flow = flow.astype(np.uint16)
+ flow = np.reshape(flow, (-1, width * 3))
+ with open(filename, "wb") as f:
+ writer = png.Writer(width=width, height=height, bitdepth=16, greyscale=False)
+ writer.write(f, flow)
+
+
+def readNpyFlow(filepath):
+ """read numpy array from file.
+ filepath: file to read from
+ returns: numpy array
+ """
+ return np.load(filepath)
+
+
+def writeNpyFile(arr, filepath):
+ """write numpy array to file.
+ arr: numpy array to write
+ filepath: file to write to
+ """
+ np.save(filepath, arr)
+
+
+def writeFlo5File(flow, filename):
+ with h5py.File(filename, "w") as f:
+ f.create_dataset("flow", data=flow, compression="gzip", compression_opts=5)
+
+
+def readFlo5Flow(filename):
+ with h5py.File(filename, "r") as f:
+ if "flow" not in f.keys():
+ raise IOError(
+ f"File {filename} does not have a 'flow' key. Is this a valid flo5 file?"
+ )
+ return f["flow"][()]
+
+
+def readPfmFlow(filepath):
+ """read optical flow from file stored in pfm file format as used in the FlyingThings3D (Mayer et al., 2016) dataset.
+ filepath: path to file where to read from
+ returns: flow as a numpy array with shape height x width x 2.
+ """
+ flow = readPfmFile(filepath)
+ if len(flow.shape) != 3:
+ raise IOError(
+ f"read pfm flow: PFM file has wrong shape (assumed to be w x h x 3): {flow.shape}"
+ )
+ if flow.shape[2] != 3:
+ raise IOError(
+ f"read pfm flow: PFM file has wrong shape (assumed to be w x h x 3): {flow.shape}"
+ )
+ # remove third channel -> is all zeros
+ return flow[:, :, :2]
+
+
+def readPfmFile(filepath):
+ """
+ adapted from https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
+ """
+ file = open(filepath, "rb")
+
+ color = None
+ width = None
+ height = None
+ scale = None
+ endian = None
+
+ header = file.readline().rstrip()
+ if header.decode("ascii") == "PF":
+ color = True
+ elif header.decode("ascii") == "Pf":
+ color = False
+ else:
+ raise Exception("Not a PFM file.")
+
+ dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
+ if dim_match:
+ width, height = list(map(int, dim_match.groups()))
+ else:
+ raise Exception("Malformed PFM header.")
+
+ scale = float(file.readline().decode("ascii").rstrip())
+ if scale < 0: # little-endian
+ endian = "<"
+ scale = -scale
+ else:
+ endian = ">" # big-endian
+
+ data = np.fromfile(file, endian + "f")
+ shape = (height, width, 3) if color else (height, width)
+
+ data = np.reshape(data, shape)
+ data = np.flipud(data)
+ return data # , scale
+
+
+def writePfmFile(image, filepath):
+ """
+ adapted from https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
+ """
+ scale = 1
+ file = open(filepath, "wb")
+
+ color = None
+
+ if image.dtype.name != "float32":
+ raise Exception("Image dtype must be float32.")
+
+ image = np.flipud(image)
+
+ if len(image.shape) == 3 and image.shape[2] == 3: # color image
+ color = True
+ elif (
+ len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
+ ): # greyscale
+ color = False
+ else:
+ raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
+
+ file.write("PF\n" if color else "Pf\n".encode())
+ file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
+
+ endian = image.dtype.byteorder
+
+ if endian == "<" or endian == "=" and sys.byteorder == "little":
+ scale = -scale
+
+ file.write("%f\n".encode() % scale)
+
+ image.tofile(file)
+
+
+def readDispFile(filepath):
+ """read disparity (or disparity change) from file. The resulting numpy array has shape height x width.
+ For positions where there is no groundtruth available, the value is set to np.nan.
+ Supports png (KITTI), npy (numpy) and pfm (FlyingThings3D) file format.
+ filepath: path to the flow file
+ returns: disparity with shape height x width
+ """
+ if filepath.endswith(".png"):
+ return readPngDisp(filepath)
+ elif filepath.endswith(".npy"):
+ return readNpyFlow(filepath)
+ elif filepath.endswith(".pfm"):
+ return readPfmDisp(filepath)
+ elif filepath.endswith(".dsp5"):
+ return readDsp5Disp(filepath)
+ else:
+ raise ValueError(f"readDispFile: Unknown file format for {filepath}")
+
+
+def readPngDisp(filepath):
+ """read disparity from file stored in png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
+ filepath: path to file where to read from
+ returns: disparity as a numpy array with shape height x width. Invalid values are represented as np.nan
+ """
+ # adapted from https://github.com/liruoteng/OpticalFlowToolkit
+ image_object = png.Reader(filename=filepath)
+ image_direct = image_object.asDirect()
+ image_data = list(image_direct[2])
+ (w, h) = image_direct[3]["size"]
+ channel = len(image_data[0]) // w
+ if channel != 1:
+ raise IOError("read png disp: assumed channels to be 1!")
+ disp = np.zeros((h, w), dtype=np.float64)
+ for i in range(len(image_data)):
+ disp[i, :] = image_data[i][:]
+ disp[disp == 0] = np.nan
+ return disp[:, :] / 256.0
+
+
+def readPfmDisp(filepath):
+ """read disparity or disparity change from file stored in pfm file format as used in the FlyingThings3D (Mayer et al., 2016) dataset.
+ filepath: path to file where to read from
+ returns: disparity as a numpy array with shape height x width. Invalid values are represented as np.nan
+ """
+ disp = readPfmFile(filepath)
+ if len(disp.shape) != 2:
+ raise IOError(
+ f"read pfm disp: PFM file has wrong shape (assumed to be w x h): {disp.shape}"
+ )
+ return disp
+
+
+def writePngDisp(disp, filepath):
+ """write disparity to png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
+ disp: disparity in shape height x width, invalid values should be represented as np.nan
+ filepath: path to file where to write to
+ """
+ disp = 256 * disp
+ width = disp.shape[1]
+ height = disp.shape[0]
+ disp = np.clip(disp, 0, 2**16 - 1)
+ disp = np.nan_to_num(disp).astype(np.uint16)
+ disp = np.reshape(disp, (-1, width))
+ with open(filepath, "wb") as f:
+ writer = png.Writer(width=width, height=height, bitdepth=16, greyscale=True)
+ writer.write(f, disp)
+
+
+def writeDsp5File(disp, filename):
+ with h5py.File(filename, "w") as f:
+ f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5)
+
+
+def readDsp5Disp(filename):
+ with h5py.File(filename, "r") as f:
+ if "disparity" not in f.keys():
+ raise IOError(
+ f"File {filename} does not have a 'disparity' key. Is this a valid dsp5 file?"
+ )
+ return f["disparity"][()]
+
+
+def writeDispFile(disp, filepath):
+ """write disparity to file. Supports png (KITTI) and npy (numpy) file format.
+ disp: disparity with shape height x width. Invalid values should be represented as np.nan
+ filepath: file path where to write the flow
+ """
+ if not filepath:
+ raise ValueError("writeDispFile: empty filepath")
+
+ if len(disp.shape) != 2:
+ raise IOError(
+ f"writeDispFile {filepath}: expected shape height x width but received {disp.shape}"
+ )
+
+ if disp.shape[0] > disp.shape[1]:
+ print(
+ f"writeDispFile {filepath}: Warning: Are you writing an upright image? Expected shape height x width, got {disp.shape}"
+ )
+
+ if filepath.endswith(".png"):
+ writePngDisp(disp, filepath)
+ elif filepath.endswith(".npy"):
+ writeNpyFile(disp, filepath)
+ elif filepath.endswith(".dsp5"):
+ writeDsp5File(disp, filepath)
+
+
+def readKITTIObjMap(filepath):
+ assert filepath.endswith(".png")
+ return np.asarray(Image.open(filepath)) > 0
+
+
+def readKITTIIntrinsics(filepath, image=2):
+ assert filepath.endswith(".txt")
+
+ with open(filepath) as f:
+ reader = csv.reader(f, delimiter=" ")
+ for row in reader:
+ if row[0] == f"K_{image:02d}:":
+ K = np.array(row[1:], dtype=np.float32).reshape(3, 3)
+ kvec = np.array([K[0, 0], K[1, 1], K[0, 2], K[1, 2]])
+ return kvec
+
+
+def writePngMapFile(map_, filename):
+ Image.fromarray(map_).save(filename)
diff --git a/extern/CUT3R/datasets_preprocess/generate_set_arkitscenes.py b/extern/CUT3R/datasets_preprocess/generate_set_arkitscenes.py
new file mode 100644
index 0000000000000000000000000000000000000000..21ed0439f01ae88df2a6d6185b4baf05f648c33c
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/generate_set_arkitscenes.py
@@ -0,0 +1,159 @@
+#!/usr/bin/env python3
+"""
+Preprocess scenes by sorting images and generating image/video collections.
+
+This script processes scenes in parallel using a thread pool, updating metadata
+with sorted images, trajectories, intrinsics, and generating pair, image collection,
+and video collection data. The processed metadata is saved to a new file in each scene directory.
+
+Usage:
+ python generate_set_arkitscenes.py --root /path/to/data --splits Training Test --max_interval 5.0 --num_workers 8
+"""
+
+import os
+import os.path as osp
+import argparse
+import numpy as np
+from concurrent.futures import ThreadPoolExecutor, as_completed
+from tqdm import tqdm
+
+
+def get_timestamp(img_name):
+ """
+ Extract the timestamp from an image filename.
+ Assumes the timestamp is the last underscore-separated token in the name (before the file extension).
+
+ Args:
+ img_name (str): The image filename.
+
+ Returns:
+ float: The extracted timestamp.
+ """
+ return float(img_name[:-4].split("_")[-1])
+
+
+def process_scene(root, split, scene, max_interval):
+ """
+ Process a single scene by sorting its images by timestamp, updating trajectories,
+ intrinsics, and pairings, and generating image/video collections.
+
+ Args:
+ root (str): Root directory of the dataset.
+ split (str): The dataset split (e.g., 'Training', 'Test').
+ scene (str): The scene identifier.
+ max_interval (float): Maximum allowed time interval (in seconds) between images to consider them in the same video collection.
+ """
+ scene_dir = osp.join(root, split, scene)
+ metadata_path = osp.join(scene_dir, "scene_metadata.npz")
+
+ # Load the scene metadata
+ with np.load(metadata_path) as data:
+ images = data["images"]
+ trajectories = data["trajectories"]
+ intrinsics = data["intrinsics"]
+ pairs = data["pairs"]
+
+ # Sort images by timestep
+ imgs_with_indices = sorted(enumerate(images), key=lambda x: x[1])
+ indices, images = zip(*imgs_with_indices)
+ indices = np.array(indices)
+ index2sorted = {index: i for i, index in enumerate(indices)}
+
+ # Reorder trajectories and intrinsics based on the new image order
+ trajectories = trajectories[indices]
+ intrinsics = intrinsics[indices]
+
+ # Update pair indices (each pair is (id1, id2, score))
+ pairs = [(index2sorted[id1], index2sorted[id2], score) for id1, id2, score in pairs]
+
+ # Form image_collection: mapping from an image id to a list of (other image id, score)
+ image_collection = {}
+ for id1, id2, score in pairs:
+ image_collection.setdefault(id1, []).append((id2, score))
+
+ # Form video_collection: for each image, collect subsequent images within the max_interval time window
+ video_collection = {}
+ for i, image in enumerate(images):
+ j = i + 1
+ for j in range(i + 1, len(images)):
+ if get_timestamp(images[j]) - get_timestamp(image) > max_interval:
+ break
+ video_collection[i] = list(range(i + 1, j))
+
+ # Save the new metadata
+ output_path = osp.join(scene_dir, "new_scene_metadata.npz")
+ np.savez(
+ output_path,
+ images=images,
+ trajectories=trajectories,
+ intrinsics=intrinsics,
+ pairs=pairs,
+ image_collection=image_collection,
+ video_collection=video_collection,
+ )
+ print(f"Processed scene: {scene}")
+
+
+def main(args):
+ """
+ Main function to process scenes across specified dataset splits in parallel.
+ """
+ root = args.root
+ splits = args.splits
+ max_interval = args.max_interval
+ num_workers = args.num_workers
+
+ futures = []
+
+ # Create a ThreadPoolExecutor for parallel processing
+ with ThreadPoolExecutor(max_workers=num_workers) as executor:
+ for split in splits:
+ all_meta_path = osp.join(root, split, "all_metadata.npz")
+ with np.load(all_meta_path) as data:
+ scenes = data["scenes"]
+
+ # Submit processing tasks for each scene in the current split
+ for scene in scenes:
+ futures.append(
+ executor.submit(process_scene, root, split, scene, max_interval)
+ )
+
+ # Use tqdm to display a progress bar as futures complete
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc="Processing scenes"
+ ):
+ # This will raise any exceptions caught during scene processing.
+ future.result()
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser(
+ description="Preprocess scene data to update metadata with sorted images and collections."
+ )
+ parser.add_argument(
+ "--root",
+ type=str,
+ default="",
+ help="Root directory containing the dataset splits.",
+ )
+ parser.add_argument(
+ "--splits",
+ type=str,
+ nargs="+",
+ default=["Training", "Test"],
+ help="List of dataset splits to process (e.g., Training Test).",
+ )
+ parser.add_argument(
+ "--max_interval",
+ type=float,
+ default=5.0,
+ help="Maximum time interval (in seconds) between images to consider them in the same video sequence.",
+ )
+ parser.add_argument(
+ "--num_workers",
+ type=int,
+ default=8,
+ help="Number of worker threads for parallel processing.",
+ )
+ args = parser.parse_args()
+ main(args)
diff --git a/extern/CUT3R/datasets_preprocess/generate_set_scannet.py b/extern/CUT3R/datasets_preprocess/generate_set_scannet.py
new file mode 100644
index 0000000000000000000000000000000000000000..6c1643b7f994b482d32cf4df8694ce080d3514cf
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/generate_set_scannet.py
@@ -0,0 +1,132 @@
+#!/usr/bin/env python3
+"""
+Preprocess ScanNet scenes to generate video collections.
+
+This script processes each scene in specified splits by reading the image filenames
+from the "color" folder, grouping images into video sequences based on a maximum
+timestamp interval, and then saving the per-scene metadata as a NumPy .npz file.
+
+Usage:
+ python generate_set_scannet.py --root /path/to/processed_scannet \
+ --splits scans_test scans_train --max_interval 150 --num_workers 8
+"""
+
+import os
+import os.path as osp
+import argparse
+import numpy as np
+from concurrent.futures import ThreadPoolExecutor, as_completed
+from tqdm import tqdm
+
+
+def get_timestamp(img_name):
+ """
+ Convert an image basename to an integer timestamp.
+
+ For ScanNet data, it is assumed that the basename is an integer string.
+
+ Args:
+ img_name (str): Image basename (without extension).
+
+ Returns:
+ int: The timestamp as an integer.
+ """
+ return int(img_name)
+
+
+def process_scene(root, split, scene, max_interval):
+ """
+ Process a single scene: group images into video sequences and save metadata.
+
+ Args:
+ root (str): Root directory for the processed data.
+ split (str): Name of the split (e.g., 'scans_test', 'scans_train').
+ scene (str): Name of the scene directory.
+ max_interval (int): Maximum allowed difference in timestamps for grouping images.
+ """
+ scene_dir = osp.join(root, split, scene)
+ color_dir = osp.join(scene_dir, "color")
+ # depth_dir and camera_dir are defined in case you need them in future modifications.
+ # depth_dir = osp.join(scene_dir, 'depth')
+ # camera_dir = osp.join(scene_dir, 'cam')
+
+ # Get all image basenames from the color folder (without file extension)
+ basenames = sorted(
+ [f.split(".")[0] for f in os.listdir(color_dir) if f.endswith(".jpg")],
+ key=lambda x: get_timestamp(x),
+ )
+
+ video_collection = {}
+ for i, image in enumerate(basenames):
+ video_collection[i] = []
+ for j in range(i + 1, len(basenames)):
+ # Group images that fall within max_interval seconds of the reference image.
+ if get_timestamp(basenames[j]) - get_timestamp(image) > max_interval:
+ break
+ video_collection[i].append(j)
+
+ # Save the scene metadata (list of basenames and the video collection) to an NPZ file.
+ out_path = osp.join(scene_dir, "new_scene_metadata.npz")
+ np.savez(out_path, images=basenames, video_collection=video_collection)
+ print(f"Processed scene: {scene} (split: {split})")
+
+
+def main(args):
+ root = args.root
+ splits = args.splits
+ max_interval = args.max_interval
+ num_workers = args.num_workers
+
+ futures = []
+ with ThreadPoolExecutor(max_workers=num_workers) as executor:
+ for split in splits:
+ split_dir = osp.join(root, split)
+ if not osp.isdir(split_dir):
+ print(
+ f"Warning: Split directory '{split_dir}' does not exist; skipping."
+ )
+ continue
+ scenes = os.listdir(split_dir)
+ for scene in scenes:
+ futures.append(
+ executor.submit(process_scene, root, split, scene, max_interval)
+ )
+ # Use tqdm to display progress as futures complete.
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc="Processing scenes"
+ ):
+ # This will re-raise any exceptions from process_scene.
+ future.result()
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser(
+ description="Preprocess ScanNet scenes to create video collections based on image timestamps."
+ )
+ parser.add_argument(
+ "--root",
+ type=str,
+ default="",
+ help="Root directory containing the processed ScanNet splits.",
+ )
+ parser.add_argument(
+ "--splits",
+ type=str,
+ nargs="+",
+ default=["scans_test", "scans_train"],
+ help="List of split directories to process (e.g., scans_test scans_train).",
+ )
+ parser.add_argument(
+ "--max_interval",
+ type=int,
+ default=150,
+ help="Maximum allowed timestamp difference (in integer units) for grouping images.",
+ )
+ parser.add_argument(
+ "--num_workers",
+ type=int,
+ default=8,
+ help="Number of worker threads for parallel processing.",
+ )
+ args = parser.parse_args()
+ main(args)
diff --git a/extern/CUT3R/datasets_preprocess/generate_set_scannetpp.py b/extern/CUT3R/datasets_preprocess/generate_set_scannetpp.py
new file mode 100644
index 0000000000000000000000000000000000000000..9977a5d9081e8f1c0c9f82995b05a39d82096d5f
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/generate_set_scannetpp.py
@@ -0,0 +1,169 @@
+#!/usr/bin/env python3
+"""
+Preprocess processed_scannetpp scenes to update scene metadata.
+
+This script reads each scene's "scene_metadata.npz", sorts images by timestamp,
+updates trajectories, intrinsics, and pair indices, and builds two collections:
+ - image_collection: For each image, stores pairs (other image index, score)
+ - video_collection: For each image, groups subsequent images whose timestamps
+ differ by at most a given max_interval (and share the same
+ first character in the image name).
+
+The new metadata is saved as "new_scene_metadata.npz" in each scene folder.
+
+Usage:
+ python generate_set_scannetpp.py --root /path/to/processed_scannetpp \
+ --max_interval 150 --num_workers 8
+"""
+
+import os
+import os.path as osp
+import argparse
+import numpy as np
+from concurrent.futures import ThreadPoolExecutor, as_completed
+from tqdm import tqdm
+
+
+def get_timestamp(img_name):
+ """
+ Convert an image name to a timestamp (integer).
+
+ If the image name starts with 'DSC', the timestamp is the integer part after 'DSC'.
+ Otherwise, it is assumed the image name has an underscore, and the second element is used.
+
+ Args:
+ img_name (str): The image basename (without extension).
+
+ Returns:
+ int: The extracted timestamp.
+ """
+ if img_name.startswith("DSC"):
+ return int(img_name[3:])
+ else:
+ return int(img_name.split("_")[1])
+
+
+def process_scene(root, scene, max_interval):
+ """
+ Process a single scene: sort images, update trajectories/intrinsics/pairs, and
+ form image and video collections. Save the updated metadata.
+
+ Args:
+ root (str): Root directory containing scene folders.
+ scene (str): Scene folder name.
+ max_interval (int): Maximum allowed difference (in timestamp units) for video grouping.
+ """
+ scene_dir = osp.join(root, scene)
+ metadata_path = osp.join(scene_dir, "scene_metadata.npz")
+ with np.load(metadata_path, allow_pickle=True) as data:
+ images = data["images"]
+ trajectories = data["trajectories"]
+ intrinsics = data["intrinsics"]
+ pairs = data["pairs"]
+
+ # Sort images by timestamp.
+ imgs_with_indices = sorted(enumerate(images), key=lambda x: x[1])
+ indices, images = zip(*imgs_with_indices)
+ indices = np.array(indices)
+ index2sorted = {index: i for i, index in enumerate(indices)}
+
+ # Update trajectories and intrinsics arrays according to the new order.
+ trajectories = trajectories[indices]
+ intrinsics = intrinsics[indices]
+
+ # Update pairs (each pair is (id1, id2, score)) with new indices.
+ pairs = [(index2sorted[id1], index2sorted[id2], score) for id1, id2, score in pairs]
+
+ # Build image_collection: for each pair, verify that both image files exist.
+ image_collection = {}
+ for id1, id2, score in pairs:
+ img1 = images[id1]
+ img2 = images[id2]
+ img1_path = osp.join(scene_dir, "images", img1 + ".jpg")
+ img2_path = osp.join(scene_dir, "images", img2 + ".jpg")
+ if not (osp.exists(img1_path) and osp.exists(img2_path)):
+ continue
+ if id1 not in image_collection:
+ image_collection[id1] = []
+ image_collection[id1].append((id2, score))
+
+ # Build video_collection: for each image, group subsequent images if:
+ # 1. Their timestamp difference is at most max_interval.
+ # 2. Their name's first character is the same as the current image.
+ video_collection = {}
+ for i, image in enumerate(images):
+ img_path = osp.join(scene_dir, "images", image + ".jpg")
+ if not osp.exists(img_path):
+ continue
+ video_collection[i] = []
+ for j in range(i + 1, len(images)):
+ next_img_path = osp.join(scene_dir, "images", images[j] + ".jpg")
+ if not osp.exists(next_img_path):
+ continue
+ if (
+ get_timestamp(images[j]) - get_timestamp(image) > max_interval
+ or images[j][0] != image[0]
+ ):
+ break
+ video_collection[i].append(j)
+
+ # Save the updated metadata to a new file.
+ out_path = osp.join(scene_dir, "new_scene_metadata.npz")
+ np.savez(
+ out_path,
+ images=images,
+ trajectories=trajectories,
+ intrinsics=intrinsics,
+ pairs=pairs,
+ image_collection=image_collection,
+ video_collection=video_collection,
+ )
+ print(f"Processed scene: {scene}")
+
+
+def main(args):
+ root = args.root
+ max_interval = args.max_interval
+ num_workers = args.num_workers
+
+ # Load the list of scenes from the 'all_metadata.npz' file.
+ all_metadata_path = osp.join(root, "all_metadata.npz")
+ with np.load(all_metadata_path, allow_pickle=True) as data:
+ scenes = data["scenes"]
+
+ # Process scenes in parallel.
+ futures = []
+ with ThreadPoolExecutor(max_workers=num_workers) as executor:
+ for scene in scenes:
+ futures.append(executor.submit(process_scene, root, scene, max_interval))
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc="Processing scenes"
+ ):
+ # This will raise any exceptions from process_scene.
+ future.result()
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser(
+ description="Preprocess processed_scannetpp scenes to update scene metadata."
+ )
+ parser.add_argument(
+ "--root",
+ type=str,
+ required=True,
+ help="Root directory containing processed_scannetpp scene folders.",
+ )
+ parser.add_argument(
+ "--max_interval",
+ type=int,
+ default=150,
+ help="Maximum timestamp interval for grouping images (default: 150).",
+ )
+ parser.add_argument(
+ "--num_workers",
+ type=int,
+ default=8,
+ help="Number of worker threads for parallel processing (default: 8).",
+ )
+ args = parser.parse_args()
+ main(args)
diff --git a/extern/CUT3R/datasets_preprocess/merge_dl3dv.py b/extern/CUT3R/datasets_preprocess/merge_dl3dv.py
new file mode 100644
index 0000000000000000000000000000000000000000..c53fb85ec072bb0a52236d003fa06c8a638c8128
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/merge_dl3dv.py
@@ -0,0 +1,85 @@
+import os
+import shutil
+from tqdm import tqdm
+
+# Set these paths to your original and moved locations.
+src_base = "/path/to/processed_dl3dv" # original location
+dst_base = "processed_dl3dv_ours" # current (moved) location
+
+# Set dry_run to True for testing (no changes made), and False to perform the actions.
+dry_run = False
+
+def merge_directories(source_dir, destination_dir, dry_run=False):
+ """
+ Merge all contents from source_dir into destination_dir.
+ If an item already exists in destination_dir:
+ - For files: remove the destination file and move the source file.
+ - For directories: merge them recursively.
+ After moving items, empty directories are removed.
+ """
+ for item in os.listdir(source_dir):
+ source_item = os.path.join(source_dir, item)
+ dest_item = os.path.join(destination_dir, item)
+ if os.path.isdir(source_item):
+ if os.path.exists(dest_item):
+ # Recursively merge subdirectories.
+ merge_directories(source_item, dest_item, dry_run=dry_run)
+ # Remove the source subdirectory if empty.
+ if not os.listdir(source_item):
+ if dry_run:
+ print(f"[Dry-run] Would remove empty directory: {source_item}")
+ else:
+ os.rmdir(source_item)
+ else:
+ if dry_run:
+ print(f"[Dry-run] Would move directory: {source_item} -> {dest_item}")
+ else:
+ shutil.move(source_item, dest_item)
+ else:
+ # For files: if a file already exists at the destination, remove it.
+ if os.path.exists(dest_item):
+ if dry_run:
+ print(f"[Dry-run] Would remove existing file: {dest_item}")
+ else:
+ os.remove(dest_item)
+ if dry_run:
+ print(f"[Dry-run] Would move file: {source_item} -> {dest_item}")
+ else:
+ shutil.move(source_item, dest_item)
+
+# Build a list of relative folder paths in dst_base.
+# This assumes the structure is: dst_base/f1/f2
+all_folders = []
+for f1 in os.listdir(dst_base):
+ f1_path = os.path.join(dst_base, f1)
+ if not os.path.isdir(f1_path):
+ continue
+ for f2 in os.listdir(f1_path):
+ all_folders.append(os.path.join(f1, f2))
+
+# Process each folder and move/merge it back to the original location.
+for folder in tqdm(all_folders, desc="Moving folders back"):
+ original_folder = os.path.join(src_base, folder) # target location in the original path
+ moved_folder = os.path.join(dst_base, folder) # current location
+
+ # Ensure the parent directory of the original folder exists.
+ parent_dir = os.path.dirname(original_folder)
+ if dry_run:
+ if not os.path.exists(parent_dir):
+ print(f"[Dry-run] Would create directory: {parent_dir}")
+ else:
+ os.makedirs(parent_dir, exist_ok=True)
+
+ if not os.path.exists(original_folder):
+ if dry_run:
+ print(f"[Dry-run] Would move folder: {moved_folder} -> {original_folder}")
+ else:
+ shutil.move(moved_folder, original_folder)
+ else:
+ merge_directories(moved_folder, original_folder, dry_run=dry_run)
+ # Remove the moved folder if it becomes empty.
+ if not os.listdir(moved_folder):
+ if dry_run:
+ print(f"[Dry-run] Would remove empty directory: {moved_folder}")
+ else:
+ os.rmdir(moved_folder)
diff --git a/extern/CUT3R/datasets_preprocess/path_to_root.py b/extern/CUT3R/datasets_preprocess/path_to_root.py
new file mode 100644
index 0000000000000000000000000000000000000000..25e51d4ae6c09e2a3e1885d0cbc50422dd113f1a
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/path_to_root.py
@@ -0,0 +1,14 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# DUSt3R repo root import
+# --------------------------------------------------------
+
+import sys
+import os.path as path
+
+HERE_PATH = path.normpath(path.dirname(__file__))
+DUST3R_REPO_PATH = path.normpath(path.join(HERE_PATH, "../"))
+# workaround for sibling import
+sys.path.insert(0, DUST3R_REPO_PATH)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_3dkb.py b/extern/CUT3R/datasets_preprocess/preprocess_3dkb.py
new file mode 100644
index 0000000000000000000000000000000000000000..27e0b9f77ada16748f038819c5fa9670ad863fab
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_3dkb.py
@@ -0,0 +1,220 @@
+#!/usr/bin/env python3
+"""
+Process 3D Ken Burns data by selecting random view types, copying images and depth files,
+and computing camera intrinsics from a field-of-view value. The output files are stored in an
+organized folder structure.
+
+Usage:
+ python preprocess_3dkb.py --root /path/to/data_3d_ken_burns \
+ --out_dir /path/to/processed_3dkb \
+ [--num_workers 4] [--seed 42]
+"""
+
+import os
+import json
+import random
+import shutil
+from functools import partial
+from pathlib import Path
+import argparse
+
+import cv2 # noqa: F401; cv2 is imported to ensure OpenEXR support.
+import numpy as np
+from PIL import Image
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor, as_completed
+
+# Ensure OpenCV can read OpenEXR files.
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+
+
+def fov_to_intrinsic_matrix(width, height, fov_deg, fov_type="horizontal"):
+ """
+ Converts field of view (FOV) in degrees to a camera intrinsic matrix.
+
+ Args:
+ width (int): Image width in pixels.
+ height (int): Image height in pixels.
+ fov_deg (float): Field of view in degrees.
+ fov_type (str): 'horizontal' or 'vertical'; determines which FOV is used.
+
+ Returns:
+ np.ndarray: A 3x3 camera intrinsic matrix.
+
+ Raises:
+ ValueError: If width or height is non-positive or if fov_deg is not in (0, 180).
+ """
+ if width <= 0 or height <= 0:
+ raise ValueError("Image width and height must be positive numbers.")
+ if not (0 < fov_deg < 180):
+ raise ValueError("FOV must be between 0 and 180 degrees (non-inclusive).")
+ if fov_type not in ["horizontal", "vertical"]:
+ raise ValueError("fov_type must be either 'horizontal' or 'vertical'.")
+
+ fov_rad = np.deg2rad(fov_deg)
+
+ if fov_type == "horizontal":
+ f_x = width / (2 * np.tan(fov_rad / 2))
+ aspect_ratio = height / width
+ f_y = f_x * aspect_ratio
+ else:
+ f_y = height / (2 * np.tan(fov_rad / 2))
+ aspect_ratio = width / height
+ f_x = f_y * aspect_ratio
+
+ c_x = width / 2
+ c_y = height / 2
+ K = np.array([[f_x, 0, c_x], [0, f_y, c_y], [0, 0, 1]])
+ return K
+
+
+def process_basename(root, seq, basename, view_types, out_dir):
+ """
+ Processes a single basename: selects a random view type, copies the corresponding
+ image and depth file, and computes the camera intrinsics from the JSON metadata.
+
+ Args:
+ root (str): Root directory of the raw data.
+ seq (str): Sequence directory name.
+ basename (str): Basename (common identifier) for the files.
+ view_types (list): List of view types to choose from (e.g. ['bl', 'br', 'tl', 'tr']).
+ out_dir (str): Output directory where processed data will be saved.
+
+ Returns:
+ str or None: Returns an error message string on failure; otherwise, returns None.
+ """
+ # Select a random view type.
+ view_type = random.choice(view_types)
+
+ imgname = f"{basename}-{view_type}-image.png"
+ depthname = f"{basename}-{view_type}-depth.exr"
+
+ img_path = os.path.join(root, seq, imgname)
+ cam_path = os.path.join(root, seq, f"{basename}-meta.json")
+ depth_path = os.path.join(root, f"{seq}-depth", depthname)
+
+ # Prepare output directories.
+ out_seq_dir = os.path.join(out_dir, seq)
+ out_rgb_dir = os.path.join(out_seq_dir, "rgb")
+ out_depth_dir = os.path.join(out_seq_dir, "depth")
+ out_cam_dir = os.path.join(out_seq_dir, "cam")
+
+ # Output file paths.
+ out_img_path = os.path.join(out_rgb_dir, f"{basename}.png")
+ out_depth_path = os.path.join(out_depth_dir, f"{basename}.exr")
+ out_cam_path = os.path.join(out_cam_dir, f"{basename}.npz")
+
+ try:
+ # Load image using PIL and save as PNG.
+ with Image.open(img_path) as img:
+ W, H = img.size
+ img.save(out_img_path, format="PNG")
+
+ # Load camera JSON metadata.
+ with open(cam_path, "r") as f:
+ cam = json.load(f)
+ fov = cam["fltFov"]
+ K = fov_to_intrinsic_matrix(W, H, fov)
+
+ # Copy depth file.
+ shutil.copy(depth_path, out_depth_path)
+
+ # Save camera intrinsics.
+ np.savez(out_cam_path, intrinsics=K)
+
+ except Exception as e:
+ return f"Error processing {seq}/{basename}: {e}"
+
+ return None # Success indicator
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Process raw 3D Ken Burns video data and generate processed images, depth maps, and camera intrinsics."
+ )
+ parser.add_argument(
+ "--root", type=str, required=True, help="Root directory of the raw data."
+ )
+ parser.add_argument(
+ "--out_dir",
+ type=str,
+ required=True,
+ help="Output directory for processed data.",
+ )
+ parser.add_argument(
+ "--num_workers",
+ type=int,
+ default=None,
+ help="Number of worker processes to use (default: half of available CPUs).",
+ )
+ parser.add_argument(
+ "--seed",
+ type=int,
+ default=42,
+ help="Random seed for reproducibility (default: 42).",
+ )
+ parser.add_argument(
+ "--view_types",
+ type=str,
+ nargs="+",
+ default=["bl", "br", "tl", "tr"],
+ help="List of view types to choose from (default: bl br tl tr).",
+ )
+ args = parser.parse_args()
+
+ # Set the random seed.
+ random.seed(args.seed)
+
+ root = args.root
+ out_dir = args.out_dir
+ view_types = args.view_types
+
+ # Determine number of worker processes.
+ num_workers = (
+ args.num_workers if args.num_workers is not None else (os.cpu_count() or 4) // 2
+ )
+
+ # Collect all sequence directories from root.
+ seq_dirs = [
+ d
+ for d in os.listdir(root)
+ if os.path.isdir(os.path.join(root, d)) and not d.endswith("-depth")
+ ]
+
+ # Pre-create output directory structure.
+ for seq in seq_dirs:
+ for subfolder in ["rgb", "depth", "cam"]:
+ (Path(out_dir) / seq / subfolder).mkdir(parents=True, exist_ok=True)
+
+ # Prepare list of tasks.
+ tasks = []
+ for seq in seq_dirs:
+ seq_path = os.path.join(root, seq)
+ # Assume JSON files contain metadata and have a name ending with "-meta.json".
+ json_files = [f for f in os.listdir(seq_path) if f.endswith(".json")]
+ # Remove the trailing "-meta.json" (10 characters) to get the basename.
+ basenames = sorted([f[:-10] for f in json_files])
+ for basename in basenames:
+ tasks.append((seq, basename))
+
+ # Define a partial function with fixed root, view_types, and out_dir.
+ process_func = partial(
+ process_basename, root, view_types=view_types, out_dir=out_dir
+ )
+
+ # Process tasks in parallel using ProcessPoolExecutor.
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ futures = {
+ executor.submit(process_func, seq, basename): (seq, basename)
+ for seq, basename in tasks
+ }
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc="Processing"
+ ):
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_arkitscenes.py b/extern/CUT3R/datasets_preprocess/preprocess_arkitscenes.py
new file mode 100644
index 0000000000000000000000000000000000000000..924fd00bff45334f26b50a95003b58404541415e
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_arkitscenes.py
@@ -0,0 +1,445 @@
+import os
+import json
+import os.path as osp
+import decimal
+import argparse
+import math
+from bisect import bisect_left
+from PIL import Image
+import numpy as np
+import quaternion
+from scipy import interpolate
+import cv2
+from tqdm import tqdm
+
+
+def get_parser():
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--arkitscenes_dir",
+ default="data/dust3r_data/data_arkitscenes/raw",
+ )
+ parser.add_argument(
+ "--precomputed_pairs",
+ default="data/dust3r_data/data_arkitscenes/arkitscenes_pairs",
+ )
+ parser.add_argument(
+ "--output_dir",
+ default="data/dust3r_data/processed_arkitscenes",
+ )
+ return parser
+
+
+def value_to_decimal(value, decimal_places):
+ decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method
+ return decimal.Decimal(str(float(value))).quantize(
+ decimal.Decimal("1e-{}".format(decimal_places))
+ )
+
+
+def closest(value, sorted_list):
+ index = bisect_left(sorted_list, value)
+ if index == 0:
+ return sorted_list[0]
+ elif index == len(sorted_list):
+ return sorted_list[-1]
+ else:
+ value_before = sorted_list[index - 1]
+ value_after = sorted_list[index]
+ if value_after - value < value - value_before:
+ return value_after
+ else:
+ return value_before
+
+
+def get_up_vectors(pose_device_to_world):
+ return np.matmul(pose_device_to_world, np.array([[0.0], [-1.0], [0.0], [0.0]]))
+
+
+def get_right_vectors(pose_device_to_world):
+ return np.matmul(pose_device_to_world, np.array([[1.0], [0.0], [0.0], [0.0]]))
+
+
+def read_traj(traj_path):
+ quaternions = []
+ poses = []
+ timestamps = []
+ poses_p_to_w = []
+ with open(traj_path) as f:
+ traj_lines = f.readlines()
+ for line in traj_lines:
+ tokens = line.split()
+ assert len(tokens) == 7
+ traj_timestamp = float(tokens[0])
+
+ timestamps_decimal_value = value_to_decimal(traj_timestamp, 3)
+ timestamps.append(
+ float(timestamps_decimal_value)
+ ) # for spline interpolation
+
+ angle_axis = [float(tokens[1]), float(tokens[2]), float(tokens[3])]
+ r_w_to_p, _ = cv2.Rodrigues(np.asarray(angle_axis))
+ t_w_to_p = np.asarray(
+ [float(tokens[4]), float(tokens[5]), float(tokens[6])]
+ )
+
+ pose_w_to_p = np.eye(4)
+ pose_w_to_p[:3, :3] = r_w_to_p
+ pose_w_to_p[:3, 3] = t_w_to_p
+
+ pose_p_to_w = np.linalg.inv(pose_w_to_p)
+
+ r_p_to_w_as_quat = quaternion.from_rotation_matrix(pose_p_to_w[:3, :3])
+ t_p_to_w = pose_p_to_w[:3, 3]
+ poses_p_to_w.append(pose_p_to_w)
+ poses.append(t_p_to_w)
+ quaternions.append(r_p_to_w_as_quat)
+ return timestamps, poses, quaternions, poses_p_to_w
+
+
+def main(rootdir, pairsdir, outdir):
+ os.makedirs(outdir, exist_ok=True)
+
+ subdirs = ["Test", "Training"]
+ for subdir in subdirs:
+ # STEP 1: list all scenes
+ outsubdir = osp.join(outdir, subdir)
+ os.makedirs(outsubdir, exist_ok=True)
+ listfile = osp.join(pairsdir, subdir, "scene_list.json")
+ with open(listfile, "r") as f:
+ scene_dirs = json.load(f)
+
+ valid_scenes = []
+ for scene_subdir in tqdm(scene_dirs):
+ if not os.path.isdir(osp.join(rootdir, "Test", scene_subdir)):
+ if not os.path.isdir(osp.join(rootdir, "Training", scene_subdir)):
+ continue
+ else:
+ root_subdir = "Training"
+ else:
+ root_subdir = "Test"
+ out_scene_subdir = osp.join(outsubdir, scene_subdir)
+ os.makedirs(out_scene_subdir, exist_ok=True)
+
+ scene_dir = osp.join(rootdir, root_subdir, scene_subdir)
+ depth_dir = osp.join(scene_dir, "lowres_depth")
+ rgb_dir = osp.join(scene_dir, "vga_wide")
+ intrinsics_dir = osp.join(scene_dir, "vga_wide_intrinsics")
+ traj_path = osp.join(scene_dir, "lowres_wide.traj")
+
+ # STEP 2: read selected_pairs.npz
+ selected_pairs_path = osp.join(
+ pairsdir, subdir, scene_subdir, "selected_pairs.npz"
+ )
+ selected_npz = np.load(selected_pairs_path)
+ selection, pairs = selected_npz["selection"], selected_npz["pairs"]
+ selected_sky_direction_scene = str(selected_npz["sky_direction_scene"][0])
+ if len(selection) == 0 or len(pairs) == 0:
+ # not a valid scene
+ continue
+ valid_scenes.append(scene_subdir)
+
+ # STEP 3: parse the scene and export the list of valid (K, pose, rgb, depth) and convert images
+ scene_metadata_path = osp.join(out_scene_subdir, "scene_metadata.npz")
+ if osp.isfile(scene_metadata_path):
+ continue
+ else:
+ print(f"parsing {scene_subdir}")
+ # loads traj
+ timestamps, poses, quaternions, poses_cam_to_world = read_traj(
+ traj_path
+ )
+
+ poses = np.array(poses)
+ quaternions = np.array(quaternions, dtype=np.quaternion)
+ quaternions = quaternion.unflip_rotors(quaternions)
+ timestamps = np.array(timestamps)
+
+ selected_images = [
+ (basename, basename.split(".png")[0].split("_")[1])
+ for basename in selection
+ ]
+ timestamps_selected = [
+ float(frame_id) for _, frame_id in selected_images
+ ]
+
+ sky_direction_scene, trajectories, intrinsics, images = (
+ convert_scene_metadata(
+ scene_subdir,
+ intrinsics_dir,
+ timestamps,
+ quaternions,
+ poses,
+ poses_cam_to_world,
+ selected_images,
+ timestamps_selected,
+ )
+ )
+ assert selected_sky_direction_scene == sky_direction_scene
+
+ os.makedirs(os.path.join(out_scene_subdir, "vga_wide"), exist_ok=True)
+ os.makedirs(
+ os.path.join(out_scene_subdir, "lowres_depth"), exist_ok=True
+ )
+ assert isinstance(sky_direction_scene, str)
+ all_exist = True
+ for basename in images:
+ vga_wide_path = osp.join(rgb_dir, basename)
+ depth_path = osp.join(depth_dir, basename)
+ if not osp.isfile(vga_wide_path) or not osp.isfile(depth_path):
+ all_exist = False
+ break
+ if not all_exist:
+ continue
+
+ for basename in images:
+ img_out = os.path.join(
+ out_scene_subdir, "vga_wide", basename.replace(".png", ".jpg")
+ )
+ depth_out = os.path.join(out_scene_subdir, "lowres_depth", basename)
+ if osp.isfile(img_out) and osp.isfile(depth_out):
+ continue
+
+ vga_wide_path = osp.join(rgb_dir, basename)
+ depth_path = osp.join(depth_dir, basename)
+
+ img = Image.open(vga_wide_path)
+ depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
+
+ # rotate the image
+ if sky_direction_scene == "RIGHT":
+ try:
+ img = img.transpose(Image.Transpose.ROTATE_90)
+ except Exception:
+ img = img.transpose(Image.ROTATE_90)
+ depth = cv2.rotate(depth, cv2.ROTATE_90_COUNTERCLOCKWISE)
+ elif sky_direction_scene == "LEFT":
+ try:
+ img = img.transpose(Image.Transpose.ROTATE_270)
+ except Exception:
+ img = img.transpose(Image.ROTATE_270)
+ depth = cv2.rotate(depth, cv2.ROTATE_90_CLOCKWISE)
+ elif sky_direction_scene == "DOWN":
+ try:
+ img = img.transpose(Image.Transpose.ROTATE_180)
+ except Exception:
+ img = img.transpose(Image.ROTATE_180)
+ depth = cv2.rotate(depth, cv2.ROTATE_180)
+
+ W, H = img.size
+ if not osp.isfile(img_out):
+ img.save(img_out)
+
+ depth = cv2.resize(
+ depth, (W, H), interpolation=cv2.INTER_NEAREST_EXACT
+ )
+ if not osp.isfile(
+ depth_out
+ ): # avoid destroying the base dataset when you mess up the paths
+ cv2.imwrite(depth_out, depth)
+
+ # save at the end
+ np.savez(
+ scene_metadata_path,
+ trajectories=trajectories,
+ intrinsics=intrinsics,
+ images=images,
+ pairs=pairs,
+ )
+
+ outlistfile = osp.join(outsubdir, "scene_list.json")
+ for scene_subdir in valid_scenes:
+ scene_metadata_path = osp.join(
+ outsubdir, scene_subdir, "scene_metadata.npz"
+ )
+ if not osp.isfile(scene_metadata_path):
+ valid_scenes.remove(scene_subdir)
+ with open(outlistfile, "w") as f:
+ json.dump(valid_scenes, f)
+
+ # STEP 5: concat all scene_metadata.npz into a single file
+ scene_data = {}
+ for scene_subdir in valid_scenes:
+ scene_metadata_path = osp.join(
+ outsubdir, scene_subdir, "scene_metadata.npz"
+ )
+ with np.load(scene_metadata_path) as data:
+ trajectories = data["trajectories"]
+ intrinsics = data["intrinsics"]
+ images = data["images"]
+ pairs = data["pairs"]
+ scene_data[scene_subdir] = {
+ "trajectories": trajectories,
+ "intrinsics": intrinsics,
+ "images": images,
+ "pairs": pairs,
+ }
+ offset = 0
+ counts = []
+ scenes = []
+ sceneids = []
+ images = []
+ intrinsics = []
+ trajectories = []
+ pairs = []
+ for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()):
+ num_imgs = data["images"].shape[0]
+ img_pairs = data["pairs"]
+
+ scenes.append(scene_subdir)
+ sceneids.extend([scene_idx] * num_imgs)
+
+ images.append(data["images"])
+
+ K = np.expand_dims(np.eye(3), 0).repeat(num_imgs, 0)
+ K[:, 0, 0] = [fx for _, _, fx, _, _, _ in data["intrinsics"]]
+ K[:, 1, 1] = [fy for _, _, _, fy, _, _ in data["intrinsics"]]
+ K[:, 0, 2] = [hw for _, _, _, _, hw, _ in data["intrinsics"]]
+ K[:, 1, 2] = [hh for _, _, _, _, _, hh in data["intrinsics"]]
+
+ intrinsics.append(K)
+ trajectories.append(data["trajectories"])
+
+ # offset pairs
+ img_pairs[:, 0:2] += offset
+ pairs.append(img_pairs)
+ counts.append(offset)
+
+ offset += num_imgs
+
+ images = np.concatenate(images, axis=0)
+ intrinsics = np.concatenate(intrinsics, axis=0)
+ trajectories = np.concatenate(trajectories, axis=0)
+ pairs = np.concatenate(pairs, axis=0)
+ np.savez(
+ osp.join(outsubdir, "all_metadata.npz"),
+ counts=counts,
+ scenes=scenes,
+ sceneids=sceneids,
+ images=images,
+ intrinsics=intrinsics,
+ trajectories=trajectories,
+ pairs=pairs,
+ )
+
+
+def convert_scene_metadata(
+ scene_subdir,
+ intrinsics_dir,
+ timestamps,
+ quaternions,
+ poses,
+ poses_cam_to_world,
+ selected_images,
+ timestamps_selected,
+):
+ # find scene orientation
+ sky_direction_scene, rotated_to_cam = find_scene_orientation(poses_cam_to_world)
+
+ # find/compute pose for selected timestamps
+ # most images have a valid timestamp / exact pose associated
+ timestamps_selected = np.array(timestamps_selected)
+ spline = interpolate.interp1d(timestamps, poses, kind="linear", axis=0)
+ interpolated_rotations = quaternion.squad(
+ quaternions, timestamps, timestamps_selected
+ )
+ interpolated_positions = spline(timestamps_selected)
+
+ trajectories = []
+ intrinsics = []
+ images = []
+ for i, (basename, frame_id) in enumerate(selected_images):
+ intrinsic_fn = osp.join(intrinsics_dir, f"{scene_subdir}_{frame_id}.pincam")
+ if not osp.exists(intrinsic_fn):
+ intrinsic_fn = osp.join(
+ intrinsics_dir, f"{scene_subdir}_{float(frame_id) - 0.001:.3f}.pincam"
+ )
+ if not osp.exists(intrinsic_fn):
+ intrinsic_fn = osp.join(
+ intrinsics_dir, f"{scene_subdir}_{float(frame_id) + 0.001:.3f}.pincam"
+ )
+ assert osp.exists(intrinsic_fn)
+ w, h, fx, fy, hw, hh = np.loadtxt(intrinsic_fn) # PINHOLE
+
+ pose = np.eye(4)
+ pose[:3, :3] = quaternion.as_rotation_matrix(interpolated_rotations[i])
+ pose[:3, 3] = interpolated_positions[i]
+
+ images.append(basename)
+ if sky_direction_scene == "RIGHT" or sky_direction_scene == "LEFT":
+ intrinsics.append([h, w, fy, fx, hh, hw]) # swapped intrinsics
+ else:
+ intrinsics.append([w, h, fx, fy, hw, hh])
+ trajectories.append(
+ pose @ rotated_to_cam
+ ) # pose_cam_to_world @ rotated_to_cam = rotated(cam) to world
+
+ return sky_direction_scene, trajectories, intrinsics, images
+
+
+def find_scene_orientation(poses_cam_to_world):
+ if len(poses_cam_to_world) > 0:
+ up_vector = sum(get_up_vectors(p) for p in poses_cam_to_world) / len(
+ poses_cam_to_world
+ )
+ right_vector = sum(get_right_vectors(p) for p in poses_cam_to_world) / len(
+ poses_cam_to_world
+ )
+ up_world = np.array([[0.0], [0.0], [1.0], [0.0]])
+ else:
+ up_vector = np.array([[0.0], [-1.0], [0.0], [0.0]])
+ right_vector = np.array([[1.0], [0.0], [0.0], [0.0]])
+ up_world = np.array([[0.0], [0.0], [1.0], [0.0]])
+
+ # value between 0, 180
+ device_up_to_world_up_angle = (
+ np.arccos(np.clip(np.dot(np.transpose(up_world), up_vector), -1.0, 1.0)).item()
+ * 180.0
+ / np.pi
+ )
+ device_right_to_world_up_angle = (
+ np.arccos(
+ np.clip(np.dot(np.transpose(up_world), right_vector), -1.0, 1.0)
+ ).item()
+ * 180.0
+ / np.pi
+ )
+
+ up_closest_to_90 = abs(device_up_to_world_up_angle - 90.0) < abs(
+ device_right_to_world_up_angle - 90.0
+ )
+ if up_closest_to_90:
+ assert abs(device_up_to_world_up_angle - 90.0) < 45.0
+ # LEFT
+ if device_right_to_world_up_angle > 90.0:
+ sky_direction_scene = "LEFT"
+ cam_to_rotated_q = quaternion.from_rotation_vector(
+ [0.0, 0.0, math.pi / 2.0]
+ )
+ else:
+ # note that in metadata.csv RIGHT does not exist, but again it's not accurate...
+ # well, turns out there are scenes oriented like this
+ # for example Training/41124801
+ sky_direction_scene = "RIGHT"
+ cam_to_rotated_q = quaternion.from_rotation_vector(
+ [0.0, 0.0, -math.pi / 2.0]
+ )
+ else:
+ # right is close to 90
+ assert abs(device_right_to_world_up_angle - 90.0) < 45.0
+ if device_up_to_world_up_angle > 90.0:
+ sky_direction_scene = "DOWN"
+ cam_to_rotated_q = quaternion.from_rotation_vector([0.0, 0.0, math.pi])
+ else:
+ sky_direction_scene = "UP"
+ cam_to_rotated_q = quaternion.quaternion(1, 0, 0, 0)
+ cam_to_rotated = np.eye(4)
+ cam_to_rotated[:3, :3] = quaternion.as_rotation_matrix(cam_to_rotated_q)
+ rotated_to_cam = np.linalg.inv(cam_to_rotated)
+ return sky_direction_scene, rotated_to_cam
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ main(args.arkitscenes_dir, args.precomputed_pairs, args.output_dir)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_arkitscenes_highres.py b/extern/CUT3R/datasets_preprocess/preprocess_arkitscenes_highres.py
new file mode 100644
index 0000000000000000000000000000000000000000..055c0e9c19cb9f52e148704bdfa1053b8ff45861
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_arkitscenes_highres.py
@@ -0,0 +1,409 @@
+import os
+import json
+import os.path as osp
+import decimal
+import argparse
+import math
+from bisect import bisect_left
+from PIL import Image
+import numpy as np
+import quaternion
+from scipy import interpolate
+import cv2
+from tqdm import tqdm
+from multiprocessing import Pool
+
+
+def get_parser():
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--arkitscenes_dir",
+ default="",
+ )
+ parser.add_argument(
+ "--output_dir",
+ default="data/dust3r_data/processed_arkitscenes_highres",
+ )
+ return parser
+
+
+def value_to_decimal(value, decimal_places):
+ decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method
+ return decimal.Decimal(str(float(value))).quantize(
+ decimal.Decimal("1e-{}".format(decimal_places))
+ )
+
+
+def closest(value, sorted_list):
+ index = bisect_left(sorted_list, value)
+ if index == 0:
+ return sorted_list[0]
+ elif index == len(sorted_list):
+ return sorted_list[-1]
+ else:
+ value_before = sorted_list[index - 1]
+ value_after = sorted_list[index]
+ if value_after - value < value - value_before:
+ return value_after
+ else:
+ return value_before
+
+
+def get_up_vectors(pose_device_to_world):
+ return np.matmul(pose_device_to_world, np.array([[0.0], [-1.0], [0.0], [0.0]]))
+
+
+def get_right_vectors(pose_device_to_world):
+ return np.matmul(pose_device_to_world, np.array([[1.0], [0.0], [0.0], [0.0]]))
+
+
+def read_traj(traj_path):
+ quaternions = []
+ poses = []
+ timestamps = []
+ poses_p_to_w = []
+ with open(traj_path) as f:
+ traj_lines = f.readlines()
+ for line in traj_lines:
+ tokens = line.split()
+ assert len(tokens) == 7
+ traj_timestamp = float(tokens[0])
+
+ timestamps_decimal_value = value_to_decimal(traj_timestamp, 3)
+ timestamps.append(
+ float(timestamps_decimal_value)
+ ) # for spline interpolation
+
+ angle_axis = [float(tokens[1]), float(tokens[2]), float(tokens[3])]
+ r_w_to_p, _ = cv2.Rodrigues(np.asarray(angle_axis))
+ t_w_to_p = np.asarray(
+ [float(tokens[4]), float(tokens[5]), float(tokens[6])]
+ )
+
+ pose_w_to_p = np.eye(4)
+ pose_w_to_p[:3, :3] = r_w_to_p
+ pose_w_to_p[:3, 3] = t_w_to_p
+
+ pose_p_to_w = np.linalg.inv(pose_w_to_p)
+
+ r_p_to_w_as_quat = quaternion.from_rotation_matrix(pose_p_to_w[:3, :3])
+ t_p_to_w = pose_p_to_w[:3, 3]
+ poses_p_to_w.append(pose_p_to_w)
+ poses.append(t_p_to_w)
+ quaternions.append(r_p_to_w_as_quat)
+ return timestamps, poses, quaternions, poses_p_to_w
+
+
+def main(rootdir, outdir):
+ os.makedirs(outdir, exist_ok=True)
+ subdirs = ["Validation", "Training"]
+ for subdir in subdirs:
+ outsubdir = osp.join(outdir, subdir)
+ scene_dirs = sorted(
+ [
+ d
+ for d in os.listdir(osp.join(rootdir, subdir))
+ if osp.isdir(osp.join(rootdir, subdir, d))
+ ]
+ )
+
+ with Pool() as pool:
+ results = list(
+ tqdm(
+ pool.imap(
+ process_scene,
+ [
+ (rootdir, outdir, subdir, scene_subdir)
+ for scene_subdir in scene_dirs
+ ],
+ ),
+ total=len(scene_dirs),
+ )
+ )
+
+ # Filter None results and other post-processing
+ valid_scenes = [result for result in results if result is not None]
+ outlistfile = osp.join(outsubdir, "scene_list.json")
+ with open(outlistfile, "w") as f:
+ json.dump(valid_scenes, f)
+
+
+def process_scene(args):
+ rootdir, outdir, subdir, scene_subdir = args
+ # Unpack paths
+ scene_dir = osp.join(rootdir, subdir, scene_subdir)
+ outsubdir = osp.join(outdir, subdir)
+ out_scene_subdir = osp.join(outsubdir, scene_subdir)
+
+ # Validation if necessary resources exist
+ if (
+ not osp.exists(osp.join(scene_dir, "highres_depth"))
+ or not osp.exists(osp.join(scene_dir, "vga_wide"))
+ or not osp.exists(osp.join(scene_dir, "vga_wide_intrinsics"))
+ or not osp.exists(osp.join(scene_dir, "lowres_wide.traj"))
+ ):
+ return None
+
+ depth_dir = osp.join(scene_dir, "highres_depth")
+ rgb_dir = osp.join(scene_dir, "vga_wide")
+ intrinsics_dir = osp.join(scene_dir, "vga_wide_intrinsics")
+ traj_path = osp.join(scene_dir, "lowres_wide.traj")
+
+ depth_files = sorted(os.listdir(depth_dir))
+ img_files = sorted(os.listdir(rgb_dir))
+
+ out_scene_subdir = osp.join(outsubdir, scene_subdir)
+
+ # STEP 3: parse the scene and export the list of valid (K, pose, rgb, depth) and convert images
+ scene_metadata_path = osp.join(out_scene_subdir, "scene_metadata.npz")
+ if osp.isfile(scene_metadata_path):
+ print(f"Skipping {scene_subdir}")
+ else:
+ print(f"parsing {scene_subdir}")
+ # loads traj
+ timestamps, poses, quaternions, poses_cam_to_world = read_traj(traj_path)
+
+ poses = np.array(poses)
+ quaternions = np.array(quaternions, dtype=np.quaternion)
+ quaternions = quaternion.unflip_rotors(quaternions)
+ timestamps = np.array(timestamps)
+
+ all_depths = sorted(
+ [
+ (basename, basename.split(".png")[0].split("_")[1])
+ for basename in depth_files
+ ],
+ key=lambda x: float(x[1]),
+ )
+
+ selected_depths = []
+ timestamps_selected = []
+ timestamp_min = timestamps.min()
+ timestamp_max = timestamps.max()
+ for basename, frame_id in all_depths:
+ frame_id = float(frame_id)
+ if frame_id < timestamp_min or frame_id > timestamp_max:
+ continue
+ selected_depths.append((basename, frame_id))
+ timestamps_selected.append(frame_id)
+
+ sky_direction_scene, trajectories, intrinsics, images, depths = (
+ convert_scene_metadata(
+ scene_subdir,
+ intrinsics_dir,
+ timestamps,
+ quaternions,
+ poses,
+ poses_cam_to_world,
+ img_files,
+ selected_depths,
+ timestamps_selected,
+ )
+ )
+
+ if len(images) == 0:
+ print(f"Skipping {scene_subdir}")
+ return None
+
+ os.makedirs(out_scene_subdir, exist_ok=True)
+
+ os.makedirs(os.path.join(out_scene_subdir, "vga_wide"), exist_ok=True)
+ os.makedirs(os.path.join(out_scene_subdir, "highres_depth"), exist_ok=True)
+ assert isinstance(sky_direction_scene, str)
+
+ for image_path, depth_path in zip(images, depths):
+ img_out = os.path.join(
+ out_scene_subdir, "vga_wide", image_path.replace(".png", ".jpg")
+ )
+ depth_out = os.path.join(out_scene_subdir, "highres_depth", depth_path)
+ if osp.isfile(img_out) and osp.isfile(depth_out):
+ continue
+
+ vga_wide_path = osp.join(rgb_dir, image_path)
+ depth_path = osp.join(depth_dir, depth_path)
+
+ if not osp.isfile(vga_wide_path) or not osp.isfile(depth_path):
+ continue
+
+ img = Image.open(vga_wide_path)
+ depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
+
+ # rotate the image
+ if sky_direction_scene == "RIGHT":
+ try:
+ img = img.transpose(Image.Transpose.ROTATE_90)
+ except Exception:
+ img = img.transpose(Image.ROTATE_90)
+ depth = cv2.rotate(depth, cv2.ROTATE_90_COUNTERCLOCKWISE)
+
+ elif sky_direction_scene == "LEFT":
+ try:
+ img = img.transpose(Image.Transpose.ROTATE_270)
+ except Exception:
+ img = img.transpose(Image.ROTATE_270)
+ depth = cv2.rotate(depth, cv2.ROTATE_90_CLOCKWISE)
+
+ elif sky_direction_scene == "DOWN":
+ try:
+ img = img.transpose(Image.Transpose.ROTATE_180)
+ except Exception:
+ img = img.transpose(Image.ROTATE_180)
+ depth = cv2.rotate(depth, cv2.ROTATE_180)
+
+ W, H = img.size
+ if not osp.isfile(img_out):
+ img.save(img_out)
+
+ depth = cv2.resize(depth, (W, H), interpolation=cv2.INTER_NEAREST)
+ if not osp.isfile(
+ depth_out
+ ): # avoid destroying the base dataset when you mess up the paths
+ cv2.imwrite(depth_out, depth)
+
+ # save at the end
+ np.savez(
+ scene_metadata_path,
+ trajectories=trajectories,
+ intrinsics=intrinsics,
+ images=images,
+ )
+
+
+def convert_scene_metadata(
+ scene_subdir,
+ intrinsics_dir,
+ timestamps,
+ quaternions,
+ poses,
+ poses_cam_to_world,
+ all_images,
+ selected_depths,
+ timestamps_selected,
+):
+ # find scene orientation
+ sky_direction_scene, rotated_to_cam = find_scene_orientation(poses_cam_to_world)
+
+ # find/compute pose for selected timestamps
+ # most images have a valid timestamp / exact pose associated
+ timestamps_selected = np.array(timestamps_selected)
+ spline = interpolate.interp1d(timestamps, poses, kind="linear", axis=0)
+ interpolated_rotations = quaternion.squad(
+ quaternions, timestamps, timestamps_selected
+ )
+ interpolated_positions = spline(timestamps_selected)
+
+ trajectories = []
+ intrinsics = []
+ images = []
+ depths = []
+ for i, (basename, frame_id) in enumerate(selected_depths):
+ intrinsic_fn = osp.join(intrinsics_dir, f"{scene_subdir}_{frame_id}.pincam")
+ search_interval = int(0.1 / 0.001)
+ for timestamp in range(-search_interval, search_interval + 1):
+ if osp.exists(intrinsic_fn):
+ break
+ intrinsic_fn = osp.join(
+ intrinsics_dir,
+ f"{scene_subdir}_{float(frame_id) + timestamp * 0.001:.3f}.pincam",
+ )
+ if not osp.exists(intrinsic_fn):
+ print(f"Skipping {intrinsic_fn}")
+ continue
+
+ image_path = "{}_{}.png".format(scene_subdir, frame_id)
+ search_interval = int(0.001 / 0.001)
+ for timestamp in range(-search_interval, search_interval + 1):
+ if image_path in all_images:
+ break
+ image_path = "{}_{}.png".format(
+ scene_subdir, float(frame_id) + timestamp * 0.001
+ )
+ if image_path not in all_images:
+ print(f"Skipping {scene_subdir} {frame_id}")
+ continue
+
+ w, h, fx, fy, hw, hh = np.loadtxt(intrinsic_fn) # PINHOLE
+
+ pose = np.eye(4)
+ pose[:3, :3] = quaternion.as_rotation_matrix(interpolated_rotations[i])
+ pose[:3, 3] = interpolated_positions[i]
+
+ images.append(basename)
+ depths.append(basename)
+ if sky_direction_scene == "RIGHT" or sky_direction_scene == "LEFT":
+ intrinsics.append([h, w, fy, fx, hh, hw]) # swapped intrinsics
+ else:
+ intrinsics.append([w, h, fx, fy, hw, hh])
+ trajectories.append(
+ pose @ rotated_to_cam
+ ) # pose_cam_to_world @ rotated_to_cam = rotated(cam) to world
+
+ return sky_direction_scene, trajectories, intrinsics, images, depths
+
+
+def find_scene_orientation(poses_cam_to_world):
+ if len(poses_cam_to_world) > 0:
+ up_vector = sum(get_up_vectors(p) for p in poses_cam_to_world) / len(
+ poses_cam_to_world
+ )
+ right_vector = sum(get_right_vectors(p) for p in poses_cam_to_world) / len(
+ poses_cam_to_world
+ )
+ up_world = np.array([[0.0], [0.0], [1.0], [0.0]])
+ else:
+ up_vector = np.array([[0.0], [-1.0], [0.0], [0.0]])
+ right_vector = np.array([[1.0], [0.0], [0.0], [0.0]])
+ up_world = np.array([[0.0], [0.0], [1.0], [0.0]])
+
+ # value between 0, 180
+ device_up_to_world_up_angle = (
+ np.arccos(np.clip(np.dot(np.transpose(up_world), up_vector), -1.0, 1.0)).item()
+ * 180.0
+ / np.pi
+ )
+ device_right_to_world_up_angle = (
+ np.arccos(
+ np.clip(np.dot(np.transpose(up_world), right_vector), -1.0, 1.0)
+ ).item()
+ * 180.0
+ / np.pi
+ )
+
+ up_closest_to_90 = abs(device_up_to_world_up_angle - 90.0) < abs(
+ device_right_to_world_up_angle - 90.0
+ )
+ if up_closest_to_90:
+ assert abs(device_up_to_world_up_angle - 90.0) < 45.0
+ # LEFT
+ if device_right_to_world_up_angle > 90.0:
+ sky_direction_scene = "LEFT"
+ cam_to_rotated_q = quaternion.from_rotation_vector(
+ [0.0, 0.0, math.pi / 2.0]
+ )
+ else:
+ # note that in metadata.csv RIGHT does not exist, but again it's not accurate...
+ # well, turns out there are scenes oriented like this
+ # for example Training/41124801
+ sky_direction_scene = "RIGHT"
+ cam_to_rotated_q = quaternion.from_rotation_vector(
+ [0.0, 0.0, -math.pi / 2.0]
+ )
+ else:
+ # right is close to 90
+ assert abs(device_right_to_world_up_angle - 90.0) < 45.0
+ if device_up_to_world_up_angle > 90.0:
+ sky_direction_scene = "DOWN"
+ cam_to_rotated_q = quaternion.from_rotation_vector([0.0, 0.0, math.pi])
+ else:
+ sky_direction_scene = "UP"
+ cam_to_rotated_q = quaternion.quaternion(1, 0, 0, 0)
+ cam_to_rotated = np.eye(4)
+ cam_to_rotated[:3, :3] = quaternion.as_rotation_matrix(cam_to_rotated_q)
+ rotated_to_cam = np.linalg.inv(cam_to_rotated)
+ return sky_direction_scene, rotated_to_cam
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ main(args.arkitscenes_dir, args.output_dir)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_bedlam.py b/extern/CUT3R/datasets_preprocess/preprocess_bedlam.py
new file mode 100644
index 0000000000000000000000000000000000000000..436fc3b30bbb17d348611c0770790958ca55be67
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_bedlam.py
@@ -0,0 +1,402 @@
+#!/usr/bin/env python3
+"""
+Process Bedlam scenes by computing camera intrinsics and extrinsics
+from extracted data. The script reads per-scene CSV and image/depth files,
+computes the necessary camera parameters, and saves the resulting camera
+files (as .npz files) in an output directory.
+
+Usage:
+ python preprocess_bedlam.py --root /path/to/extracted_data \
+ --outdir /path/to/processed_bedlam \
+ [--num_workers 4]
+"""
+
+import os
+import cv2
+import numpy as np
+import pandas as pd
+from glob import glob
+import shutil
+import OpenEXR # Ensure OpenEXR is installed
+from concurrent.futures import ProcessPoolExecutor, as_completed
+from tqdm import tqdm
+import argparse
+
+# Enable OpenEXR support in OpenCV.
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+
+# Global constants
+IMG_FORMAT = ".png"
+rotate_flag = False
+SENSOR_W = 36
+SENSOR_H = 20.25
+IMG_W = 1280
+IMG_H = 720
+
+# -----------------------------------------------------------------------------
+# Helper functions for camera parameter conversion
+# -----------------------------------------------------------------------------
+
+
+def focalLength_mm2px(focalLength, dslr_sens, focalPoint):
+ focal_pixel = (focalLength / dslr_sens) * focalPoint * 2
+ return focal_pixel
+
+
+def get_cam_int(fl, sens_w, sens_h, cx, cy):
+ flx = focalLength_mm2px(fl, sens_w, cx)
+ fly = focalLength_mm2px(fl, sens_h, cy)
+ cam_mat = np.array([[flx, 0, cx], [0, fly, cy], [0, 0, 1]])
+ return cam_mat
+
+
+def unreal2cv2(points):
+ # Permute coordinates: x --> y, y --> z, z --> x
+ points = np.roll(points, 2, axis=1)
+ # Invert the y-axis
+ points = points * np.array([1.0, -1.0, 1.0])
+ return points
+
+
+def get_cam_trans(body_trans, cam_trans):
+ cam_trans = np.array(cam_trans) / 100
+ cam_trans = unreal2cv2(np.reshape(cam_trans, (1, 3)))
+ body_trans = np.array(body_trans) / 100
+ body_trans = unreal2cv2(np.reshape(body_trans, (1, 3)))
+ trans = body_trans - cam_trans
+ return trans
+
+
+def get_cam_rotmat(pitch, yaw, roll):
+ rotmat_yaw, _ = cv2.Rodrigues(np.array([[0, (yaw / 180) * np.pi, 0]], dtype=float))
+ rotmat_pitch, _ = cv2.Rodrigues(np.array([pitch / 180 * np.pi, 0, 0]).reshape(3, 1))
+ rotmat_roll, _ = cv2.Rodrigues(np.array([0, 0, roll / 180 * np.pi]).reshape(3, 1))
+ final_rotmat = rotmat_roll @ (rotmat_pitch @ rotmat_yaw)
+ return final_rotmat
+
+
+def get_global_orient(cam_pitch, cam_yaw, cam_roll):
+ pitch_rotmat, _ = cv2.Rodrigues(
+ np.array([cam_pitch / 180 * np.pi, 0, 0]).reshape(3, 1)
+ )
+ roll_rotmat, _ = cv2.Rodrigues(
+ np.array([0, 0, cam_roll / 180 * np.pi]).reshape(3, 1)
+ )
+ final_rotmat = roll_rotmat @ pitch_rotmat
+ return final_rotmat
+
+
+def convert_translation_to_opencv(x, y, z):
+ t_cv = np.array([y, -z, x])
+ return t_cv
+
+
+def rotation_matrix_unreal(yaw, pitch, roll):
+ yaw_rad = np.deg2rad(yaw)
+ pitch_rad = np.deg2rad(pitch)
+ roll_rad = np.deg2rad(roll)
+ # Yaw (left-handed)
+ R_yaw = np.array(
+ [
+ [np.cos(-yaw_rad), -np.sin(-yaw_rad), 0],
+ [np.sin(-yaw_rad), np.cos(-yaw_rad), 0],
+ [0, 0, 1],
+ ]
+ )
+ # Pitch (right-handed)
+ R_pitch = np.array(
+ [
+ [np.cos(pitch_rad), 0, np.sin(pitch_rad)],
+ [0, 1, 0],
+ [-np.sin(pitch_rad), 0, np.cos(pitch_rad)],
+ ]
+ )
+ # Roll (right-handed)
+ R_roll = np.array(
+ [
+ [1, 0, 0],
+ [0, np.cos(roll_rad), -np.sin(roll_rad)],
+ [0, np.sin(roll_rad), np.cos(roll_rad)],
+ ]
+ )
+ R_unreal = R_roll @ R_pitch @ R_yaw
+ return R_unreal
+
+
+def convert_rotation_to_opencv(R_unreal):
+ # Transformation matrix from Unreal to OpenCV coordinate system.
+ C = np.array([[0, 1, 0], [0, 0, -1], [1, 0, 0]])
+ R_cv = C @ R_unreal @ C.T
+ return R_cv
+
+
+def get_rot_unreal(yaw, pitch, roll):
+ yaw_rad = np.deg2rad(yaw)
+ pitch_rad = np.deg2rad(pitch)
+ roll_rad = np.deg2rad(roll)
+ R_yaw = np.array(
+ [
+ [np.cos(yaw_rad), -np.sin(yaw_rad), 0],
+ [np.sin(yaw_rad), np.cos(yaw_rad), 0],
+ [0, 0, 1],
+ ]
+ )
+ R_pitch = np.array(
+ [
+ [np.cos(pitch_rad), 0, -np.sin(pitch_rad)],
+ [0, 1, 0],
+ [np.sin(pitch_rad), 0, np.cos(pitch_rad)],
+ ]
+ )
+ R_roll = np.array(
+ [
+ [1, 0, 0],
+ [0, np.cos(roll_rad), np.sin(roll_rad)],
+ [0, -np.sin(roll_rad), np.cos(roll_rad)],
+ ]
+ )
+ R_unreal = R_yaw @ R_pitch @ R_roll
+ return R_unreal
+
+
+def get_extrinsics_unreal(R_unreal, t_unreal):
+ cam_trans = np.array(t_unreal)
+ ext = np.eye(4)
+ ext[:3, :3] = R_unreal
+ ext[:3, 3] = cam_trans.reshape(1, 3)
+ return ext
+
+
+def get_extrinsics_opencv(yaw, pitch, roll, x, y, z):
+ R_unreal = get_rot_unreal(yaw, pitch, roll)
+ t_unreal = np.array([x / 100.0, y / 100.0, z / 100.0])
+ T_u2wu = get_extrinsics_unreal(R_unreal, t_unreal)
+ T_opencv2unreal = np.array(
+ [[0, 0, -1, 0], [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 0, 1]], dtype=np.float32
+ )
+ T_wu2ou = np.array(
+ [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=np.float32
+ )
+ return np.linalg.inv(T_opencv2unreal @ T_u2wu @ T_wu2ou)
+
+
+# -----------------------------------------------------------------------------
+# Get camera parameters from the extracted images and CSV data.
+# -----------------------------------------------------------------------------
+
+
+def get_params(
+ image_folder,
+ fl,
+ trans_body,
+ cam_x,
+ cam_y,
+ cam_z,
+ fps,
+ cam_pitch_,
+ cam_roll_,
+ cam_yaw_,
+):
+ all_images = sorted(glob(os.path.join(image_folder, "*" + IMG_FORMAT)))
+ imgnames, cam_ext, cam_int = [], [], []
+
+ for img_ind, image_path in enumerate(all_images):
+ # Process every 5th frame.
+ if img_ind % 5 != 0:
+ continue
+ cam_ind = img_ind
+
+ cam_pitch_ind = cam_pitch_[cam_ind]
+ cam_yaw_ind = cam_yaw_[cam_ind]
+ cam_roll_ind = cam_roll_[cam_ind]
+
+ CAM_INT = get_cam_int(fl[cam_ind], SENSOR_W, SENSOR_H, IMG_W / 2.0, IMG_H / 2.0)
+
+ rot_unreal = rotation_matrix_unreal(cam_yaw_ind, cam_pitch_ind, cam_roll_ind)
+ rot_cv = convert_rotation_to_opencv(rot_unreal)
+ trans_cv = convert_translation_to_opencv(
+ cam_x[cam_ind] / 100.0, cam_y[cam_ind] / 100.0, cam_z[cam_ind] / 100.0
+ )
+ cam_ext_ = np.eye(4)
+ cam_ext_[:3, :3] = rot_cv
+ # The camera pose is computed as the inverse of the transformed translation.
+ cam_ext_[:3, 3] = -rot_cv @ trans_cv
+
+ imgnames.append(
+ os.path.join(image_path.split("/")[-2], image_path.split("/")[-1])
+ )
+ cam_ext.append(cam_ext_)
+ cam_int.append(CAM_INT)
+ return imgnames, cam_ext, cam_int
+
+
+# -----------------------------------------------------------------------------
+# Processing per sequence.
+# -----------------------------------------------------------------------------
+
+
+def process_seq(args):
+ """
+ Process a single sequence task. For each image, load the corresponding
+ depth and image files, and save the computed camera intrinsics and the inverse
+ of the extrinsic matrix (i.e. the camera pose in world coordinates) as an NPZ file.
+ """
+ (
+ scene,
+ seq_name,
+ outdir,
+ image_folder_base,
+ depth_folder_base,
+ imgnames,
+ cam_ext,
+ cam_int,
+ ) = args
+
+ out_rgb_dir = os.path.join(outdir, '_'.join([scene, seq_name]), 'rgb')
+ out_depth_dir = os.path.join(outdir, '_'.join([scene, seq_name]), 'depth')
+ out_cam_dir = os.path.join(outdir, "_".join([scene, seq_name]), "cam")
+ os.makedirs(out_rgb_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ assert (
+ len(imgnames) == len(cam_ext) == len(cam_int)
+ ), f"Inconsistent lengths for {scene}_{seq_name}"
+ for imgname, ext, intr in zip(imgnames, cam_ext, cam_int):
+ depthname = imgname.replace(".png", "_depth.exr")
+ imgpath = os.path.join(image_folder_base, imgname)
+ depthpath = os.path.join(depth_folder_base, depthname)
+ depth= OpenEXR.File(depthpath).parts[0].channels['Depth'].pixels
+ depth = depth.astype(np.float32)/100.0
+
+ outimg_path = os.path.join(out_rgb_dir, os.path.basename(imgpath))
+ outdepth_path = os.path.join(out_depth_dir, os.path.basename(imgpath).replace('.png','.npy'))
+ outcam_path = os.path.join(
+ out_cam_dir, os.path.basename(imgpath).replace(".png", ".npz")
+ )
+
+ shutil.copy(imgpath, outimg_path)
+ np.save(outdepth_path, depth)
+ np.savez(outcam_path, intrinsics=intr, pose=np.linalg.inv(ext))
+ return None
+
+
+# -----------------------------------------------------------------------------
+# Main entry point.
+# -----------------------------------------------------------------------------
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Process Bedlam scenes: compute camera intrinsics and extrinsics, "
+ "and save processed camera files."
+ )
+ parser.add_argument(
+ "--root",
+ type=str,
+ required=True,
+ help="Root directory of the extracted data (scenes).",
+ )
+ parser.add_argument(
+ "--outdir", type=str, required=True, help="Output directory for processed data."
+ )
+ parser.add_argument(
+ "--num_workers",
+ type=int,
+ default=None,
+ help="Number of worker processes (default: os.cpu_count()//2).",
+ )
+ args = parser.parse_args()
+
+ root = args.root
+ outdir = args.outdir
+ num_workers = (
+ args.num_workers if args.num_workers is not None else (os.cpu_count() or 4) // 2
+ )
+
+ # Get scene directories from the root folder.
+ scenes = sorted(
+ [d for d in os.listdir(root) if os.path.isdir(os.path.join(root, d))]
+ )
+ # Exclude HDRI scenes.
+ hdri_scenes = [
+ "20221010_3_1000_batch01hand",
+ "20221017_3_1000_batch01hand",
+ "20221018_3-8_250_batch01hand",
+ "20221019_3_250_highbmihand",
+ ]
+ scenes = np.setdiff1d(scenes, hdri_scenes)
+
+ tasks = []
+ for scene in tqdm(scenes, desc="Collecting tasks"):
+ # Skip closeup scenes.
+ if "closeup" in scene:
+ continue
+ base_folder = os.path.join(root, scene)
+ image_folder_base = os.path.join(root, scene, "png")
+ depth_folder_base = os.path.join(root, scene, "depth")
+ csv_path = os.path.join(base_folder, "be_seq.csv")
+ if not os.path.exists(csv_path):
+ continue
+ csv_data = pd.read_csv(csv_path)
+ csv_data = csv_data.to_dict("list")
+ cam_csv_base = os.path.join(base_folder, "ground_truth", "camera")
+
+ # Look for a row in the CSV with a "sequence_name" comment.
+ for idx, comment in enumerate(csv_data.get("Comment", [])):
+ if "sequence_name" in comment:
+ seq_name = comment.split(";")[0].split("=")[-1]
+ cam_csv_path = os.path.join(cam_csv_base, seq_name + "_camera.csv")
+ if not os.path.exists(cam_csv_path):
+ continue
+ cam_csv_data = pd.read_csv(cam_csv_path)
+ cam_csv_data = cam_csv_data.to_dict("list")
+ cam_x = cam_csv_data["x"]
+ cam_y = cam_csv_data["y"]
+ cam_z = cam_csv_data["z"]
+ cam_yaw_ = cam_csv_data["yaw"]
+ cam_pitch_ = cam_csv_data["pitch"]
+ cam_roll_ = cam_csv_data["roll"]
+ fl = cam_csv_data["focal_length"]
+ image_folder = os.path.join(image_folder_base, seq_name)
+ trans_body = None # Not used here.
+ imgnames, cam_ext, cam_int = get_params(
+ image_folder,
+ fl,
+ trans_body,
+ cam_x,
+ cam_y,
+ cam_z,
+ 6,
+ cam_pitch_=cam_pitch_,
+ cam_roll_=cam_roll_,
+ cam_yaw_=cam_yaw_,
+ )
+ tasks.append(
+ (
+ scene,
+ seq_name,
+ outdir,
+ image_folder_base,
+ depth_folder_base,
+ imgnames,
+ cam_ext,
+ cam_int,
+ )
+ )
+ # Process only the first valid sequence for this scene.
+ break
+
+ # Process each task in parallel.
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ futures = {executor.submit(process_seq, task): task for task in tasks}
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc="Processing sequences"
+ ):
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_blendedmvs.py b/extern/CUT3R/datasets_preprocess/preprocess_blendedmvs.py
new file mode 100644
index 0000000000000000000000000000000000000000..099f2d62ed909f177a468d977778569636164b28
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_blendedmvs.py
@@ -0,0 +1,168 @@
+#!/usr/bin/env python3
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Preprocessing code for the BlendedMVS dataset
+# dataset at https://github.com/YoYo000/BlendedMVS
+# 1) Download BlendedMVS.zip
+# 2) Download BlendedMVS+.zip
+# 3) Download BlendedMVS++.zip
+# 4) Unzip everything in the same /path/to/tmp/blendedMVS/ directory
+# 5) python datasets_preprocess/preprocess_blendedMVS.py --blendedmvs_dir /path/to/tmp/blendedMVS/
+# --------------------------------------------------------
+import os
+import os.path as osp
+import re
+from tqdm import tqdm
+import numpy as np
+
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+import cv2
+
+import path_to_root # noqa
+from datasets_preprocess.utils.parallel import parallel_threads
+from datasets_preprocess.utils import cropping # noqa
+
+
+def get_parser():
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--blendedmvs_dir", required=True)
+ parser.add_argument("--precomputed_pairs", required=True)
+ parser.add_argument("--output_dir", default="data/blendedmvs_processed")
+ return parser
+
+
+def main(db_root, pairs_path, output_dir):
+ print(">> Listing all sequences")
+ sequences = [f for f in os.listdir(db_root) if len(f) == 24]
+ # should find 502 scenes
+ assert sequences, f"did not found any sequences at {db_root}"
+ print(f" (found {len(sequences)} sequences)")
+
+ for i, seq in enumerate(tqdm(sequences)):
+ out_dir = osp.join(output_dir, seq)
+ os.makedirs(out_dir, exist_ok=True)
+
+ # generate the crops
+ root = osp.join(db_root, seq)
+ cam_dir = osp.join(root, "cams")
+ func_args = [
+ (root, f[:-8], out_dir)
+ for f in os.listdir(cam_dir)
+ if not f.startswith("pair")
+ ]
+ parallel_threads(load_crop_and_save, func_args, star_args=True, leave=False)
+
+ # verify that all pairs are there
+ pairs = np.load(pairs_path)
+ for seqh, seql, img1, img2, score in tqdm(pairs):
+ for view_index in [img1, img2]:
+ impath = osp.join(
+ output_dir, f"{seqh:08x}{seql:016x}", f"{view_index:08n}.jpg"
+ )
+ assert osp.isfile(impath), f"missing image at {impath=}"
+
+ print(f">> Done, saved everything in {output_dir}/")
+
+
+def load_crop_and_save(root, img, out_dir):
+ if osp.isfile(osp.join(out_dir, img + ".npz")):
+ return # already done
+
+ # load everything
+ intrinsics_in, R_camin2world, t_camin2world = _load_pose(
+ osp.join(root, "cams", img + "_cam.txt")
+ )
+ color_image_in = cv2.cvtColor(
+ cv2.imread(osp.join(root, "blended_images", img + ".jpg"), cv2.IMREAD_COLOR),
+ cv2.COLOR_BGR2RGB,
+ )
+ depthmap_in = load_pfm_file(osp.join(root, "rendered_depth_maps", img + ".pfm"))
+
+ # do the crop
+ H, W = color_image_in.shape[:2]
+ assert H * 4 == W * 3
+ image, depthmap, intrinsics_out, R_in2out = _crop_image(
+ intrinsics_in, color_image_in, depthmap_in, (512, 384)
+ )
+
+ # write everything
+ image.save(osp.join(out_dir, img + ".jpg"), quality=80)
+ cv2.imwrite(osp.join(out_dir, img + ".exr"), depthmap)
+
+ # New camera parameters
+ R_camout2world = R_camin2world @ R_in2out.T
+ t_camout2world = t_camin2world
+ np.savez(
+ osp.join(out_dir, img + ".npz"),
+ intrinsics=intrinsics_out,
+ R_cam2world=R_camout2world,
+ t_cam2world=t_camout2world,
+ )
+
+
+def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(800, 800)):
+ image, depthmap, intrinsics_out = cropping.rescale_image_depthmap(
+ color_image_in, depthmap_in, intrinsics_in, resolution_out
+ )
+ R_in2out = np.eye(3)
+ return image, depthmap, intrinsics_out, R_in2out
+
+
+def _load_pose(path, ret_44=False):
+ f = open(path)
+ RT = np.loadtxt(f, skiprows=1, max_rows=4, dtype=np.float32)
+ assert RT.shape == (4, 4)
+ RT = np.linalg.inv(RT) # world2cam to cam2world
+
+ K = np.loadtxt(f, skiprows=2, max_rows=3, dtype=np.float32)
+ assert K.shape == (3, 3)
+
+ if ret_44:
+ return K, RT
+ return K, RT[:3, :3], RT[:3, 3] # , depth_uint8_to_f32
+
+
+def load_pfm_file(file_path):
+ with open(file_path, "rb") as file:
+ header = file.readline().decode("UTF-8").strip()
+
+ if header == "PF":
+ is_color = True
+ elif header == "Pf":
+ is_color = False
+ else:
+ raise ValueError("The provided file is not a valid PFM file.")
+
+ dimensions = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("UTF-8"))
+ if dimensions:
+ img_width, img_height = map(int, dimensions.groups())
+ else:
+ raise ValueError("Invalid PFM header format.")
+
+ endian_scale = float(file.readline().decode("UTF-8").strip())
+ if endian_scale < 0:
+ dtype = "= img_size * 3/4, and max dimension will be >= img_size"
+ ),
+ )
+ return parser
+
+
+def convert_ndc_to_pinhole(focal_length, principal_point, image_size):
+ focal_length = np.array(focal_length)
+ principal_point = np.array(principal_point)
+ image_size_wh = np.array([image_size[1], image_size[0]])
+ half_image_size = image_size_wh / 2
+ rescale = half_image_size.min()
+ principal_point_px = half_image_size - principal_point * rescale
+ focal_length_px = focal_length * rescale
+ fx, fy = focal_length_px[0], focal_length_px[1]
+ cx, cy = principal_point_px[0], principal_point_px[1]
+ K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32)
+ return K
+
+
+def opencv_from_cameras_projection(R, T, focal, p0, image_size):
+ R = torch.from_numpy(R)[None, :, :]
+ T = torch.from_numpy(T)[None, :]
+ focal = torch.from_numpy(focal)[None, :]
+ p0 = torch.from_numpy(p0)[None, :]
+ image_size = torch.from_numpy(image_size)[None, :]
+
+ R_pytorch3d = R.clone()
+ T_pytorch3d = T.clone()
+ focal_pytorch3d = focal
+ p0_pytorch3d = p0
+ T_pytorch3d[:, :2] *= -1
+ R_pytorch3d[:, :, :2] *= -1
+ tvec = T_pytorch3d
+ R = R_pytorch3d.permute(0, 2, 1)
+
+ # Retype the image_size correctly and flip to width, height.
+ image_size_wh = image_size.to(R).flip(dims=(1,))
+
+ # NDC to screen conversion.
+ scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0
+ scale = scale.expand(-1, 2)
+ c0 = image_size_wh / 2.0
+
+ principal_point = -p0_pytorch3d * scale + c0
+ focal_length = focal_pytorch3d * scale
+
+ camera_matrix = torch.zeros_like(R)
+ camera_matrix[:, :2, 2] = principal_point
+ camera_matrix[:, 2, 2] = 1.0
+ camera_matrix[:, 0, 0] = focal_length[:, 0]
+ camera_matrix[:, 1, 1] = focal_length[:, 1]
+ return R[0], tvec[0], camera_matrix[0]
+
+
+def get_set_list(category_dir, split, is_single_sequence_subset=False):
+ listfiles = os.listdir(osp.join(category_dir, "set_lists"))
+ if is_single_sequence_subset:
+ # not all objects have manyview_dev
+ subset_list_files = [f for f in listfiles if "manyview_dev" in f]
+ else:
+ subset_list_files = [f for f in listfiles if f"fewview_train" in f]
+
+ sequences_all = []
+ for subset_list_file in subset_list_files:
+ with open(osp.join(category_dir, "set_lists", subset_list_file)) as f:
+ subset_lists_data = json.load(f)
+ sequences_all.extend(subset_lists_data[split])
+
+ return sequences_all
+
+
+def prepare_sequences(
+ category,
+ co3d_dir,
+ output_dir,
+ img_size,
+ split,
+ min_quality,
+ max_num_sequences_per_object,
+ seed,
+ is_single_sequence_subset=False,
+):
+ random.seed(seed)
+ category_dir = osp.join(co3d_dir, category)
+ category_output_dir = osp.join(output_dir, category)
+ sequences_all = get_set_list(category_dir, split, is_single_sequence_subset)
+ sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all))
+
+ frame_file = osp.join(category_dir, "frame_annotations.jgz")
+ sequence_file = osp.join(category_dir, "sequence_annotations.jgz")
+
+ with gzip.open(frame_file, "r") as fin:
+ frame_data = json.loads(fin.read())
+ with gzip.open(sequence_file, "r") as fin:
+ sequence_data = json.loads(fin.read())
+
+ frame_data_processed = {}
+ for f_data in frame_data:
+ sequence_name = f_data["sequence_name"]
+ frame_data_processed.setdefault(sequence_name, {})[
+ f_data["frame_number"]
+ ] = f_data
+
+ good_quality_sequences = set()
+ for seq_data in sequence_data:
+ if seq_data["viewpoint_quality_score"] > min_quality:
+ good_quality_sequences.add(seq_data["sequence_name"])
+
+ sequences_numbers = [
+ seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences
+ ]
+ if len(sequences_numbers) < max_num_sequences_per_object:
+ selected_sequences_numbers = sequences_numbers
+ else:
+ selected_sequences_numbers = random.sample(
+ sequences_numbers, max_num_sequences_per_object
+ )
+
+ selected_sequences_numbers_dict = {
+ seq_name: [] for seq_name in selected_sequences_numbers
+ }
+ sequences_all = [
+ (seq_name, frame_number, filepath)
+ for seq_name, frame_number, filepath in sequences_all
+ if seq_name in selected_sequences_numbers_dict
+ ]
+
+ for seq_name, frame_number, filepath in tqdm(sequences_all):
+ frame_idx = int(filepath.split("/")[-1][5:-4])
+ selected_sequences_numbers_dict[seq_name].append(frame_idx)
+ mask_path = filepath.replace("images", "masks").replace(".jpg", ".png")
+ frame_data = frame_data_processed[seq_name][frame_number]
+ focal_length = frame_data["viewpoint"]["focal_length"]
+ principal_point = frame_data["viewpoint"]["principal_point"]
+ image_size = frame_data["image"]["size"]
+ K = convert_ndc_to_pinhole(focal_length, principal_point, image_size)
+ R, tvec, camera_intrinsics = opencv_from_cameras_projection(
+ np.array(frame_data["viewpoint"]["R"]),
+ np.array(frame_data["viewpoint"]["T"]),
+ np.array(focal_length),
+ np.array(principal_point),
+ np.array(image_size),
+ )
+
+ frame_data = frame_data_processed[seq_name][frame_number]
+ depth_path = os.path.join(co3d_dir, frame_data["depth"]["path"])
+ assert frame_data["depth"]["scale_adjustment"] == 1.0
+ image_path = os.path.join(co3d_dir, filepath)
+ mask_path_full = os.path.join(co3d_dir, mask_path)
+
+ input_rgb_image = PIL.Image.open(image_path).convert("RGB")
+ input_mask = plt.imread(mask_path_full)
+
+ with PIL.Image.open(depth_path) as depth_pil:
+ # the image is stored with 16-bit depth but PIL reads it as I (32 bit).
+ # we cast it to uint16, then reinterpret as float16, then cast to float32
+ input_depthmap = (
+ np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
+ .astype(np.float32)
+ .reshape((depth_pil.size[1], depth_pil.size[0]))
+ )
+ depth_mask = np.stack((input_depthmap, input_mask), axis=-1)
+ H, W = input_depthmap.shape
+
+ camera_intrinsics = camera_intrinsics.numpy()
+ cx, cy = camera_intrinsics[:2, 2].round().astype(int)
+ min_margin_x = min(cx, W - cx)
+ min_margin_y = min(cy, H - cy)
+
+ # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy)
+ l, t = cx - min_margin_x, cy - min_margin_y
+ r, b = cx + min_margin_x, cy + min_margin_y
+ crop_bbox = (l, t, r, b)
+ input_rgb_image, depth_mask, input_camera_intrinsics = (
+ cropping.crop_image_depthmap(
+ input_rgb_image, depth_mask, camera_intrinsics, crop_bbox
+ )
+ )
+
+ # try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384
+ scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8
+ output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
+ if max(output_resolution) < img_size:
+ # let's put the max dimension to img_size
+ scale_final = (img_size / max(H, W)) + 1e-8
+ output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
+
+ input_rgb_image, depth_mask, input_camera_intrinsics = (
+ cropping.rescale_image_depthmap(
+ input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution
+ )
+ )
+ input_depthmap = depth_mask[:, :, 0]
+ input_mask = depth_mask[:, :, 1]
+
+ # generate and adjust camera pose
+ camera_pose = np.eye(4, dtype=np.float32)
+ camera_pose[:3, :3] = R
+ camera_pose[:3, 3] = tvec
+ camera_pose = np.linalg.inv(camera_pose)
+
+ # save crop images and depth, metadata
+ save_img_path = os.path.join(output_dir, filepath)
+ save_depth_path = os.path.join(output_dir, frame_data["depth"]["path"])
+ save_mask_path = os.path.join(output_dir, mask_path)
+ os.makedirs(os.path.split(save_img_path)[0], exist_ok=True)
+ os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True)
+ os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True)
+
+ input_rgb_image.save(save_img_path)
+ scaled_depth_map = (input_depthmap / np.max(input_depthmap) * 65535).astype(
+ np.uint16
+ )
+ cv2.imwrite(save_depth_path, scaled_depth_map)
+ cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8))
+
+ save_meta_path = save_img_path.replace("jpg", "npz")
+ np.savez(
+ save_meta_path,
+ camera_intrinsics=input_camera_intrinsics,
+ camera_pose=camera_pose,
+ maximum_depth=np.max(input_depthmap),
+ )
+
+ return selected_sequences_numbers_dict
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ assert args.co3d_dir != args.output_dir
+ if args.category is None:
+ if args.single_sequence_subset:
+ categories = SINGLE_SEQUENCE_CATEGORIES
+ else:
+ categories = CATEGORIES
+ else:
+ categories = [args.category]
+ os.makedirs(args.output_dir, exist_ok=True)
+
+ for split in ["train", "test"]:
+ selected_sequences_path = os.path.join(
+ args.output_dir, f"selected_seqs_{split}.json"
+ )
+ if os.path.isfile(selected_sequences_path):
+ continue
+
+ all_selected_sequences = {}
+ for category in categories:
+ category_output_dir = osp.join(args.output_dir, category)
+ os.makedirs(category_output_dir, exist_ok=True)
+ category_selected_sequences_path = os.path.join(
+ category_output_dir, f"selected_seqs_{split}.json"
+ )
+ if os.path.isfile(category_selected_sequences_path):
+ with open(category_selected_sequences_path, "r") as fid:
+ category_selected_sequences = json.load(fid)
+ else:
+ print(f"Processing {split} - category = {category}")
+ category_selected_sequences = prepare_sequences(
+ category=category,
+ co3d_dir=args.co3d_dir,
+ output_dir=args.output_dir,
+ img_size=args.img_size,
+ split=split,
+ min_quality=args.min_quality,
+ max_num_sequences_per_object=args.num_sequences_per_object,
+ seed=args.seed + CATEGORIES_IDX[category],
+ is_single_sequence_subset=args.single_sequence_subset,
+ )
+ with open(category_selected_sequences_path, "w") as file:
+ json.dump(category_selected_sequences, file)
+
+ all_selected_sequences[category] = category_selected_sequences
+ with open(selected_sequences_path, "w") as file:
+ json.dump(all_selected_sequences, file)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_cop3d.py b/extern/CUT3R/datasets_preprocess/preprocess_cop3d.py
new file mode 100644
index 0000000000000000000000000000000000000000..b9d3203ba85a2471accb0e85fdf4bd29660c67e4
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_cop3d.py
@@ -0,0 +1,322 @@
+#!/usr/bin/env python3
+
+# --------------------------------------------------------
+# Script to pre-process the COP3D dataset.
+# Usage:
+# python3 preprocess_cop3d.py --cop3d_dir /path/to/cop3d \
+# --output_dir /path/to/processed_cop3d
+# --------------------------------------------------------
+
+import argparse
+import random
+import gzip
+import json
+import os
+import os.path as osp
+
+import torch
+import PIL.Image
+import numpy as np
+import cv2
+
+from tqdm.auto import tqdm
+import matplotlib.pyplot as plt
+
+import src.dust3r.datasets.utils.cropping as cropping
+
+# Define the object categories. (These are used for seeding.)
+CATEGORIES = ["cat", "dog"]
+CATEGORIES_IDX = {cat: i for i, cat in enumerate(CATEGORIES)}
+
+
+def get_parser():
+ """Set up the argument parser."""
+ parser = argparse.ArgumentParser(
+ description="Preprocess the CO3D dataset and output processed images, masks, and metadata."
+ )
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ default="",
+ help="Output directory for processed CO3D data.",
+ )
+ parser.add_argument(
+ "--cop3d_dir",
+ type=str,
+ default="",
+ help="Directory containing the raw CO3D data.",
+ )
+ parser.add_argument(
+ "--seed", type=int, default=42, help="Random seed for reproducibility."
+ )
+ parser.add_argument(
+ "--min_quality",
+ type=float,
+ default=0.5,
+ help="Minimum viewpoint quality score.",
+ )
+ parser.add_argument(
+ "--img_size",
+ type=int,
+ default=512,
+ help=(
+ "Lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size"
+ ),
+ )
+ return parser
+
+
+def convert_ndc_to_pinhole(focal_length, principal_point, image_size):
+ """Convert normalized device coordinates to a pinhole camera intrinsic matrix."""
+ focal_length = np.array(focal_length)
+ principal_point = np.array(principal_point)
+ image_size_wh = np.array([image_size[1], image_size[0]])
+ half_image_size = image_size_wh / 2
+ rescale = half_image_size.min()
+ principal_point_px = half_image_size - principal_point * rescale
+ focal_length_px = focal_length * rescale
+ fx, fy = focal_length_px[0], focal_length_px[1]
+ cx, cy = principal_point_px[0], principal_point_px[1]
+ K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32)
+ return K
+
+
+def opencv_from_cameras_projection(R, T, focal, p0, image_size):
+ """
+ Convert camera projection parameters from CO3D (NDC) to OpenCV coordinates.
+
+ Returns:
+ R, tvec, camera_matrix: OpenCV-style rotation matrix, translation vector, and intrinsic matrix.
+ """
+ R = torch.from_numpy(R)[None, :, :]
+ T = torch.from_numpy(T)[None, :]
+ focal = torch.from_numpy(focal)[None, :]
+ p0 = torch.from_numpy(p0)[None, :]
+ image_size = torch.from_numpy(image_size)[None, :]
+
+ # Convert to PyTorch3D convention.
+ R_pytorch3d = R.clone()
+ T_pytorch3d = T.clone()
+ focal_pytorch3d = focal
+ p0_pytorch3d = p0
+ T_pytorch3d[:, :2] *= -1
+ R_pytorch3d[:, :, :2] *= -1
+ tvec = T_pytorch3d
+ R = R_pytorch3d.permute(0, 2, 1)
+
+ # Retype image_size (flip to width, height).
+ image_size_wh = image_size.to(R).flip(dims=(1,))
+
+ # Compute scale and principal point.
+ scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0
+ scale = scale.expand(-1, 2)
+ c0 = image_size_wh / 2.0
+ principal_point = -p0_pytorch3d * scale + c0
+ focal_length = focal_pytorch3d * scale
+
+ camera_matrix = torch.zeros_like(R)
+ camera_matrix[:, :2, 2] = principal_point
+ camera_matrix[:, 2, 2] = 1.0
+ camera_matrix[:, 0, 0] = focal_length[:, 0]
+ camera_matrix[:, 1, 1] = focal_length[:, 1]
+ return R[0], tvec[0], camera_matrix[0]
+
+
+def get_set_list(category_dir, split):
+ """Obtain a list of sequences for a given category and split."""
+ listfiles = os.listdir(osp.join(category_dir, "set_lists"))
+ subset_list_files = [f for f in listfiles if "manyview" in f]
+ if len(subset_list_files) <= 0:
+ subset_list_files = [f for f in listfiles if "fewview" in f]
+
+ sequences_all = []
+ for subset_list_file in subset_list_files:
+ with open(osp.join(category_dir, "set_lists", subset_list_file)) as f:
+ subset_lists_data = json.load(f)
+ sequences_all.extend(subset_lists_data[split])
+ return sequences_all
+
+
+def prepare_sequences(
+ category, cop3d_dir, output_dir, img_size, split, min_quality, seed
+):
+ """
+ Process sequences for a given category and split.
+
+ This function loads per-frame and per-sequence annotations,
+ filters sequences based on quality, crops and rescales images,
+ and saves metadata for each frame.
+
+ Returns a dictionary mapping sequence names to lists of selected frame indices.
+ """
+ random.seed(seed)
+ category_dir = osp.join(cop3d_dir, category)
+ category_output_dir = osp.join(output_dir, category)
+ sequences_all = get_set_list(category_dir, split)
+
+ # Get unique sequence names.
+ sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all))
+
+ # Load frame and sequence annotation files.
+ frame_file = osp.join(category_dir, "frame_annotations.jgz")
+ sequence_file = osp.join(category_dir, "sequence_annotations.jgz")
+
+ with gzip.open(frame_file, "r") as fin:
+ frame_data = json.loads(fin.read())
+ with gzip.open(sequence_file, "r") as fin:
+ sequence_data = json.loads(fin.read())
+
+ # Organize frame annotations per sequence.
+ frame_data_processed = {}
+ for f_data in frame_data:
+ sequence_name = f_data["sequence_name"]
+ frame_data_processed.setdefault(sequence_name, {})[
+ f_data["frame_number"]
+ ] = f_data
+
+ # Select sequences with quality above the threshold.
+ good_quality_sequences = set()
+ for seq_data in sequence_data:
+ if seq_data["viewpoint_quality_score"] > min_quality:
+ good_quality_sequences.add(seq_data["sequence_name"])
+ sequences_numbers = [
+ seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences
+ ]
+ selected_sequences_numbers = sequences_numbers
+ selected_sequences_numbers_dict = {
+ seq_name: [] for seq_name in selected_sequences_numbers
+ }
+
+ # Filter frames to only those from selected sequences.
+ sequences_all = [
+ (seq_name, frame_number, filepath)
+ for seq_name, frame_number, filepath in sequences_all
+ if seq_name in selected_sequences_numbers_dict
+ ]
+
+ # Process each frame.
+ for seq_name, frame_number, filepath in tqdm(
+ sequences_all, desc="Processing frames"
+ ):
+ frame_idx = int(filepath.split("/")[-1][5:-4])
+ selected_sequences_numbers_dict[seq_name].append(frame_idx)
+ mask_path = filepath.replace("images", "masks").replace(".jpg", ".png")
+ frame_data_entry = frame_data_processed[seq_name][frame_number]
+ focal_length = frame_data_entry["viewpoint"]["focal_length"]
+ principal_point = frame_data_entry["viewpoint"]["principal_point"]
+ image_size = frame_data_entry["image"]["size"]
+ K = convert_ndc_to_pinhole(focal_length, principal_point, image_size)
+ R, tvec, camera_intrinsics = opencv_from_cameras_projection(
+ np.array(frame_data_entry["viewpoint"]["R"]),
+ np.array(frame_data_entry["viewpoint"]["T"]),
+ np.array(focal_length),
+ np.array(principal_point),
+ np.array(image_size),
+ )
+
+ # Load input image and mask.
+ image_path = osp.join(cop3d_dir, filepath)
+ mask_path_full = osp.join(cop3d_dir, mask_path)
+ input_rgb_image = PIL.Image.open(image_path).convert("RGB")
+ input_mask = plt.imread(mask_path_full)
+ H, W = input_mask.shape
+
+ camera_intrinsics = camera_intrinsics.numpy()
+ cx, cy = camera_intrinsics[:2, 2].round().astype(int)
+ min_margin_x = min(cx, W - cx)
+ min_margin_y = min(cy, H - cy)
+ l, t = cx - min_margin_x, cy - min_margin_y
+ r, b = cx + min_margin_x, cy + min_margin_y
+ crop_bbox = (l, t, r, b)
+
+ # Crop the image, mask, and adjust intrinsics.
+ input_rgb_image, input_mask, input_camera_intrinsics = (
+ cropping.crop_image_depthmap(
+ input_rgb_image, input_mask, camera_intrinsics, crop_bbox
+ )
+ )
+ scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8
+ output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
+ if max(output_resolution) < img_size:
+ scale_final = (img_size / max(H, W)) + 1e-8
+ output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
+ input_rgb_image, input_mask, input_camera_intrinsics = (
+ cropping.rescale_image_depthmap(
+ input_rgb_image, input_mask, input_camera_intrinsics, output_resolution
+ )
+ )
+
+ # Generate and adjust camera pose.
+ camera_pose = np.eye(4, dtype=np.float32)
+ camera_pose[:3, :3] = R
+ camera_pose[:3, 3] = tvec
+ camera_pose = np.linalg.inv(camera_pose)
+
+ # Save processed image and mask.
+ save_img_path = osp.join(output_dir, filepath)
+ save_mask_path = osp.join(output_dir, mask_path)
+ os.makedirs(osp.split(save_img_path)[0], exist_ok=True)
+ os.makedirs(osp.split(save_mask_path)[0], exist_ok=True)
+ input_rgb_image.save(save_img_path)
+ cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8))
+
+ # Save metadata (intrinsics and pose).
+ save_meta_path = save_img_path.replace("jpg", "npz")
+ np.savez(
+ save_meta_path,
+ camera_intrinsics=input_camera_intrinsics,
+ camera_pose=camera_pose,
+ )
+
+ return selected_sequences_numbers_dict
+
+
+def main():
+ parser = get_parser()
+ args = parser.parse_args()
+ assert (
+ args.cop3d_dir != args.output_dir
+ ), "Input and output directories must differ."
+ categories = CATEGORIES
+ os.makedirs(args.output_dir, exist_ok=True)
+
+ # Process each split separately.
+ for split in ["train", "test"]:
+ selected_sequences_path = osp.join(
+ args.output_dir, f"selected_seqs_{split}.json"
+ )
+ if os.path.isfile(selected_sequences_path):
+ continue
+
+ all_selected_sequences = {}
+ for category in categories:
+ category_output_dir = osp.join(args.output_dir, category)
+ os.makedirs(category_output_dir, exist_ok=True)
+ category_selected_sequences_path = osp.join(
+ category_output_dir, f"selected_seqs_{split}.json"
+ )
+ if os.path.isfile(category_selected_sequences_path):
+ with open(category_selected_sequences_path, "r") as fid:
+ category_selected_sequences = json.load(fid)
+ else:
+ print(f"Processing {split} - category = {category}")
+ category_selected_sequences = prepare_sequences(
+ category=category,
+ cop3d_dir=args.cop3d_dir,
+ output_dir=args.output_dir,
+ img_size=args.img_size,
+ split=split,
+ min_quality=args.min_quality,
+ seed=args.seed + CATEGORIES_IDX[category],
+ )
+ with open(category_selected_sequences_path, "w") as file:
+ json.dump(category_selected_sequences, file)
+
+ all_selected_sequences[category] = category_selected_sequences
+
+ with open(selected_sequences_path, "w") as file:
+ json.dump(all_selected_sequences, file)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_dl3dv.py b/extern/CUT3R/datasets_preprocess/preprocess_dl3dv.py
new file mode 100644
index 0000000000000000000000000000000000000000..434c6ce19bc569662515969e5e389e43b5c8e73f
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_dl3dv.py
@@ -0,0 +1,188 @@
+import argparse
+import random
+import gzip
+import json
+import os
+import sys
+
+import os.path as osp
+
+import torch
+import PIL.Image
+from PIL import Image
+import numpy as np
+import cv2
+
+from tqdm import tqdm
+import matplotlib.pyplot as plt
+import shutil
+from read_write_model import run
+
+import torch
+import torchvision
+
+
+def get_parser():
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--dl3dv_dir", default="../DL3DV-Dense/3K/") # TODO
+ parser.add_argument("--output_dir", default="../processed_dl3dv/3K/") # TODO
+ return parser
+
+
+from scipy.spatial.transform import Rotation as R
+
+
+def read_array(path):
+ with open(path, "rb") as fid:
+ width, height, channels = np.genfromtxt(
+ fid, delimiter="&", max_rows=1, usecols=(0, 1, 2), dtype=int
+ )
+ fid.seek(0)
+ num_delimiter = 0
+ byte = fid.read(1)
+ while True:
+ if byte == b"&":
+ num_delimiter += 1
+ if num_delimiter >= 3:
+ break
+ byte = fid.read(1)
+ array = np.fromfile(fid, np.float32)
+ array = array.reshape((width, height, channels), order="F")
+ return np.transpose(array, (1, 0, 2)).squeeze()
+
+
+def main(rootdir, outdir):
+ os.makedirs(outdir, exist_ok=True)
+
+ envs = [f for f in os.listdir(rootdir) if os.path.isdir(osp.join(rootdir, f))]
+ for env in tqdm(envs):
+ subseqs = [
+ f
+ for f in os.listdir(osp.join(rootdir, env))
+ if os.path.isdir(osp.join(rootdir, env, f)) and f.startswith("dense")
+ ]
+ for subseq in subseqs:
+ sparse_dir = osp.join(rootdir, env, subseq, "sparse")
+ images_dir = osp.join(rootdir, env, subseq, "images")
+ # depth_dir = osp.join(rootdir, env, subseq, "stereo", "depth_maps")
+ if (
+ (not os.path.exists(sparse_dir))
+ or (not os.path.exists(images_dir))
+ # or (not os.path.exists(depth_dir))
+ ):
+ continue
+ intrins_file = sparse_dir + "/cameras.txt"
+ poses_file = sparse_dir + "/images.txt"
+ if os.path.exists(intrins_file) and os.path.exists(poses_file):
+ continue
+ run(sparse_dir, sparse_dir)
+
+ cam_params = {}
+ with open(intrins_file, "r") as f:
+ for line in f:
+ if line.startswith("#"):
+ continue
+ parts = line.strip().split()
+ if len(parts) == 0:
+ continue
+ cam_id = int(parts[0])
+ fx = float(parts[4])
+ fy = float(parts[5])
+ cx = float(parts[6])
+ cy = float(parts[7])
+ cam_params[cam_id] = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
+
+ poses = []
+ images = []
+ intrinsics = []
+
+ with open(poses_file, "r") as f:
+ for i, line in enumerate(f):
+ if line.startswith("#"):
+ continue
+ parts = line.strip().split()
+ if len(parts) == 0:
+ continue
+ if "." in parts[0]:
+ continue
+
+ img_name = parts[-1]
+ w, x, y, z = map(float, parts[1:5])
+ R = np.array(
+ [
+ [
+ 1 - 2 * y * y - 2 * z * z,
+ 2 * x * y - 2 * z * w,
+ 2 * x * z + 2 * y * w,
+ ],
+ [
+ 2 * x * y + 2 * z * w,
+ 1 - 2 * x * x - 2 * z * z,
+ 2 * y * z - 2 * x * w,
+ ],
+ [
+ 2 * x * z - 2 * y * w,
+ 2 * y * z + 2 * x * w,
+ 1 - 2 * x * x - 2 * y * y,
+ ],
+ ]
+ )
+ tx, ty, tz = map(float, parts[5:8])
+ cam_id = int(parts[-2])
+ pose = np.eye(4)
+ pose[:3, :3] = R
+ pose[:3, 3] = [tx, ty, tz]
+ poses.append(np.linalg.inv(pose))
+ images.append(img_name)
+ intrinsics.append(cam_params[cam_id])
+
+ os.makedirs(osp.join(outdir, env, subseq), exist_ok=True)
+ os.makedirs(osp.join(outdir, env, subseq, "rgb"), exist_ok=True)
+ # os.makedirs(osp.join(outdir, env, subseq, "depth"), exist_ok=True)
+ os.makedirs(osp.join(outdir, env, subseq, "cam"), exist_ok=True)
+
+ for i, img_name in enumerate(tqdm(images)):
+ basename = img_name.split("/")[-1]
+ if os.path.exists(
+ osp.join(
+ outdir, env, subseq, "cam", basename.replace(".png", ".npz")
+ )
+ ):
+ print("Exist!")
+ continue
+ img_path = os.path.join(images_dir, img_name)
+ # depth_path = os.path.join(depth_dir, img_name + ".geometric.bin")
+ if not os.path.exists(depth_path) or not os.path.exists(img_path):
+ continue
+ try:
+ rgb = Image.open(img_path)
+ # depth = read_array(depth_path)
+ except:
+ continue
+ intrinsic = intrinsics[i]
+ pose = poses[i]
+
+ # save all
+
+ rgb.save(osp.join(outdir, env, subseq, "rgb", basename))
+ # np.save(
+ # osp.join(
+ # outdir, env, subseq, "depth", basename.replace(".png", ".npy")
+ # ),
+ # depth,
+ # )
+ np.savez(
+ osp.join(
+ outdir, env, subseq, "cam", basename.replace(".png", ".npz")
+ ),
+ intrinsic=intrinsic,
+ pose=pose,
+ )
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ main(args.dl3dv_dir, args.output_dir)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_dynamic_replica.py b/extern/CUT3R/datasets_preprocess/preprocess_dynamic_replica.py
new file mode 100644
index 0000000000000000000000000000000000000000..90b64133f41da31790b459499fec1de8398b737d
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_dynamic_replica.py
@@ -0,0 +1,344 @@
+#!/usr/bin/env python3
+"""
+Preprocess the Dynamic Replica dataset.
+
+This script reads frame annotations (stored in compressed JSON files),
+loads images, depth maps, optical flow, and camera parameters, and saves
+processed images, depth maps, flow files, and camera metadata (intrinsics and poses)
+to an output directory organized by split, sequence, and camera view.
+
+Usage:
+ python preprocess_dynamic_replica.py --root_dir /path/to/data_dynamic_replica \
+ --out_dir /path/to/processed_dynamic_replica \
+ [--splits train valid test] \
+ [--num_processes 8]
+"""
+
+import argparse
+import gzip
+import json
+import os
+import os.path as osp
+import re
+import shutil
+import time
+from collections import defaultdict
+from dataclasses import dataclass
+from multiprocessing import Pool, cpu_count
+from typing import List, Optional
+
+import cv2
+import matplotlib.pyplot as plt
+import numpy as np
+import PIL.Image
+import torch
+from PIL import Image
+from pytorch3d.implicitron.dataset.types import (
+ FrameAnnotation as ImplicitronFrameAnnotation,
+ load_dataclass,
+)
+from tqdm import tqdm
+import imageio
+
+# Enable OpenEXR support in OpenCV.
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+
+TAG_CHAR = np.array([202021.25], np.float32)
+
+
+def readFlow(fn):
+ """Read .flo file in Middlebury format."""
+ with open(fn, "rb") as f:
+ magic = np.fromfile(f, np.float32, count=1)
+ if 202021.25 != magic:
+ print("Magic number incorrect. Invalid .flo file")
+ return None
+ else:
+ w = np.fromfile(f, np.int32, count=1)
+ h = np.fromfile(f, np.int32, count=1)
+ data = np.fromfile(f, np.float32, count=2 * int(w) * int(h))
+ return np.resize(data, (int(h), int(w), 2))
+
+
+def readPFM(file):
+ with open(file, "rb") as f:
+ header = f.readline().rstrip()
+ if header == b"PF":
+ color = True
+ elif header == b"Pf":
+ color = False
+ else:
+ raise Exception("Not a PFM file.")
+
+ dim_match = re.match(rb"^(\d+)\s(\d+)\s$", f.readline())
+ if dim_match:
+ width, height = map(int, dim_match.groups())
+ else:
+ raise Exception("Malformed PFM header.")
+
+ scale = float(f.readline().rstrip())
+ endian = "<" if scale < 0 else ">"
+ if scale < 0:
+ scale = -scale
+
+ data = np.fromfile(f, endian + "f")
+ shape = (height, width, 3) if color else (height, width)
+ data = np.reshape(data, shape)
+ data = np.flipud(data)
+ return data
+
+
+def read_gen(file_name, pil=False):
+ ext = osp.splitext(file_name)[-1].lower()
+ if ext in [".png", ".jpeg", ".ppm", ".jpg"]:
+ return Image.open(file_name)
+ elif ext in [".bin", ".raw"]:
+ return np.load(file_name)
+ elif ext == ".flo":
+ return readFlow(file_name).astype(np.float32)
+ elif ext == ".pfm":
+ flow = readPFM(file_name).astype(np.float32)
+ return flow if len(flow.shape) == 2 else flow[:, :, :-1]
+ return []
+
+
+def _load_16big_png_depth(depth_png):
+ with Image.open(depth_png) as depth_pil:
+ depth = (
+ np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
+ .astype(np.float32)
+ .reshape((depth_pil.size[1], depth_pil.size[0]))
+ )
+ return depth
+
+
+@dataclass
+class DynamicReplicaFrameAnnotation(ImplicitronFrameAnnotation):
+ """A dataclass used to load annotations from .json for Dynamic Replica."""
+
+ camera_name: Optional[str] = None
+ instance_id_map_path: Optional[str] = None
+ flow_forward: Optional[str] = None
+ flow_forward_mask: Optional[str] = None
+ flow_backward: Optional[str] = None
+ flow_backward_mask: Optional[str] = None
+ trajectories: Optional[str] = None
+
+
+def _get_pytorch3d_camera(entry_viewpoint, image_size, scale: float):
+ """
+ Convert the camera parameters stored in an annotation to PyTorch3D convention.
+
+ Returns:
+ R, tvec, focal, principal_point
+ """
+ assert entry_viewpoint is not None
+ principal_point = torch.tensor(entry_viewpoint.principal_point, dtype=torch.float)
+ focal_length = torch.tensor(entry_viewpoint.focal_length, dtype=torch.float)
+ half_image_size_wh_orig = (
+ torch.tensor(list(reversed(image_size)), dtype=torch.float) / 2.0
+ )
+
+ fmt = entry_viewpoint.intrinsics_format
+ if fmt.lower() == "ndc_norm_image_bounds":
+ rescale = half_image_size_wh_orig
+ elif fmt.lower() == "ndc_isotropic":
+ rescale = half_image_size_wh_orig.min()
+ else:
+ raise ValueError(f"Unknown intrinsics format: {fmt}")
+
+ principal_point_px = half_image_size_wh_orig - principal_point * rescale
+ focal_length_px = focal_length * rescale
+
+ # Prepare rotation and translation for PyTorch3D
+ R = torch.tensor(entry_viewpoint.R, dtype=torch.float)
+ T = torch.tensor(entry_viewpoint.T, dtype=torch.float)
+ R_pytorch3d = R.clone()
+ T_pytorch3d = T.clone()
+ T_pytorch3d[..., :2] *= -1
+ R_pytorch3d[..., :, :2] *= -1
+ tvec = T_pytorch3d
+
+ return R, tvec, focal_length_px, principal_point_px
+
+
+# Global configuration for splits and output.
+SPLITS = ["train", "valid", "test"]
+# (You can override the default root and out_dir via command-line arguments.)
+
+
+def process_split_data(args):
+ """
+ Process all frames for a given split.
+
+ Reads the frame annotation file for the given split, groups frames per sequence
+ and camera, and for each frame loads the image, depth map, optical flows (if available),
+ computes the camera intrinsics and pose (using _get_pytorch3d_camera), and saves the data.
+ """
+ split, root_dir, out_dir = args
+ split_dir = osp.join(root_dir, split)
+ # The frame annotations are stored in a compressed json file.
+ frame_annotations_file = osp.join(split_dir, f"frame_annotations_{split}.jgz")
+ with gzip.open(frame_annotations_file, "rt", encoding="utf8") as zipfile:
+ frame_annots_list = load_dataclass(zipfile, List[DynamicReplicaFrameAnnotation])
+
+ # Group frames by sequence and camera.
+ seq_annot = defaultdict(lambda: defaultdict(list))
+ for frame_annot in frame_annots_list:
+ seq_annot[frame_annot.sequence_name][frame_annot.camera_name].append(
+ frame_annot
+ )
+
+ # Process each sequence.
+ for seq_name in tqdm(seq_annot.keys(), desc=f"Processing split '{split}'"):
+ # For each camera (e.g., 'left', 'right'), create output directories.
+ for cam in ["left", "right"]:
+ out_img_dir = osp.join(out_dir, split, seq_name, cam, "rgb")
+ out_depth_dir = osp.join(out_dir, split, seq_name, cam, "depth")
+ out_fflow_dir = osp.join(out_dir, split, seq_name, cam, "flow_forward")
+ out_bflow_dir = osp.join(out_dir, split, seq_name, cam, "flow_backward")
+ out_cam_dir = osp.join(out_dir, split, seq_name, cam, "cam")
+ os.makedirs(out_img_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_fflow_dir, exist_ok=True)
+ os.makedirs(out_bflow_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ for framedata in tqdm(
+ seq_annot[seq_name][cam], desc=f"Seq {seq_name} [{cam}]", leave=False
+ ):
+ timestamp = framedata.frame_timestamp
+ im_path = osp.join(split_dir, framedata.image.path)
+ depth_path = osp.join(split_dir, framedata.depth.path)
+ if framedata.flow_forward["path"]:
+ flow_forward_path = osp.join(
+ split_dir, framedata.flow_forward["path"]
+ )
+ flow_forward_mask_path = osp.join(
+ split_dir, framedata.flow_forward_mask["path"]
+ )
+ if framedata.flow_backward["path"]:
+ flow_backward_path = osp.join(
+ split_dir, framedata.flow_backward["path"]
+ )
+ flow_backward_mask_path = osp.join(
+ split_dir, framedata.flow_backward_mask["path"]
+ )
+
+ # Ensure required files exist.
+ assert os.path.isfile(im_path), im_path
+ assert os.path.isfile(depth_path), depth_path
+ if framedata.flow_forward["path"]:
+ assert os.path.isfile(flow_forward_path), flow_forward_path
+ assert os.path.isfile(
+ flow_forward_mask_path
+ ), flow_forward_mask_path
+ if framedata.flow_backward["path"]:
+ assert os.path.isfile(flow_backward_path), flow_backward_path
+ assert os.path.isfile(
+ flow_backward_mask_path
+ ), flow_backward_mask_path
+
+ viewpoint = framedata.viewpoint
+ # Load depth map.
+ depth = _load_16big_png_depth(depth_path)
+
+ # Process optical flow if available.
+ if framedata.flow_forward["path"]:
+ flow_forward = cv2.imread(flow_forward_path, cv2.IMREAD_UNCHANGED)
+ flow_forward_mask = cv2.imread(
+ flow_forward_mask_path, cv2.IMREAD_UNCHANGED
+ )
+ np.savez(
+ osp.join(out_fflow_dir, f"{timestamp}.npz"),
+ flow=flow_forward,
+ mask=flow_forward_mask,
+ )
+ if framedata.flow_backward["path"]:
+ flow_backward = cv2.imread(flow_backward_path, cv2.IMREAD_UNCHANGED)
+ flow_backward_mask = cv2.imread(
+ flow_backward_mask_path, cv2.IMREAD_UNCHANGED
+ )
+ np.savez(
+ osp.join(out_bflow_dir, f"{timestamp}.npz"),
+ flow=flow_backward,
+ mask=flow_backward_mask,
+ )
+
+ # Get camera parameters.
+ R, t, focal, pp = _get_pytorch3d_camera(
+ viewpoint, framedata.image.size, scale=1.0
+ )
+ intrinsics = np.eye(3)
+ intrinsics[0, 0] = focal[0].item()
+ intrinsics[1, 1] = focal[1].item()
+ intrinsics[0, 2] = pp[0].item()
+ intrinsics[1, 2] = pp[1].item()
+ pose = np.eye(4)
+ # Invert the camera pose.
+ pose[:3, :3] = R.numpy().T
+ pose[:3, 3] = -R.numpy().T @ t.numpy()
+
+ # Define output file paths.
+ out_img_path = osp.join(out_img_dir, f"{timestamp}.png")
+ out_depth_path = osp.join(out_depth_dir, f"{timestamp}.npy")
+ out_cam_path = osp.join(out_cam_dir, f"{timestamp}.npz")
+
+ # Copy RGB image.
+ shutil.copy(im_path, out_img_path)
+ # Save depth.
+ np.save(out_depth_path, depth)
+ # Save camera metadata.
+ np.savez(out_cam_path, intrinsics=intrinsics, pose=pose)
+ # (Optionally, you could return some summary information.)
+ return None
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Preprocess Dynamic Replica dataset: convert raw annotations, images, "
+ "depth, and flow files to a processed format."
+ )
+ parser.add_argument(
+ "--root_dir",
+ type=str,
+ required=True,
+ help="Root directory of the Dynamic Replica data.",
+ )
+ parser.add_argument(
+ "--out_dir",
+ type=str,
+ required=True,
+ help="Output directory for processed data.",
+ )
+ parser.add_argument(
+ "--splits",
+ type=str,
+ nargs="+",
+ default=SPLITS,
+ help="List of splits to process (default: train valid test).",
+ )
+ parser.add_argument(
+ "--num_processes",
+ type=int,
+ default=cpu_count(),
+ help="Number of processes to use (default: number of CPU cores).",
+ )
+ args = parser.parse_args()
+
+ os.makedirs(args.out_dir, exist_ok=True)
+ tasks = [(split, args.root_dir, args.out_dir) for split in args.splits]
+
+ print("Processing splits:", args.splits)
+ with Pool(processes=args.num_processes) as pool:
+ list(
+ tqdm(
+ pool.imap(process_split_data, tasks),
+ total=len(tasks),
+ desc="Overall Progress",
+ )
+ )
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_eden.py b/extern/CUT3R/datasets_preprocess/preprocess_eden.py
new file mode 100644
index 0000000000000000000000000000000000000000..d2705c04ad9eb8dc54b81cb68722f5604984c327
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_eden.py
@@ -0,0 +1,181 @@
+#!/usr/bin/env python3
+"""
+Preprocess the Eden dataset.
+
+This script processes the Eden dataset by copying RGB images, converting depth
+data from .mat files to .npy format, and saving camera intrinsics from .mat files
+into a structured output directory. Files are processed in parallel using
+a ProcessPoolExecutor.
+
+Usage:
+ python preprocess_eden.py --root /path/to/data_raw_videos/data_eden \
+ --out_dir /path/to/data_raw_videos/processed_eden \
+ [--num_workers N]
+"""
+
+import os
+import shutil
+import scipy.io
+import numpy as np
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor, as_completed
+import argparse
+
+
+def process_basename(args):
+ """
+ Process a single basename: load the corresponding image, depth, and camera
+ intrinsics files, then copy/save them into the output directories.
+
+ Parameters:
+ args (tuple): Contains (seq, basename, rgb_dir, depth_dir, cam_dir,
+ out_rgb_dir, out_depth_dir, out_cam_dir)
+ Returns:
+ None on success or an error message string on failure.
+ """
+ (
+ seq,
+ basename,
+ rgb_dir,
+ depth_dir,
+ cam_dir,
+ out_rgb_dir,
+ out_depth_dir,
+ out_cam_dir,
+ ) = args
+ # Define output paths.
+ out_img_path = os.path.join(out_rgb_dir, f"{basename}.png")
+ out_depth_path = os.path.join(out_depth_dir, f"{basename}.npy")
+ out_cam_path = os.path.join(out_cam_dir, f"{basename}.npz")
+
+ # Skip processing if the camera file has already been saved.
+ if os.path.exists(out_cam_path):
+ return None
+
+ try:
+ cam_type = "L"
+ img_file = os.path.join(rgb_dir, f"{basename}_{cam_type}.png")
+ depth_file = os.path.join(depth_dir, f"{basename}_{cam_type}.mat")
+ cam_file = os.path.join(cam_dir, f"{basename}.mat")
+
+ # Check if the required files exist.
+ if not (
+ os.path.exists(img_file)
+ and os.path.exists(depth_file)
+ and os.path.exists(cam_file)
+ ):
+ return f"Missing files for {basename} in {seq}"
+
+ # Load depth data.
+ depth_mat = scipy.io.loadmat(depth_file)
+ depth = depth_mat.get("Depth")
+ if depth is None:
+ return f"Depth data missing in {depth_file}"
+ depth = depth[..., 0]
+
+ # Load camera intrinsics.
+ cam_mat = scipy.io.loadmat(cam_file)
+ intrinsics = cam_mat.get(f"K_{cam_type}")
+ if intrinsics is None:
+ return f"Intrinsics data missing in {cam_file}"
+
+ # Copy the RGB image.
+ shutil.copyfile(img_file, out_img_path)
+ # Save the depth data.
+ np.save(out_depth_path, depth)
+ # Save the camera intrinsics.
+ np.savez(out_cam_path, intrinsics=intrinsics)
+
+ except Exception as e:
+ return f"Error processing {basename} in {seq}: {e}"
+
+ return None # Indicate success.
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Preprocess Eden dataset: copy RGB images, process depth maps, and save camera intrinsics."
+ )
+ parser.add_argument(
+ "--root", type=str, default="", help="Root directory of the raw Eden data."
+ )
+ parser.add_argument(
+ "--out_dir",
+ type=str,
+ default="",
+ help="Output directory for processed Eden data.",
+ )
+ parser.add_argument(
+ "--num_workers",
+ type=int,
+ default=os.cpu_count(),
+ help="Number of worker processes to use.",
+ )
+ args = parser.parse_args()
+
+ root = args.root
+ out_dir = args.out_dir
+ # Modes typically found in the Eden dataset.
+ modes = ["clear", "cloudy", "overcast", "sunset", "twilight"]
+
+ rgb_root = os.path.join(root, "RGB")
+ depth_root = os.path.join(root, "Depth")
+ cam_root = os.path.join(root, "cam_matrix")
+
+ # Collect sequence directories by traversing the RGB root.
+ seq_dirs = []
+ for d in os.listdir(rgb_root):
+ for m in modes:
+ seq_path = os.path.join(rgb_root, d, m)
+ if os.path.isdir(seq_path):
+ # Save the relative path (e.g., "d/m").
+ seq_dirs.append(os.path.join(d, m))
+
+ all_tasks = []
+ for seq in seq_dirs:
+ rgb_dir = os.path.join(rgb_root, seq)
+ depth_dir = os.path.join(depth_root, seq)
+ cam_dir = os.path.join(cam_root, seq)
+
+ # Create output directories for this sequence.
+ # Replace any os.sep in the sequence name with an underscore.
+ seq_name = "_".join(seq.split(os.sep))
+ out_rgb_dir = os.path.join(out_dir, seq_name, "rgb")
+ out_depth_dir = os.path.join(out_dir, seq_name, "depth")
+ out_cam_dir = os.path.join(out_dir, seq_name, "cam")
+ os.makedirs(out_rgb_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ # Get basenames from the camera directory (assuming file extension .mat).
+ basenames = sorted([d[:-4] for d in os.listdir(cam_dir) if d.endswith(".mat")])
+
+ for basename in basenames:
+ task = (
+ seq,
+ basename,
+ rgb_dir,
+ depth_dir,
+ cam_dir,
+ out_rgb_dir,
+ out_depth_dir,
+ out_cam_dir,
+ )
+ all_tasks.append(task)
+
+ num_workers = args.num_workers
+ print(f"Processing {len(all_tasks)} tasks using {num_workers} workers...")
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ futures = {
+ executor.submit(process_basename, task): task[1] for task in all_tasks
+ }
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc="Processing tasks"
+ ):
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_hoi4d.py b/extern/CUT3R/datasets_preprocess/preprocess_hoi4d.py
new file mode 100644
index 0000000000000000000000000000000000000000..480e3f822c766ed9c8af547c5b16d4e34ad66938
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_hoi4d.py
@@ -0,0 +1,175 @@
+#!/usr/bin/env python3
+"""
+HOI4D Preprocessing Script
+
+This script processes HOI4D data by:
+ 1. Searching specific subdirectories for RGB and depth images.
+ 2. Reading camera intrinsics from a .npy file (one per high-level scene).
+ 3. Rescaling the RGB images and depth maps to a fixed output resolution
+ (e.g., 640x480) using the 'cropping' module.
+ 4. Saving results (RGB, .npy depth, .npz camera intrinsics) in a new directory structure.
+
+Usage:
+ python preprocess_hoi4d.py \
+ --root_dir /path/to/HOI4D_release \
+ --cam_root /path/to/camera_params \
+ --out_dir /path/to/processed_hoi4d
+"""
+
+import os
+import glob
+import cv2
+import numpy as np
+from PIL import Image
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor
+import argparse
+
+import src.dust3r.datasets.utils.cropping as cropping
+
+def parse_arguments():
+ """
+ Parse command-line arguments for HOI4D preprocessing.
+
+ Returns:
+ argparse.Namespace: The parsed arguments.
+ """
+ parser = argparse.ArgumentParser(
+ description="Preprocess HOI4D dataset by rescaling RGB and depth images."
+ )
+ parser.add_argument("--root_dir", required=True,
+ help="Path to the HOI4D_release directory.")
+ parser.add_argument("--cam_root", required=True,
+ help="Path to the directory containing camera intrinsics.")
+ parser.add_argument("--out_dir", required=True,
+ help="Path to the directory where processed files will be saved.")
+ parser.add_argument("--max_workers", type=int, default=None,
+ help="Number of parallel workers. Default uses half of available CPU cores.")
+ args = parser.parse_args()
+ return args
+
+def process_image(args):
+ """
+ Process a single image and depth map:
+ - Loads the image (using PIL) and depth (using OpenCV).
+ - Converts depth from mm to meters (divided by 1000).
+ - Rescales both using 'cropping.rescale_image_depthmap'.
+ - Saves the rescaled image (.png), depth (.npy), and camera intrinsics (.npz).
+
+ Args:
+ args (tuple): A tuple of:
+ (img_path, depth_path, out_img_path, out_depth_path, out_cam_path, intrinsics)
+
+ Returns:
+ None. Errors are printed to the console but do not stop the workflow.
+ """
+ img_path, depth_path, out_img_path, out_depth_path, out_cam_path, intrinsics = args
+
+ try:
+ # Load image
+ img = Image.open(img_path)
+
+ # Load depth (in mm) and convert to meters
+ depth = cv2.imread(depth_path, cv2.IMREAD_ANYDEPTH)
+ if depth is None:
+ raise ValueError(f"Could not read depth image: {depth_path}")
+ depth = depth.astype(np.float32) / 1000.0
+
+ # Rescale image and depth map
+ img_rescaled, depth_rescaled, intrinsics_rescaled = cropping.rescale_image_depthmap(
+ img, depth, intrinsics.copy(), (640, 480)
+ )
+
+ # Save processed data
+ img_rescaled.save(out_img_path) # PNG image
+ np.save(out_depth_path, depth_rescaled) # Depth .npy
+ np.savez(out_cam_path, intrinsics=intrinsics_rescaled)
+
+ except Exception as e:
+ print(f"Error processing {img_path}: {e}")
+
+def main():
+ args = parse_arguments()
+
+ root = args.root_dir
+ cam_root = args.cam_root
+ out_dir = args.out_dir
+ if not os.path.exists(out_dir):
+ os.makedirs(out_dir, exist_ok=True)
+
+ # Collect a list of subdirectories using a glob pattern
+ # e.g.: root/ZY2021*/H*/C*/N*/S*/s*/T*
+ scene_dirs = glob.glob(os.path.join(root, "ZY2021*", "H*", "C*", "N*", "S*", "s*", "T*"))
+
+ # Build tasks
+ tasks = []
+ for scene_dir in tqdm(scene_dirs, desc="Collecting scenes"):
+ # Build an output sub-directory name
+ # Example: "ZY202101/H1/C1/N1/S1/s1/T1" -> "ZY202101_H1_C1_N1_S1_s1_T1"
+ scene_relpath = os.path.relpath(scene_dir, root)
+ scene_name = "_".join(scene_relpath.split(os.sep))
+
+ # Load camera intrinsics from a .npy file in cam_root
+ # e.g., first token of scene_relpath might point to the relevant .npy
+ # "ZY202101" -> "cam_root/ZY202101/intrin.npy" (adjust logic as needed)
+ top_level = scene_relpath.split(os.sep)[0]
+ cam_file = os.path.join(cam_root, top_level, "intrin.npy")
+ if not os.path.isfile(cam_file):
+ print(f"Warning: Camera file not found: {cam_file}. Skipping {scene_dir}")
+ continue
+ intrinsics = np.load(cam_file)
+
+ # Directories for this sequence
+ rgb_dir = os.path.join(scene_dir, "align_rgb")
+ depth_dir = os.path.join(scene_dir, "align_depth")
+
+ # Output directories
+ out_rgb_dir = os.path.join(out_dir, scene_name, "rgb")
+ out_depth_dir = os.path.join(out_dir, scene_name, "depth")
+ out_cam_dir = os.path.join(out_dir, scene_name, "cam")
+ os.makedirs(out_rgb_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ # Find all image paths
+ img_paths = sorted(glob.glob(os.path.join(rgb_dir, "*.jpg")))
+
+ # Build tasks for each image
+ for img_path in img_paths:
+ basename = os.path.splitext(os.path.basename(img_path))[0]
+ depth_path = os.path.join(depth_dir, f"{basename}.png")
+
+ out_img_path = os.path.join(out_rgb_dir, f"{basename}.png")
+ out_depth_path = os.path.join(out_depth_dir, f"{basename}.npy")
+ out_cam_path = os.path.join(out_cam_dir, f"{basename}.npz")
+
+ # Skip if already processed
+ if (os.path.exists(out_img_path) and os.path.exists(out_depth_path) and
+ os.path.exists(out_cam_path)):
+ continue
+
+ task = (
+ img_path,
+ depth_path,
+ out_img_path,
+ out_depth_path,
+ out_cam_path,
+ intrinsics
+ )
+ tasks.append(task)
+
+ # Process tasks in parallel
+ max_workers = args.max_workers
+ if max_workers is None:
+ max_workers = max(1, os.cpu_count() // 2)
+
+ with ProcessPoolExecutor(max_workers=max_workers) as executor:
+ list(tqdm(
+ executor.map(process_image, tasks),
+ total=len(tasks),
+ desc="Processing images"
+ ))
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_hypersim.py b/extern/CUT3R/datasets_preprocess/preprocess_hypersim.py
new file mode 100644
index 0000000000000000000000000000000000000000..c00fcd7fe903f74669c2d89f1d0828e19cb219b0
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_hypersim.py
@@ -0,0 +1,268 @@
+#!/usr/bin/env python3
+"""
+Preprocess the Hypersim dataset.
+
+This script reads camera parameters from a CSV file, converts an OpenGL-style
+projection matrix into a camera intrinsic matrix, applies tone mapping, and
+saves processed RGB images, depth maps, and camera metadata into an output
+directory. Processing is done per scene and per camera view.
+
+Usage:
+ python preprocess_hypersim.py --hypersim_dir /path/to/hypersim \
+ --output_dir /path/to/processed_hypersim
+"""
+
+import argparse
+import os
+import shutil
+import time
+
+import cv2
+import h5py
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+from PIL import Image
+from tqdm import tqdm
+
+# Ensure OpenEXR support for OpenCV.
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+
+
+def get_parser():
+ parser = argparse.ArgumentParser(
+ description="Preprocess the Hypersim dataset by converting projection "
+ "matrices, applying tone mapping, and saving processed outputs."
+ )
+ parser.add_argument(
+ "--hypersim_dir",
+ default="/path/to/hypersim",
+ help="Root directory of the Hypersim dataset.",
+ )
+ parser.add_argument(
+ "--output_dir",
+ default="/path/to/processed_hypersim",
+ help="Output directory for processed Hypersim data.",
+ )
+ return parser
+
+
+def opengl_to_intrinsics(proj_matrix, width_pixels, height_pixels):
+ # Extract parameters from the projection matrix.
+ K00 = proj_matrix[0, 0] * width_pixels / 2.0
+ K01 = -proj_matrix[0, 1] * width_pixels / 2.0
+ K02 = (1.0 - proj_matrix[0, 2]) * width_pixels / 2.0
+ K11 = proj_matrix[1, 1] * height_pixels / 2.0
+ K12 = (1.0 + proj_matrix[1, 2]) * height_pixels / 2.0
+ return np.array([[K00, K01, K02], [0.0, K11, K12], [0.0, 0.0, 1.0]])
+
+
+def process_scene(args):
+ rootdir, outdir, scene_name = args
+ scene_outdir = os.path.join(outdir, scene_name)
+ os.makedirs(scene_outdir, exist_ok=True)
+ seq_dir = os.path.join(rootdir, scene_name)
+ seq_detail_dir = os.path.join(seq_dir, "_detail")
+ seq_images_dir = os.path.join(seq_dir, "images")
+
+ # Read global camera parameters from the CSV file.
+ all_metafile = os.path.join(rootdir, "metadata_camera_parameters.csv")
+ df_camera_parameters = pd.read_csv(all_metafile, index_col="scene_name")
+ df_ = df_camera_parameters.loc[scene_name]
+
+ width_pixels = int(df_["settings_output_img_width"])
+ height_pixels = int(df_["settings_output_img_height"])
+
+ M_proj = np.array(
+ [
+ [df_["M_proj_00"], df_["M_proj_01"], df_["M_proj_02"], df_["M_proj_03"]],
+ [df_["M_proj_10"], df_["M_proj_11"], df_["M_proj_12"], df_["M_proj_13"]],
+ [df_["M_proj_20"], df_["M_proj_21"], df_["M_proj_22"], df_["M_proj_23"]],
+ [df_["M_proj_30"], df_["M_proj_31"], df_["M_proj_32"], df_["M_proj_33"]],
+ ]
+ )
+
+ camera_intrinsics = opengl_to_intrinsics(
+ M_proj, width_pixels, height_pixels
+ ).astype(np.float32)
+ if camera_intrinsics[0, 1] != 0:
+ print(f"camera_intrinsics[0, 1] != 0: {camera_intrinsics[0, 1]}")
+ return
+
+ # Read world scale and camera IDs.
+ worldscale = (
+ pd.read_csv(
+ os.path.join(seq_detail_dir, "metadata_scene.csv"),
+ index_col="parameter_name",
+ )
+ .to_numpy()
+ .flatten()[0]
+ .astype(np.float32)
+ )
+ camera_ids = (
+ pd.read_csv(
+ os.path.join(seq_detail_dir, "metadata_cameras.csv"),
+ header=None,
+ skiprows=1,
+ )
+ .to_numpy()
+ .flatten()
+ )
+
+ # Tone mapping parameters.
+ gamma = 1.0 / 2.2 # Standard gamma correction exponent.
+ inv_gamma = 1.0 / gamma
+ percentile = 90 # Desired percentile brightness in the unmodified image.
+ brightness_nth_percentile_desired = 0.8 # Desired brightness after scaling.
+
+ for camera_id in camera_ids:
+ subscene_dir = os.path.join(scene_outdir, f"{camera_id}")
+ os.makedirs(subscene_dir, exist_ok=True)
+ camera_dir = os.path.join(seq_detail_dir, camera_id)
+ if not os.path.exists(camera_dir):
+ print(f"{camera_dir} does not exist.")
+ continue
+ color_dir = os.path.join(seq_images_dir, f"scene_{camera_id}_final_hdf5")
+ geometry_dir = os.path.join(seq_images_dir, f"scene_{camera_id}_geometry_hdf5")
+ if not (os.path.exists(color_dir) and os.path.exists(geometry_dir)):
+ print(f"{color_dir} or {geometry_dir} does not exist.")
+ continue
+
+ camera_positions_hdf5_file = os.path.join(
+ camera_dir, "camera_keyframe_positions.hdf5"
+ )
+ camera_orientations_hdf5_file = os.path.join(
+ camera_dir, "camera_keyframe_orientations.hdf5"
+ )
+
+ with h5py.File(camera_positions_hdf5_file, "r") as f:
+ camera_positions = f["dataset"][:]
+ with h5py.File(camera_orientations_hdf5_file, "r") as f:
+ camera_orientations = f["dataset"][:]
+
+ assert len(camera_positions) == len(
+ camera_orientations
+ ), f"len(camera_positions)={len(camera_positions)} != len(camera_orientations)={len(camera_orientations)}"
+
+ rgbs = sorted([f for f in os.listdir(color_dir) if f.endswith(".color.hdf5")])
+ depths = sorted(
+ [f for f in os.listdir(geometry_dir) if f.endswith(".depth_meters.hdf5")]
+ )
+ assert len(rgbs) == len(
+ depths
+ ), f"len(rgbs)={len(rgbs)} != len(depths)={len(depths)}"
+ exist_frame_ids = [int(f.split(".")[1]) for f in rgbs]
+ valid_camera_positions = camera_positions[exist_frame_ids]
+ valid_camera_orientations = camera_orientations[exist_frame_ids]
+
+ for i, (rgb, depth) in enumerate(tqdm(zip(rgbs, depths), total=len(rgbs))):
+ frame_id = int(rgb.split(".")[1])
+ assert frame_id == int(
+ depth.split(".")[1]
+ ), f"frame_id={frame_id} != {int(depth.split('.')[1])}"
+ # Tone mapping.
+ render_entity = os.path.join(
+ geometry_dir,
+ depth.replace("depth_meters.hdf5", "render_entity_id.hdf5"),
+ )
+ with h5py.File(os.path.join(color_dir, rgb), "r") as f:
+ color = f["dataset"][:]
+ with h5py.File(os.path.join(geometry_dir, depth), "r") as f:
+ distance = f["dataset"][:]
+ R_cam2world = valid_camera_orientations[i]
+ R_cam2world = R_cam2world @ np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]])
+ t_cam2world = valid_camera_positions[i] * worldscale
+ T_cam2world = np.eye(4)
+ T_cam2world[:3, :3] = R_cam2world
+ T_cam2world[:3, 3] = t_cam2world
+
+ if not np.isfinite(T_cam2world).all():
+ print(f"frame_id={frame_id} T_cam2world is not finite.")
+ continue
+
+ focal = (camera_intrinsics[0, 0] + camera_intrinsics[1, 1]) / 2.0
+ ImageplaneX = (
+ np.linspace(
+ (-0.5 * width_pixels) + 0.5,
+ (0.5 * width_pixels) - 0.5,
+ width_pixels,
+ )
+ .reshape(1, width_pixels)
+ .repeat(height_pixels, 0)
+ .astype(np.float32)[:, :, None]
+ )
+ ImageplaneY = (
+ np.linspace(
+ (-0.5 * height_pixels) + 0.5,
+ (0.5 * height_pixels) - 0.5,
+ height_pixels,
+ )
+ .reshape(height_pixels, 1)
+ .repeat(width_pixels, 1)
+ .astype(np.float32)[:, :, None]
+ )
+ ImageplaneZ = np.full([height_pixels, width_pixels, 1], focal, np.float32)
+ Imageplane = np.concatenate([ImageplaneX, ImageplaneY, ImageplaneZ], axis=2)
+
+ depth = distance / np.linalg.norm(Imageplane, axis=2) * focal
+
+ with h5py.File(render_entity, "r") as f:
+ render_entity_id = f["dataset"][:].astype(np.int32)
+ assert (render_entity_id != 0).all()
+ valid_mask = render_entity_id != -1
+
+ if np.sum(valid_mask) == 0:
+ scale = 1.0 # If there are no valid pixels, set scale to 1.0.
+ else:
+ brightness = (
+ 0.3 * color[:, :, 0] + 0.59 * color[:, :, 1] + 0.11 * color[:, :, 2]
+ )
+ brightness_valid = brightness[valid_mask]
+ eps = 0.0001 # Avoid division by zero.
+ brightness_nth_percentile_current = np.percentile(
+ brightness_valid, percentile
+ )
+ if brightness_nth_percentile_current < eps:
+ scale = 0.0
+ else:
+ scale = (
+ np.power(brightness_nth_percentile_desired, inv_gamma)
+ / brightness_nth_percentile_current
+ )
+
+ color = np.power(np.maximum(scale * color, 0), gamma)
+ color = np.clip(color, 0.0, 1.0)
+
+ out_rgb_path = os.path.join(subscene_dir, f"{frame_id:06d}_rgb.png")
+ Image.fromarray((color * 255).astype(np.uint8)).save(out_rgb_path)
+ out_depth_path = os.path.join(subscene_dir, f"{frame_id:06d}_depth.npy")
+ np.save(out_depth_path, depth.astype(np.float32))
+ out_cam_path = os.path.join(subscene_dir, f"{frame_id:06d}_cam.npz")
+ np.savez(
+ out_cam_path,
+ intrinsics=camera_intrinsics,
+ pose=T_cam2world.astype(np.float32),
+ )
+
+
+def main():
+ parser = get_parser()
+ args = parser.parse_args()
+
+ # Use placeholder paths to avoid personal/private information.
+ rootdir = args.hypersim_dir # e.g., '/path/to/hypersim'
+ outdir = args.output_dir # e.g., '/path/to/processed_hypersim'
+ os.makedirs(outdir, exist_ok=True)
+
+ import multiprocessing
+
+ scenes = sorted(
+ [f for f in os.listdir(rootdir) if os.path.isdir(os.path.join(rootdir, f))]
+ )
+ # Process each scene sequentially (or use multiprocessing if desired)
+ for scene in scenes:
+ process_scene((rootdir, outdir, scene))
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_irs.py b/extern/CUT3R/datasets_preprocess/preprocess_irs.py
new file mode 100644
index 0000000000000000000000000000000000000000..50cafb24679a9b86779aba8229823d8cde372e62
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_irs.py
@@ -0,0 +1,230 @@
+#!/usr/bin/env python3
+"""
+Preprocess the IRS dataset.
+
+This script converts disparity EXR files into depth maps, copies corresponding RGB images,
+and saves camera intrinsics computed from a given focal length and baseline. Processing is
+done per sequence directory using parallel processing.
+
+Usage:
+ python preprocess_irs.py
+ --root_dir /path/to/data_irs
+ --out_dir /path/to/processed_irs
+"""
+
+import os
+import shutil
+import re
+import glob
+import time
+from concurrent.futures import ProcessPoolExecutor, as_completed
+
+import numpy as np
+import OpenEXR
+import Imath
+import imageio
+from PIL import Image
+from tqdm import tqdm
+import argparse
+
+# Ensure OpenEXR support in OpenCV if needed.
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+
+
+def exr2hdr(exrpath):
+ """
+ Read an OpenEXR file and return an HDR image as a NumPy array.
+ """
+ file = OpenEXR.InputFile(exrpath)
+ pixType = Imath.PixelType(Imath.PixelType.FLOAT)
+ dw = file.header()["dataWindow"]
+ num_channels = len(file.header()["channels"].keys())
+ if num_channels > 1:
+ channels = ["R", "G", "B"]
+ num_channels = 3
+ else:
+ channels = ["G"]
+
+ size = (dw.max.x - dw.min.x + 1, dw.max.y - dw.min.y + 1)
+ pixels = [
+ np.fromstring(file.channel(c, pixType), dtype=np.float32) for c in channels
+ ]
+ hdr = np.zeros((size[1], size[0], num_channels), dtype=np.float32)
+ if num_channels == 1:
+ hdr[:, :, 0] = np.reshape(pixels[0], (size[1], size[0]))
+ else:
+ hdr[:, :, 0] = np.reshape(pixels[0], (size[1], size[0]))
+ hdr[:, :, 1] = np.reshape(pixels[1], (size[1], size[0]))
+ hdr[:, :, 2] = np.reshape(pixels[2], (size[1], size[0]))
+ return hdr
+
+
+def writehdr(hdrpath, hdr):
+ """
+ Write an HDR image to a file using the HDR format.
+ If the input has one channel, duplicate it across R, G, and B.
+ """
+ h, w, c = hdr.shape
+ if c == 1:
+ hdr = np.pad(hdr, ((0, 0), (0, 0), (0, 2)), "constant")
+ hdr[:, :, 1] = hdr[:, :, 0]
+ hdr[:, :, 2] = hdr[:, :, 0]
+ imageio.imwrite(hdrpath, hdr, format="hdr")
+
+
+def load_exr(filename):
+ """
+ Load an EXR file and return the HDR image as a NumPy array.
+ """
+ hdr = exr2hdr(filename)
+ h, w, c = hdr.shape
+ if c == 1:
+ hdr = np.squeeze(hdr)
+ return hdr
+
+
+def process_basename(args):
+ """
+ Process a single basename:
+ - Load an RGB image and disparity (EXR) file.
+ - Compute a depth map from disparity using: depth = (baseline * f) / disparity.
+ - Copy the RGB image and save the computed depth and camera intrinsics.
+
+ Parameters:
+ args: tuple containing
+ (basename, seq_dir, out_rgb_dir, out_depth_dir, out_cam_dir, f, baseline)
+ Returns:
+ None on success or an error string on failure.
+ """
+ basename, seq_dir, out_rgb_dir, out_depth_dir, out_cam_dir, f, baseline = args
+ out_img_path = os.path.join(out_rgb_dir, f"{basename}.png")
+ out_depth_path = os.path.join(out_depth_dir, f"{basename}.npy")
+ out_cam_path = os.path.join(out_cam_dir, f"{basename}.npz")
+ if os.path.exists(out_cam_path):
+ return
+
+ try:
+ img_file = os.path.join(seq_dir, f"l_{basename}.png")
+ disp_file = os.path.join(seq_dir, f"d_{basename}.exr")
+
+ # Load image using PIL.
+ img = Image.open(img_file)
+
+ # Load disparity using the custom load_exr function.
+ disp = load_exr(disp_file).astype(np.float32)
+ H, W = disp.shape
+
+ # Verify that the image size matches the disparity map.
+ if img.size != (W, H):
+ return f"Size mismatch for {basename}: Image size {img.size}, Disparity size {(W, H)}"
+
+ # Create a simple camera intrinsics matrix.
+ K = np.eye(3, dtype=np.float32)
+ K[0, 0] = f
+ K[1, 1] = f
+ K[0, 2] = W // 2
+ K[1, 2] = H // 2
+
+ # Compute depth from disparity.
+ depth = baseline * f / disp
+
+ # Copy the RGB image.
+ shutil.copyfile(img_file, out_img_path)
+ # Save the depth map.
+ np.save(out_depth_path, depth)
+ # Save the camera intrinsics.
+ np.savez(out_cam_path, intrinsics=K)
+
+ except Exception as e:
+ return f"Error processing {basename}: {e}"
+
+ return None
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Preprocess IRS dataset: convert EXR disparity to depth, "
+ "copy RGB images, and save camera intrinsics."
+ )
+ parser.add_argument(
+ "--root_dir",
+ type=str,
+ default="/path/to/data_raw_videos/data_irs",
+ help="Root directory of the raw IRS data.",
+ )
+ parser.add_argument(
+ "--out_dir",
+ type=str,
+ default="/path/to/data_raw_videos/processed_irs",
+ help="Output directory for processed IRS data.",
+ )
+ args = parser.parse_args()
+
+ # Example parameters (adjust as needed)
+ baseline = 0.1
+ f = 480
+
+ root = args.root_dir
+ out_dir = args.out_dir
+
+ # Gather sequence directories.
+ seq_dirs = []
+ for d in os.listdir(root):
+ if os.path.isdir(os.path.join(root, d)):
+ if d == "Store":
+ for sub in os.listdir(os.path.join(root, d)):
+ if os.path.isdir(os.path.join(root, d, sub)):
+ seq_dirs.append(os.path.join(d, sub))
+ elif d == "IRS_small":
+ for sub in os.listdir(os.path.join(root, d)):
+ if os.path.isdir(os.path.join(root, d, sub)):
+ for subsub in os.listdir(os.path.join(root, d, sub)):
+ if os.path.isdir(os.path.join(root, d, sub, subsub)):
+ seq_dirs.append(os.path.join(d, sub, subsub))
+ else:
+ seq_dirs.append(d)
+
+ seq_dirs.sort()
+
+ # Process each sequence.
+ for seq in seq_dirs:
+ seq_dir = os.path.join(root, seq)
+ out_rgb_dir = os.path.join(out_dir, seq, "rgb")
+ out_depth_dir = os.path.join(out_dir, seq, "depth")
+ out_cam_dir = os.path.join(out_dir, seq, "cam")
+
+ os.makedirs(out_rgb_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ # Get basenames from disparity files.
+ basenames = sorted([d[2:-4] for d in os.listdir(seq_dir) if d.endswith(".exr")])
+
+ tasks = []
+ for basename in basenames:
+ task = (
+ basename,
+ seq_dir,
+ out_rgb_dir,
+ out_depth_dir,
+ out_cam_dir,
+ f,
+ baseline,
+ )
+ tasks.append(task)
+
+ num_workers = os.cpu_count() // 2
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ futures = {
+ executor.submit(process_basename, task): task[0] for task in tasks
+ }
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc=f"Processing {seq}"
+ ):
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_mapfree.py b/extern/CUT3R/datasets_preprocess/preprocess_mapfree.py
new file mode 100644
index 0000000000000000000000000000000000000000..d9d0829112cf35904c1eef14f4b0dce2014d7535
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_mapfree.py
@@ -0,0 +1,76 @@
+import subprocess
+import os
+import argparse
+import glob
+
+
+def get_parser():
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--mapfree_dir",
+ default="mapfree/train/",
+ )
+ parser.add_argument(
+ "--colmap_dir",
+ default="mapfree/colmap",
+ )
+ parser.add_argument(
+ "--output_dir",
+ default="processed_mapfree",
+ )
+ return parser
+
+
+def run_patch_match_stereo(root_colmap_dir, root_img_dir):
+ scene_names = sorted(os.listdir(root_colmap_dir))
+ sub_dir_names = ["seq0", "seq1"]
+ for scene_name in scene_names:
+ scene_dir = os.path.join(root_colmap_dir, scene_name)
+ img_dir = os.path.join(root_img_dir, scene_name)
+ for i, sub in enumerate(sub_dir_names):
+ sub_dir = os.path.join(scene_dir, sub)
+ out_dir = os.path.join(scene_dir, f"dense{i}")
+ if not os.path.exists(sub_dir):
+ continue
+ if os.path.exists(out_dir) and os.path.exists(
+ os.path.join(out_dir, f"stereo/depth_maps/{sub}")
+ ):
+ if len(
+ glob.glob(
+ os.path.join(out_dir, f"stereo/depth_maps/{sub}/*geometric.bin")
+ )
+ ) == len(glob.glob(os.path.join(img_dir, sub, "*.jpg"))):
+ print(f"depth maps already computed, skip {sub_dir}")
+ continue
+
+ print(sub_dir)
+ cmd = f"colmap image_undistorter \
+ --image_path {img_dir} \
+ --input_path {sub_dir} \
+ --output_path {out_dir} \
+ --output_type COLMAP;"
+
+ subprocess.call(cmd, shell=True)
+ cmd = f"rm -rf {out_dir}/images/seq{i}; rm -rf {out_dir}/sparse;"
+ cmd += f"cp -r {sub_dir} {out_dir}/sparse;"
+ cmd += f"cp -r {img_dir}/{sub} {out_dir}/images;"
+ subprocess.call(cmd, shell=True)
+
+ # we comment this because we have released the mvs results, but feel free to re-run the mvs
+
+ # cmd = f"colmap patch_match_stereo \
+ # --workspace_path {out_dir} \
+ # --workspace_format COLMAP \
+ # --PatchMatchStereo.cache_size 512 \
+ # --PatchMatchStereo.geom_consistency true"
+ # subprocess.call(cmd, shell=True)
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ root_colmap_dir = args.colmap_dir
+ root_img_dir = args.mapfree_dir
+
+ # run patch match stereo
+ run_patch_match_stereo(root_colmap_dir, root_img_dir)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_mapfree2.py b/extern/CUT3R/datasets_preprocess/preprocess_mapfree2.py
new file mode 100644
index 0000000000000000000000000000000000000000..227b50d4ce43a656ee494c78262796e731c28670
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_mapfree2.py
@@ -0,0 +1,123 @@
+import os
+
+
+import os.path as osp
+
+from PIL import Image
+import numpy as np
+
+
+from tqdm import tqdm
+from read_write_model import run
+
+
+def get_parser():
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--mapfree_dir", default="") # TODO
+ parser.add_argument("--output_dir", default="test_preprocess") # TODO
+ return parser
+
+
+def main(rootdir, outdir):
+ os.makedirs(outdir, exist_ok=True)
+
+ envs = [f for f in os.listdir(rootdir) if os.path.isdir(osp.join(rootdir, f))]
+ for env in tqdm(envs):
+ subseqs = [
+ f
+ for f in os.listdir(osp.join(rootdir, env))
+ if os.path.isdir(osp.join(rootdir, env, f))
+ ]
+ for subseq in subseqs:
+ sparse_dir = osp.join(rootdir, env, subseq, "sparse")
+ images_dir = osp.join(rootdir, env, subseq, "images")
+ run(sparse_dir, sparse_dir)
+ intrins_file = sparse_dir + "/cameras.txt"
+ poses_file = sparse_dir + "/images.txt"
+
+ cam_params = {}
+ with open(intrins_file, "r") as f:
+ for line in f:
+ if line.startswith("#"):
+ continue
+ parts = line.strip().split()
+ if len(parts) == 0:
+ continue
+ cam_id = int(parts[0])
+ fx = float(parts[4])
+ fy = float(parts[5])
+ cx = float(parts[6])
+ cy = float(parts[7])
+ cam_params[cam_id] = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
+
+ poses = []
+ images = []
+ intrinsics = []
+
+ with open(poses_file, "r") as f:
+ for i, line in enumerate(f):
+ if line.startswith("#"):
+ continue
+ parts = line.strip().split()
+ if len(parts) == 0:
+ continue
+ if "." in parts[0]:
+ continue
+
+ img_name = parts[-1]
+ w, x, y, z = map(float, parts[1:5])
+ R = np.array(
+ [
+ [
+ 1 - 2 * y * y - 2 * z * z,
+ 2 * x * y - 2 * z * w,
+ 2 * x * z + 2 * y * w,
+ ],
+ [
+ 2 * x * y + 2 * z * w,
+ 1 - 2 * x * x - 2 * z * z,
+ 2 * y * z - 2 * x * w,
+ ],
+ [
+ 2 * x * z - 2 * y * w,
+ 2 * y * z + 2 * x * w,
+ 1 - 2 * x * x - 2 * y * y,
+ ],
+ ]
+ )
+ tx, ty, tz = map(float, parts[5:8])
+ cam_id = int(parts[-2])
+ pose = np.eye(4)
+ pose[:3, :3] = R
+ pose[:3, 3] = [tx, ty, tz]
+ poses.append(np.linalg.inv(pose))
+ images.append(img_name)
+ intrinsics.append(cam_params[cam_id])
+
+ os.makedirs(osp.join(outdir, env, subseq), exist_ok=True)
+ os.makedirs(osp.join(outdir, env, subseq, "rgb"), exist_ok=True)
+ os.makedirs(osp.join(outdir, env, subseq, "cam"), exist_ok=True)
+
+ for i, img_name in enumerate(tqdm(images)):
+ img_path = os.path.join(images_dir, img_name)
+ rgb = Image.open(img_path)
+ intrinsic = intrinsics[i]
+ pose = poses[i]
+ # save all
+ basename = img_name.split("/")[-1]
+ rgb.save(osp.join(outdir, env, subseq, "rgb", basename))
+ np.savez(
+ osp.join(
+ outdir, env, subseq, "cam", basename.replace(".jpg", ".npz")
+ ),
+ intrinsic=intrinsic,
+ pose=pose,
+ )
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ main(args.mapfree_dir, args.output_dir)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_megadepth.py b/extern/CUT3R/datasets_preprocess/preprocess_megadepth.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a7460b9d5ec5b77dd21e15b7797bebe28377aa6
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_megadepth.py
@@ -0,0 +1,229 @@
+# --------------------------------------------------------
+# Preprocessing code for the MegaDepth dataset
+# dataset at https://www.cs.cornell.edu/projects/megadepth/
+# --------------------------------------------------------
+import os
+import os.path as osp
+import collections
+from tqdm import tqdm
+import numpy as np
+
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+import cv2
+import h5py
+
+import path_to_root # noqa
+from datasets_preprocess.utils.parallel import parallel_threads
+from datasets_preprocess.utils import cropping # noqa
+
+
+def get_parser():
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--megadepth_dir", required=True)
+ parser.add_argument("--num_views", default=64, type=int)
+ parser.add_argument("--precomputed_sets", required=True)
+ parser.add_argument("--output_dir", default="data/dust3r_data/processed_megadepth")
+ return parser
+
+
+def main(db_root, pairs_path, output_dir, num_views):
+ os.makedirs(output_dir, exist_ok=True)
+
+ # load all pairs
+ data = np.load(pairs_path, allow_pickle=True)
+ scenes = data["scenes"]
+ images = data["images"]
+ sets = data["sets"]
+
+ # enumerate all unique images
+ todo = collections.defaultdict(set)
+ for line in sets:
+ for i in range(1, num_views + 1):
+ todo[line[0]].add(line[i])
+
+ # for each scene, load intrinsics and then parallel crops
+ for scene, im_idxs in tqdm(todo.items(), desc="Overall"):
+ scene, subscene = scenes[scene].split()
+ out_dir = osp.join(output_dir, scene, subscene)
+ os.makedirs(out_dir, exist_ok=True)
+
+ # load all camera params
+ _, pose_w2cam, intrinsics = _load_kpts_and_poses(
+ db_root, scene, subscene, intrinsics=True
+ )
+
+ in_dir = osp.join(db_root, scene, "dense" + subscene)
+ # args = [(in_dir, img, intrinsics[img], pose_w2cam[img], out_dir)
+ # for img in [images[im_id] for im_id in im_idxs]]
+ args = [
+ (in_dir, img, intrinsics[img], pose_w2cam[img], out_dir)
+ for img in intrinsics.keys()
+ if os.path.exists(osp.join(in_dir, "imgs", img))
+ ]
+ parallel_threads(
+ resize_one_image,
+ args,
+ star_args=True,
+ front_num=0,
+ leave=False,
+ desc=f"{scene}/{subscene}",
+ )
+
+ # save pairs
+ print("Done! prepared all images in", output_dir)
+
+
+def resize_one_image(root, tag, K_pre_rectif, pose_w2cam, out_dir):
+ if osp.isfile(osp.join(out_dir, tag + ".npz")):
+ return
+
+ # load image
+ img = cv2.cvtColor(
+ cv2.imread(osp.join(root, "imgs", tag), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB
+ )
+ H, W = img.shape[:2]
+
+ # load depth
+ with h5py.File(osp.join(root, "depths", osp.splitext(tag)[0] + ".h5"), "r") as hd5:
+ depthmap = np.asarray(hd5["depth"])
+
+ # rectify = undistort the intrinsics
+ imsize_pre, K_pre, distortion = K_pre_rectif
+ imsize_post = img.shape[1::-1]
+ K_post = cv2.getOptimalNewCameraMatrix(
+ K_pre,
+ distortion,
+ imsize_pre,
+ alpha=0,
+ newImgSize=imsize_post,
+ centerPrincipalPoint=True,
+ )[0]
+
+ # downscale
+ img_out, depthmap_out, intrinsics_out, R_in2out = _downscale_image(
+ K_post, img, depthmap, resolution_out=(800, 600)
+ )
+
+ # write everything
+ img_out.save(osp.join(out_dir, tag + ".jpg"), quality=90)
+ cv2.imwrite(osp.join(out_dir, tag + ".exr"), depthmap_out)
+
+ camout2world = np.linalg.inv(pose_w2cam)
+ camout2world[:3, :3] = camout2world[:3, :3] @ R_in2out.T
+ np.savez(
+ osp.join(out_dir, tag + ".npz"),
+ intrinsics=intrinsics_out,
+ cam2world=camout2world,
+ )
+
+
+def _downscale_image(camera_intrinsics, image, depthmap, resolution_out=(512, 384)):
+ H, W = image.shape[:2]
+ resolution_out = sorted(resolution_out)[:: +1 if W < H else -1]
+
+ image, depthmap, intrinsics_out = cropping.rescale_image_depthmap(
+ image, depthmap, camera_intrinsics, resolution_out, force=False
+ )
+ R_in2out = np.eye(3)
+
+ return image, depthmap, intrinsics_out, R_in2out
+
+
+def _load_kpts_and_poses(root, scene_id, subscene, z_only=False, intrinsics=False):
+ if intrinsics:
+ with open(
+ os.path.join(
+ root, scene_id, "sparse", "manhattan", subscene, "cameras.txt"
+ ),
+ "r",
+ ) as f:
+ raw = f.readlines()[3:] # skip the header
+
+ camera_intrinsics = {}
+ for camera in raw:
+ camera = camera.split(" ")
+ width, height, focal, cx, cy, k0 = [float(elem) for elem in camera[2:]]
+ K = np.eye(3)
+ K[0, 0] = focal
+ K[1, 1] = focal
+ K[0, 2] = cx
+ K[1, 2] = cy
+ camera_intrinsics[int(camera[0])] = (
+ (int(width), int(height)),
+ K,
+ (k0, 0, 0, 0),
+ )
+
+ with open(
+ os.path.join(root, scene_id, "sparse", "manhattan", subscene, "images.txt"), "r"
+ ) as f:
+ raw = f.read().splitlines()[4:] # skip the header
+
+ extract_pose = (
+ colmap_raw_pose_to_principal_axis if z_only else colmap_raw_pose_to_RT
+ )
+
+ poses = {}
+ points3D_idxs = {}
+ camera = []
+
+ for image, points in zip(raw[::2], raw[1::2]):
+ image = image.split(" ")
+ points = points.split(" ")
+
+ image_id = image[-1]
+ camera.append(int(image[-2]))
+
+ # find the principal axis
+ raw_pose = [float(elem) for elem in image[1:-2]]
+ poses[image_id] = extract_pose(raw_pose)
+
+ current_points3D_idxs = {int(i) for i in points[2::3] if i != "-1"}
+ assert -1 not in current_points3D_idxs, bb()
+ points3D_idxs[image_id] = current_points3D_idxs
+
+ if intrinsics:
+ image_intrinsics = {
+ im_id: camera_intrinsics[cam] for im_id, cam in zip(poses, camera)
+ }
+ return points3D_idxs, poses, image_intrinsics
+ else:
+ return points3D_idxs, poses
+
+
+def colmap_raw_pose_to_principal_axis(image_pose):
+ qvec = image_pose[:4]
+ qvec = qvec / np.linalg.norm(qvec)
+ w, x, y, z = qvec
+ z_axis = np.float32(
+ [2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, 1 - 2 * x * x - 2 * y * y]
+ )
+ return z_axis
+
+
+def colmap_raw_pose_to_RT(image_pose):
+ qvec = image_pose[:4]
+ qvec = qvec / np.linalg.norm(qvec)
+ w, x, y, z = qvec
+ R = np.array(
+ [
+ [1 - 2 * y * y - 2 * z * z, 2 * x * y - 2 * z * w, 2 * x * z + 2 * y * w],
+ [2 * x * y + 2 * z * w, 1 - 2 * x * x - 2 * z * z, 2 * y * z - 2 * x * w],
+ [2 * x * z - 2 * y * w, 2 * y * z + 2 * x * w, 1 - 2 * x * x - 2 * y * y],
+ ]
+ )
+ # principal_axis.append(R[2, :])
+ t = image_pose[4:7]
+ # World-to-Camera pose
+ current_pose = np.eye(4)
+ current_pose[:3, :3] = R
+ current_pose[:3, 3] = t
+ return current_pose
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ main(args.megadepth_dir, args.precomputed_sets, args.output_dir, args.num_views)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_mp3d.py b/extern/CUT3R/datasets_preprocess/preprocess_mp3d.py
new file mode 100644
index 0000000000000000000000000000000000000000..6176bafe83d609248a411a77ed07a93b550b9909
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_mp3d.py
@@ -0,0 +1,217 @@
+#!/usr/bin/env python3
+"""
+Preprocess the Matterport3D (MP3D) dataset.
+
+This script reads camera parameters and overlap data from a configuration file,
+processes RGB images and corresponding depth images, adjusts camera poses using a
+conversion matrix, and then saves the processed images, depth maps, and camera
+metadata into separate output directories.
+
+Usage:
+ python preprocess_mp3d.py --root_dir /path/to/data_mp3d/v1/scans \
+ --out_dir /path/to/processed_mp3d
+"""
+
+import os
+import numpy as np
+import cv2
+import shutil
+from concurrent.futures import ProcessPoolExecutor, as_completed
+from tqdm import tqdm
+import argparse
+
+
+def process_image(args):
+ """
+ Process a single image: reads the RGB image and depth image, normalizes the depth,
+ adjusts the camera pose using a conversion matrix, and saves the processed outputs.
+
+ Parameters:
+ args: tuple containing
+ (i, paths, K, pose, img_dir, depth_dir, out_rgb_dir, out_depth_dir, out_cam_dir, R_conv)
+ where:
+ i - the frame index
+ paths - tuple of (depth filename, RGB filename)
+ K - camera intrinsics matrix (3x3 NumPy array)
+ pose - camera pose (4x4 NumPy array)
+ img_dir - directory containing RGB images
+ depth_dir - directory containing depth images
+ out_rgb_dir - output directory for processed RGB images
+ out_depth_dir - output directory for processed depth maps
+ out_cam_dir - output directory for processed camera metadata
+ R_conv - a 4x4 conversion matrix (NumPy array)
+ Returns:
+ None if successful, or an error string if processing fails.
+ """
+ (
+ i,
+ paths,
+ K,
+ pose,
+ img_dir,
+ depth_dir,
+ out_rgb_dir,
+ out_depth_dir,
+ out_cam_dir,
+ R_conv,
+ ) = args
+
+ depth_path, img_path = paths
+ img_path_full = os.path.join(img_dir, img_path)
+ depth_path_full = os.path.join(depth_dir, depth_path)
+
+ try:
+ # Read depth image using OpenCV (assumed to be stored with 16-bit depth)
+ depth = cv2.imread(depth_path_full, cv2.IMREAD_ANYDEPTH).astype(np.float32)
+ depth = depth / 4000.0 # Normalize depth (adjust this factor as needed)
+
+ # Adjust the camera pose with the conversion matrix
+ pose_adjusted = pose @ R_conv
+
+ # Generate output filenames using a zero-padded frame index.
+ basename = f"{i:06d}"
+ out_img_path = os.path.join(out_rgb_dir, basename + ".png")
+ out_depth_path = os.path.join(out_depth_dir, basename + ".npy")
+ out_cam_path = os.path.join(out_cam_dir, basename + ".npz")
+
+ # Copy the RGB image.
+ shutil.copyfile(img_path_full, out_img_path)
+
+ # Save the depth map.
+ np.save(out_depth_path, depth)
+
+ # Save the camera intrinsics and adjusted pose.
+ np.savez(out_cam_path, intrinsics=K, pose=pose_adjusted)
+
+ except Exception as e:
+ return f"Error processing image {img_path}: {e}"
+
+ return None
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Preprocess MP3D scans: convert and save RGB images, depth maps, and camera metadata."
+ )
+ parser.add_argument(
+ "--root_dir",
+ type=str,
+ default="/path/to/data_mp3d/v1/scans",
+ help="Root directory of the raw MP3D data.",
+ )
+ parser.add_argument(
+ "--out_dir",
+ type=str,
+ default="/path/to/processed_mp3d",
+ help="Output directory for processed MP3D data.",
+ )
+ args = parser.parse_args()
+
+ root = args.root_dir
+ out_dir = args.out_dir
+
+ # List sequence directories (each scan is stored as a separate directory).
+ seqs = sorted([d for d in os.listdir(root) if os.path.isdir(os.path.join(root, d))])
+
+ # Define a conversion matrix from MP3D to the desired coordinate system.
+ R_conv = np.array(
+ [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]], dtype=np.float32
+ )
+
+ for seq in tqdm(seqs, desc="Sequences"):
+ # The sequence directory structure assumes that images and depth files are stored
+ # under a subdirectory with the same name as the sequence.
+ seq_dir = os.path.join(root, seq, seq)
+
+ img_dir = os.path.join(seq_dir, "undistorted_color_images")
+ depth_dir = os.path.join(seq_dir, "undistorted_depth_images")
+ cam_file = os.path.join(seq_dir, "undistorted_camera_parameters", f"{seq}.conf")
+ overlap_file = os.path.join(seq_dir, "image_overlap_data", f"{seq}_iis.txt")
+
+ # Read overlap data and save it (optional).
+ overlap = []
+ with open(overlap_file, "r") as f:
+ for line in f:
+ parts = line.split()
+ overlap.append([int(parts[1]), int(parts[2]), float(parts[3])])
+ overlap = np.array(overlap)
+ os.makedirs(os.path.join(out_dir, seq), exist_ok=True)
+ np.save(os.path.join(out_dir, seq, "overlap.npy"), overlap)
+
+ # Read camera parameters from a configuration file.
+ intrinsics = []
+ camera_poses = []
+ image_files = []
+
+ with open(cam_file, "r") as file:
+ lines = file.readlines()
+ current_intrinsics = None
+ for line in lines:
+ parts = line.split()
+ if not parts:
+ continue
+ if parts[0] == "intrinsics_matrix":
+ # Extract intrinsic parameters.
+ fx, cx, fy, cy = (
+ float(parts[1]),
+ float(parts[3]),
+ float(parts[5]),
+ float(parts[6]),
+ )
+ current_intrinsics = np.array(
+ [[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32
+ )
+ elif parts[0] == "scan":
+ # Read the image filenames and camera pose.
+ depth_image = parts[1]
+ color_image = parts[2]
+ image_files.append((depth_image, color_image))
+ matrix_values = list(map(float, parts[3:]))
+ camera_pose = np.array(matrix_values).reshape(4, 4)
+ camera_poses.append(camera_pose)
+ if current_intrinsics is not None:
+ intrinsics.append(current_intrinsics.copy())
+
+ if not (len(image_files) == len(intrinsics) == len(camera_poses)):
+ print(f"Inconsistent data in sequence {seq}")
+ continue
+
+ # Prepare output directories.
+ out_rgb_dir = os.path.join(out_dir, seq, "rgb")
+ out_depth_dir = os.path.join(out_dir, seq, "depth")
+ out_cam_dir = os.path.join(out_dir, seq, "cam")
+ os.makedirs(out_rgb_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ tasks = []
+ for i, (paths, K, pose) in enumerate(
+ zip(image_files, intrinsics, camera_poses)
+ ):
+ args_task = (
+ i,
+ paths,
+ K,
+ pose,
+ img_dir,
+ depth_dir,
+ out_rgb_dir,
+ out_depth_dir,
+ out_cam_dir,
+ R_conv,
+ )
+ tasks.append(args_task)
+
+ num_workers = os.cpu_count() // 2
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ futures = {executor.submit(process_image, task): task[0] for task in tasks}
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc=f"Processing {seq}"
+ ):
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_mvimgnet.py b/extern/CUT3R/datasets_preprocess/preprocess_mvimgnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..2d5a688b4edbdbdcaf3169927f71cc2b9afca095
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_mvimgnet.py
@@ -0,0 +1,323 @@
+#!/usr/bin/env python3
+"""
+Preprocess the MVImgNet dataset.
+
+This script processes MVImgNet sequences by:
+ - Loading a sparse SFM reconstruction.
+ - Undistorting and rescaling RGB images.
+ - Converting COLMAP intrinsics between conventions.
+ - Saving the processed images and camera metadata.
+
+Usage:
+ python preprocess_mvimgnet.py --data_dir /path/to/MVImgNet_data \
+ --pcd_dir /path/to/MVPNet \
+ --output_dir /path/to/processed_mvimgnet
+"""
+
+import os
+import os.path as osp
+import argparse
+import numpy as np
+import open3d as o3d
+import pyrender
+import PIL.Image as Image
+import cv2
+import shutil
+from tqdm import tqdm
+import matplotlib.pyplot as plt
+
+# Import your custom SFM processing function.
+from read_write_model import run # Assumed to be available
+
+# Try to set up resampling filters from PIL.
+try:
+ lanczos = Image.Resampling.LANCZOS
+ bicubic = Image.Resampling.BICUBIC
+except AttributeError:
+ lanczos = Image.LANCZOS
+ bicubic = Image.BICUBIC
+
+# Conversion matrix from COLMAP (or OpenGL) to OpenCV conventions.
+OPENGL_TO_OPENCV = np.float32(
+ [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
+)
+
+
+# -----------------------------------------------------------------------------
+# Helper Classes and Functions
+# -----------------------------------------------------------------------------
+class ImageList:
+ """Convenience class to apply operations to a list of images."""
+
+ def __init__(self, images):
+ if not isinstance(images, (list, tuple)):
+ images = [images]
+ self.images = []
+ for image in images:
+ if not isinstance(image, Image.Image):
+ image = Image.fromarray(image)
+ self.images.append(image)
+
+ def __len__(self):
+ return len(self.images)
+
+ def to_pil(self):
+ return tuple(self.images) if len(self.images) > 1 else self.images[0]
+
+ @property
+ def size(self):
+ sizes = [im.size for im in self.images]
+ assert all(s == sizes[0] for s in sizes)
+ return sizes[0]
+
+ def resize(self, *args, **kwargs):
+ return ImageList([im.resize(*args, **kwargs) for im in self.images])
+
+ def crop(self, *args, **kwargs):
+ return ImageList([im.crop(*args, **kwargs) for im in self.images])
+
+
+def colmap_to_opencv_intrinsics(K):
+ """
+ Convert COLMAP intrinsics (with pixel centers at (0.5, 0.5)) to OpenCV convention.
+ """
+ K = K.copy()
+ K[0, 2] -= 0.5
+ K[1, 2] -= 0.5
+ return K
+
+
+def opencv_to_colmap_intrinsics(K):
+ """
+ Convert OpenCV intrinsics (with pixel centers at (0, 0)) to COLMAP convention.
+ """
+ K = K.copy()
+ K[0, 2] += 0.5
+ K[1, 2] += 0.5
+ return K
+
+
+def rescale_image_depthmap(
+ image, depthmap, camera_intrinsics, output_resolution, force=True
+):
+ """
+ Jointly rescale an image (and its depthmap) so that the output resolution is at least the desired value.
+
+ Args:
+ image: Input image (as a PIL.Image or compatible object).
+ depthmap: A corresponding depth map (or None).
+ camera_intrinsics: A 3x3 NumPy array of intrinsics.
+ output_resolution: (width, height) desired resolution.
+ force: If True, always rescale even if the image is smaller.
+
+ Returns:
+ Tuple of (rescaled image, rescaled depthmap, updated intrinsics).
+ """
+ image = ImageList(image)
+ input_resolution = np.array(image.size) # (W, H)
+ output_resolution = np.array(output_resolution)
+ if depthmap is not None:
+ assert tuple(depthmap.shape[:2]) == image.size[::-1]
+ scale_final = max(output_resolution / image.size) + 1e-8
+ if scale_final >= 1 and not force:
+ return image.to_pil(), depthmap, camera_intrinsics
+ output_resolution = np.floor(input_resolution * scale_final).astype(int)
+ image = image.resize(
+ tuple(output_resolution), resample=lanczos if scale_final < 1 else bicubic
+ )
+ if depthmap is not None:
+ depthmap = cv2.resize(
+ depthmap, tuple(output_resolution), interpolation=cv2.INTER_NEAREST
+ )
+ camera_intrinsics = camera_matrix_of_crop(
+ camera_intrinsics, input_resolution, output_resolution, scaling=scale_final
+ )
+ return image.to_pil(), depthmap, camera_intrinsics
+
+
+def camera_matrix_of_crop(
+ input_camera_matrix,
+ input_resolution,
+ output_resolution,
+ scaling=1,
+ offset_factor=0.5,
+ offset=None,
+):
+ """
+ Update the camera intrinsics to account for a rescaling (or cropping) of the image.
+ """
+ margins = np.asarray(input_resolution) * scaling - output_resolution
+ assert np.all(margins >= 0.0)
+ if offset is None:
+ offset = offset_factor * margins
+ output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix)
+ output_camera_matrix_colmap[:2, :] *= scaling
+ output_camera_matrix_colmap[:2, 2] -= offset
+ output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap)
+ return output_camera_matrix
+
+
+def pose_from_qwxyz_txyz(elems):
+ """
+ Convert a quaternion (qw, qx, qy, qz) and translation (tx, ty, tz) to a 4x4 pose.
+ Returns the inverse of the computed pose (i.e. cam2world).
+ """
+ from scipy.spatial.transform import Rotation
+
+ qw, qx, qy, qz, tx, ty, tz = map(float, elems)
+ pose = np.eye(4)
+ pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix()
+ pose[:3, 3] = (tx, ty, tz)
+ return np.linalg.inv(pose)
+
+
+def load_sfm(sfm_dir):
+ """
+ Load sparse SFM data from COLMAP output files.
+
+ Returns a tuple (img_idx, img_infos) where:
+ - img_idx: A dict mapping image filename to index.
+ - img_infos: A dict of image information (including intrinsics, file path, and camera pose).
+ """
+ with open(osp.join(sfm_dir, "cameras.txt"), "r") as f:
+ raw = f.read().splitlines()[3:] # skip header
+ intrinsics = {}
+ for camera in raw:
+ camera = camera.split(" ")
+ intrinsics[int(camera[0])] = [camera[1]] + [float(x) for x in camera[2:]]
+ with open(osp.join(sfm_dir, "images.txt"), "r") as f:
+ raw = f.read().splitlines()
+ raw = [line for line in raw if not line.startswith("#")]
+ img_idx = {}
+ img_infos = {}
+ for image, points in zip(raw[0::2], raw[1::2]):
+ image = image.split(" ")
+ points = points.split(" ")
+ idx = image[0]
+ img_name = image[-1]
+ assert img_name not in img_idx, f"Duplicate image: {img_name}"
+ img_idx[img_name] = idx
+ current_points2D = {
+ int(i): (float(x), float(y))
+ for i, x, y in zip(points[2::3], points[0::3], points[1::3])
+ if i != "-1"
+ }
+ img_infos[idx] = dict(
+ intrinsics=intrinsics[int(image[-2])],
+ path=img_name,
+ frame_id=img_name,
+ cam_to_world=pose_from_qwxyz_txyz(image[1:-2]),
+ sparse_pts2d=current_points2D,
+ )
+ return img_idx, img_infos
+
+
+def undistort_images(intrinsics, rgb):
+ """
+ Given camera intrinsics (in COLMAP convention) and an RGB image, compute and return
+ the corresponding OpenCV intrinsics along with the (unchanged) image.
+ """
+ width = int(intrinsics[1])
+ height = int(intrinsics[2])
+ fx = intrinsics[3]
+ fy = intrinsics[4]
+ cx = intrinsics[5]
+ cy = intrinsics[6]
+ K = np.zeros([3, 3])
+ K[0, 0] = fx
+ K[0, 2] = cx
+ K[1, 1] = fy
+ K[1, 2] = cy
+ K[2, 2] = 1
+ return width, height, K, rgb
+
+
+# -----------------------------------------------------------------------------
+# Processing Functions
+# -----------------------------------------------------------------------------
+def process_sequence(category, obj, data_dir, output_dir):
+ """
+ Process a single sequence from MVImgNet.
+
+ Steps:
+ 1. Load the point cloud (from the MVPNet directory) and create a mesh (using Pyrender) for visualization.
+ 2. Load the SFM reconstruction from COLMAP files.
+ 3. For each image in the SFM output:
+ a. Load the image.
+ b. Undistort and rescale it.
+ c. Update the camera intrinsics.
+ d. Save the processed image and camera metadata.
+ """
+
+ # Define directories.
+ seq_dir = osp.join(data_dir, "MVImgNet_by_categories", category, obj[:-4])
+ rgb_dir = osp.join(seq_dir, "images")
+ sfm_dir = osp.join(seq_dir, "sparse", "0")
+
+ output_scene_dir = osp.join(output_dir, f"{category}_{obj[:-4]}")
+ output_rgb_dir = osp.join(output_scene_dir, "rgb")
+ output_cam_dir = osp.join(output_scene_dir, "cam")
+ os.makedirs(output_rgb_dir, exist_ok=True)
+ os.makedirs(output_cam_dir, exist_ok=True)
+
+ # Run custom SFM processing.
+ run(sfm_dir, sfm_dir)
+ img_idx, img_infos = load_sfm(sfm_dir)
+
+ for imgname in img_idx:
+ idx = img_idx[imgname]
+ info = img_infos[idx]
+ rgb_path = osp.join(rgb_dir, info["path"])
+ if not osp.exists(rgb_path):
+ continue
+ rgb = np.array(Image.open(rgb_path))
+ _, _, K, rgb = undistort_images(info["intrinsics"], rgb)
+ intrinsics = colmap_to_opencv_intrinsics(K)
+ # Rescale image to a target resolution (e.g., 640x480) preserving aspect ratio.
+ image, _, intrinsics = rescale_image_depthmap(
+ rgb, None, intrinsics, (640, int(640 * 3.0 / 4))
+ )
+ intrinsics = opencv_to_colmap_intrinsics(intrinsics)
+ out_img_path = osp.join(output_rgb_dir, info["path"][:-3] + "jpg")
+ image.save(out_img_path)
+ out_cam_path = osp.join(output_cam_dir, info["path"][:-3] + "npz")
+ np.savez(out_cam_path, intrinsics=intrinsics, pose=info["cam_to_world"])
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Preprocess MVImgNet dataset: undistort, rescale images, and save camera parameters."
+ )
+ parser.add_argument(
+ "--data_dir",
+ type=str,
+ default="/path/to/MVImgNet_data",
+ help="Directory containing MVImgNet data (images and point clouds).",
+ )
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ default="/path/to/processed_mvimgnet",
+ help="Directory where processed data will be saved.",
+ )
+ args = parser.parse_args()
+
+ data_dir = args.data_dir
+ output_dir = args.output_dir
+
+ # Get list of categories.
+ categories = sorted(
+ [
+ d
+ for d in os.listdir(osp.join(data_dir, "MVImgNet_by_categories"))
+ if osp.isdir(osp.join(data_dir, "MVImgNet_by_categories", d))
+ ]
+ )
+ for cat in categories:
+ objects = sorted(os.listdir(osp.join(data_dir, "MVImgNet_by_categories", cat)))
+ for obj in objects:
+ process_sequence(cat, obj, data_dir, output_dir)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_mvs_synth.py b/extern/CUT3R/datasets_preprocess/preprocess_mvs_synth.py
new file mode 100644
index 0000000000000000000000000000000000000000..d3b953b0e3a25e8d96038e29e0e21d5257c9ef7d
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_mvs_synth.py
@@ -0,0 +1,173 @@
+#!/usr/bin/env python3
+"""
+Preprocess the MVS Synth dataset.
+
+This script processes each sequence in a given dataset directory by:
+ - Reading the RGB image, EXR depth image, and JSON camera parameters.
+ - Computing the camera pose from the extrinsic matrix (with a conversion matrix applied).
+ - Creating a simple camera intrinsics matrix from the provided focal lengths and principal point.
+ - Copying the RGB image (as JPG), saving the depth (as a NumPy array), and saving the camera data (as a NPZ file).
+
+Usage:
+ python preprocess_mvs_synth.py --root_dir /path/to/data_mvs_synth/GTAV_720/ \
+ --out_dir /path/to/processed_mvs_synth \
+ --num_workers 32
+"""
+
+import os
+import shutil
+import json
+from concurrent.futures import ProcessPoolExecutor, as_completed
+from tqdm import tqdm
+import numpy as np
+import cv2
+import argparse
+
+# Ensure OpenEXR support if needed
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+
+# Conversion matrix (example conversion, adjust if needed)
+R_conv = np.array(
+ [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=np.float32
+)
+
+
+def process_basename(seq, basename, root_dir, out_dir):
+ """
+ Process a single frame identified by 'basename' within a given sequence.
+
+ Reads the RGB image, depth (EXR) file, and camera parameters (JSON file),
+ computes the adjusted camera pose, builds the camera intrinsics matrix,
+ and saves the processed outputs.
+
+ Parameters:
+ seq (str): The sequence (subdirectory) name.
+ basename (str): The basename of the file (without extension).
+ root_dir (str): Root directory containing the raw data.
+ out_dir (str): Output directory where processed data will be saved.
+
+ Returns:
+ None on success, or an error string on failure.
+ """
+ try:
+ # Define input directories.
+ seq_dir = os.path.join(root_dir, seq)
+ img_dir = os.path.join(seq_dir, "images")
+ depth_dir = os.path.join(seq_dir, "depths")
+ cam_dir = os.path.join(seq_dir, "poses")
+
+ # Define input file paths.
+ img_path = os.path.join(img_dir, basename + ".png")
+ depth_path = os.path.join(depth_dir, basename + ".exr")
+ cam_path = os.path.join(cam_dir, basename + ".json")
+
+ # Define output directories.
+ out_seq_dir = os.path.join(out_dir, seq)
+ out_img_dir = os.path.join(out_seq_dir, "rgb")
+ out_depth_dir = os.path.join(out_seq_dir, "depth")
+ out_cam_dir = os.path.join(out_seq_dir, "cam")
+ os.makedirs(out_img_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ # Define output file paths.
+ out_img_path = os.path.join(out_img_dir, basename + ".jpg")
+ out_depth_path = os.path.join(out_depth_dir, basename + ".npy")
+ out_cam_path = os.path.join(out_cam_dir, basename + ".npz")
+
+ # Read and process camera parameters.
+ with open(cam_path, "r") as f:
+ cam_data = json.load(f)
+ c_x = cam_data["c_x"]
+ c_y = cam_data["c_y"]
+ f_x = cam_data["f_x"]
+ f_y = cam_data["f_y"]
+ extrinsic = np.array(cam_data["extrinsic"])
+ # Invert extrinsic matrix to obtain camera-to-world pose.
+ pose = np.linalg.inv(extrinsic)
+ # Apply conversion matrix.
+ pose = R_conv @ pose
+
+ # Build a simple intrinsics matrix.
+ intrinsics = np.array(
+ [[f_x, 0, c_x], [0, f_y, c_y], [0, 0, 1]], dtype=np.float32
+ )
+
+ if np.any(np.isinf(pose)) or np.any(np.isnan(pose)):
+ raise ValueError(f"Invalid pose for {basename}")
+
+ # Read depth image.
+ depth = cv2.imread(depth_path, cv2.IMREAD_ANYDEPTH).astype(np.float32)
+ depth[np.isinf(depth)] = 0.0 # Clean up any infinite values
+
+ # Save the processed data.
+ shutil.copyfile(img_path, out_img_path)
+ np.save(out_depth_path, depth)
+ np.savez(out_cam_path, intrinsics=intrinsics, pose=pose)
+
+ except Exception as e:
+ return f"Error processing {seq}/{basename}: {e}"
+
+ return None
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Preprocess MVS Synth dataset: convert images, depth, and camera data."
+ )
+ parser.add_argument(
+ "--root_dir",
+ type=str,
+ default="/path/to/data_mvs_synth/GTAV_720/",
+ help="Root directory of the raw MVS Synth data.",
+ )
+ parser.add_argument(
+ "--out_dir",
+ type=str,
+ default="/path/to/processed_mvs_synth",
+ help="Output directory for processed data.",
+ )
+ parser.add_argument(
+ "--num_workers", type=int, default=32, help="Number of parallel workers."
+ )
+ args = parser.parse_args()
+
+ root_dir = args.root_dir
+ out_dir = args.out_dir
+
+ # Get list of sequence directories.
+ seqs = sorted(
+ [d for d in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, d))]
+ )
+
+ # Pre-create output directories for each sequence.
+ for seq in seqs:
+ out_seq_dir = os.path.join(out_dir, seq)
+ os.makedirs(os.path.join(out_seq_dir, "rgb"), exist_ok=True)
+ os.makedirs(os.path.join(out_seq_dir, "depth"), exist_ok=True)
+ os.makedirs(os.path.join(out_seq_dir, "cam"), exist_ok=True)
+
+ # Build list of processing tasks.
+ tasks = []
+ for seq in seqs:
+ seq_dir = os.path.join(root_dir, seq)
+ img_dir = os.path.join(seq_dir, "images")
+ basenames = sorted([d[:-4] for d in os.listdir(img_dir) if d.endswith(".png")])
+ for basename in basenames:
+ tasks.append((seq, basename, root_dir, out_dir))
+
+ num_workers = args.num_workers
+ print(f"Processing {len(tasks)} tasks using {num_workers} workers...")
+
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ futures = {executor.submit(process_basename, *task): task[1] for task in tasks}
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc="Processing"
+ ):
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_omniobject3d.py b/extern/CUT3R/datasets_preprocess/preprocess_omniobject3d.py
new file mode 100644
index 0000000000000000000000000000000000000000..596e467a962307cc47d6830e6d05875df6687f98
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_omniobject3d.py
@@ -0,0 +1,226 @@
+#!/usr/bin/env python3
+"""
+This script processes scene data by reading images, depth maps, and camera poses,
+computing camera intrinsics, and saving the results in a structured format.
+
+Usage:
+ python preprocess_omniobject3d.py --input_dir /path/to/input_root --output_dir /path/to/output_root
+"""
+
+import os
+import os.path as osp
+import json
+import argparse
+from concurrent.futures import ProcessPoolExecutor
+
+import numpy as np
+import cv2
+import imageio.v2 as imageio
+from tqdm import tqdm
+import math
+
+# Enable OpenEXR support in OpenCV
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+
+
+def prepare_scene_args(scene, input_root, output_root):
+ """
+ Prepare processing arguments for a given scene.
+
+ Args:
+ scene (str): Scene directory name.
+ input_root (str): Root directory for input data.
+ output_root (str): Root directory for output data.
+
+ Returns:
+ list or None: A list of arguments for each frame in the scene or None if preparation fails.
+ """
+ seq_dir = osp.join(input_root, scene, "render")
+ rgb_dir = osp.join(seq_dir, "images")
+ depth_dir = osp.join(seq_dir, "depths")
+ pose_file = osp.join(seq_dir, "transforms.json")
+ out_seq_dir = osp.join(output_root, scene)
+
+ # Check if the necessary file exists
+ if not osp.exists(pose_file):
+ print(f"Pose file not found: {pose_file}")
+ return None
+
+ # Load metadata from JSON
+ with open(pose_file, "r") as fp:
+ meta = json.load(fp)
+
+ camera_angle_x = float(meta["camera_angle_x"])
+
+ # Create output directories for this scene
+ os.makedirs(osp.join(out_seq_dir, "rgb"), exist_ok=True)
+ os.makedirs(osp.join(out_seq_dir, "depth"), exist_ok=True)
+ os.makedirs(osp.join(out_seq_dir, "cam"), exist_ok=True)
+
+ # Prepare a list of frame processing arguments
+ frame_args = [
+ (frame, camera_angle_x, rgb_dir, depth_dir, out_seq_dir)
+ for frame in meta.get("frames", [])
+ ]
+
+ return frame_args
+
+
+def process_frame(args):
+ """
+ Process a single frame:
+ - Reads the image and depth data.
+ - Handles alpha channels by compositing over a white background.
+ - Computes the camera intrinsics.
+ - Saves the processed RGB image, depth map, and camera parameters.
+
+ Args:
+ args (tuple): A tuple containing:
+ - frame (dict): Frame metadata.
+ - camera_angle_x (float): Camera field-of-view.
+ - rgb_dir (str): Directory containing RGB images.
+ - depth_dir (str): Directory containing depth maps.
+ - out_seq_dir (str): Output directory for the processed scene.
+ """
+ frame, camera_angle_x, rgb_dir, depth_dir, out_seq_dir = args
+
+ # Derive the base name from the frame's file path
+ frame_name = osp.basename(frame["file_path"])
+
+ # Define file paths for input and output
+ image_path = osp.join(rgb_dir, frame_name + ".png")
+ depth_path = osp.join(depth_dir, frame_name + "_depth.exr")
+ out_img_path = osp.join(out_seq_dir, "rgb", frame_name + ".png")
+ out_depth_path = osp.join(out_seq_dir, "depth", frame_name + ".npy")
+ out_cam_path = osp.join(out_seq_dir, "cam", frame_name + ".npz")
+
+ # Skip processing if outputs already exist
+ if (
+ osp.exists(out_img_path)
+ and osp.exists(out_depth_path)
+ and osp.exists(out_cam_path)
+ ):
+ return
+
+ # Read image using imageio
+ img = imageio.imread(image_path)
+
+ # If image has an alpha channel, composite it over a white background
+ if img.shape[-1] == 4:
+ alpha_channel = img[..., 3]
+ rgb_channels = img[..., :3]
+ white_background = np.full_like(rgb_channels, 255)
+ img = np.where(alpha_channel[..., None] == 0, white_background, rgb_channels)
+ else:
+ img = img[..., :3]
+
+ H, W, _ = img.shape
+
+ # Process the camera pose
+ pose = np.array(frame["transform_matrix"], dtype=np.float32)
+ pose[:, 1:3] *= -1 # Invert Y and Z axes if necessary
+
+ # Compute camera intrinsics using the provided camera angle
+ focal = 0.5 * W / np.tan(0.5 * camera_angle_x)
+ intrinsics = np.array(
+ [[focal, 0, W / 2], [0, focal, H / 2], [0, 0, 1]], dtype=np.float32
+ )
+
+ # Read depth data using OpenCV (which supports OpenEXR)
+ depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
+ if depth is None:
+ print(f"Warning: Depth file not found or failed to read: {depth_path}")
+ return
+
+ # Use the last channel of the depth data and convert to float32
+ depth = depth[..., -1].astype(np.float32)
+ depth[depth >= 65504.0] = 0.0 # Set invalid depth values to 0
+
+ # Save the processed outputs
+ imageio.imwrite(out_img_path, img.astype(np.uint8))
+ np.save(out_depth_path, depth)
+ np.savez_compressed(out_cam_path, intrinsics=intrinsics, pose=pose)
+
+
+def process_scene(frame_args):
+ """
+ Process all frames within a single scene.
+
+ Args:
+ frame_args (list): List of frame arguments for the scene.
+ """
+ if frame_args is None:
+ return
+
+ for args in frame_args:
+ process_frame(args)
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Preprocess scene data by extracting RGB images, depth maps, and camera parameters."
+ )
+ parser.add_argument(
+ "--input_dir",
+ type=str,
+ required=True,
+ help="Path to the root input directory containing scene data.",
+ )
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ required=True,
+ help="Path to the directory where processed data will be saved.",
+ )
+ parser.add_argument(
+ "--max_workers",
+ type=int,
+ default=None,
+ help="Maximum number of worker processes. Defaults to the number of CPU cores.",
+ )
+ args = parser.parse_args()
+
+ input_root = args.input_dir
+ output_root = args.output_dir
+
+ # Ensure the output root directory exists
+ os.makedirs(output_root, exist_ok=True)
+
+ # List all scene directories in the input root
+ scenes = sorted(
+ [d for d in os.listdir(input_root) if osp.isdir(osp.join(input_root, d))]
+ )
+
+ # Determine the number of workers to use
+ max_workers = (
+ args.max_workers if args.max_workers is not None else os.cpu_count() or 1
+ )
+
+ # Prepare processing arguments for each scene in parallel
+ with ProcessPoolExecutor(max_workers=max_workers) as executor:
+ scene_args_list = list(
+ tqdm(
+ executor.map(
+ lambda s: prepare_scene_args(s, input_root, output_root), scenes
+ ),
+ total=len(scenes),
+ desc="Preparing scenes",
+ )
+ )
+
+ # Filter out scenes where preparation failed
+ scene_frame_args = [fa for fa in scene_args_list if fa is not None]
+
+ # Process each scene in parallel
+ with ProcessPoolExecutor(max_workers=max_workers) as executor:
+ list(
+ tqdm(
+ executor.map(process_scene, scene_frame_args),
+ total=len(scene_frame_args),
+ desc="Processing scenes",
+ )
+ )
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_point_odyssey.py b/extern/CUT3R/datasets_preprocess/preprocess_point_odyssey.py
new file mode 100644
index 0000000000000000000000000000000000000000..b665d31f87c351862e10b99230a35ea049fa65f9
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_point_odyssey.py
@@ -0,0 +1,171 @@
+#!/usr/bin/env python3
+"""
+Preprocess Script for Point Odyssey Dataset
+
+This script processes the Point Odyssey dataset by:
+ - Copying RGB images.
+ - Converting 16-bit depth images to a normalized float32 depth map.
+ - Inverting camera extrinsic matrices to obtain poses.
+ - Saving intrinsics and computed poses in a structured output directory.
+
+The dataset is expected to have subdirectories for each split (e.g., train, test, val),
+with each split containing multiple sequence directories. Each sequence directory must
+contain the following:
+ - An 'rgbs' folder with .jpg images.
+ - A 'depths' folder with .png depth images.
+ - An 'anno.npz' file with 'intrinsics' and 'extrinsics' arrays.
+
+Usage:
+ python preprocess_point_odyssey.py --input_dir /path/to/input_dataset --output_dir /path/to/output_dataset
+"""
+
+import os
+import argparse
+import shutil
+import numpy as np
+import cv2
+from tqdm import tqdm
+
+
+def process_sequence(seq_dir, out_seq_dir):
+ """
+ Process a single sequence:
+ - Verifies that required folders/files exist.
+ - Loads camera annotations.
+ - Processes each frame: copies the RGB image, processes the depth map,
+ computes the camera pose, and saves the results.
+
+ Args:
+ seq_dir (str): Directory of the sequence (should contain 'rgbs', 'depths', and 'anno.npz').
+ out_seq_dir (str): Output directory where processed files will be saved.
+ """
+ # Define input subdirectories and annotation file
+ img_dir = os.path.join(seq_dir, "rgbs")
+ depth_dir = os.path.join(seq_dir, "depths")
+ cam_file = os.path.join(seq_dir, "anno.npz")
+
+ # Ensure all necessary files/folders exist
+ if not (
+ os.path.exists(img_dir)
+ and os.path.exists(depth_dir)
+ and os.path.exists(cam_file)
+ ):
+ raise FileNotFoundError(f"Missing required data in {seq_dir}")
+
+ # Create output subdirectories for images, depth maps, and camera parameters
+ out_img_dir = os.path.join(out_seq_dir, "rgb")
+ out_depth_dir = os.path.join(out_seq_dir, "depth")
+ out_cam_dir = os.path.join(out_seq_dir, "cam")
+ os.makedirs(out_img_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ # Load camera annotations
+ annotations = np.load(cam_file)
+ cam_ints = annotations["intrinsics"].astype(np.float32)
+ cam_exts = annotations["extrinsics"].astype(np.float32)
+
+ # List and sort image and depth filenames
+ rgbs = sorted([f for f in os.listdir(img_dir) if f.endswith(".jpg")])
+ depths = sorted([f for f in os.listdir(depth_dir) if f.endswith(".png")])
+
+ # Ensure that the number of intrinsics, extrinsics, RGB images, and depth images match
+ if not (len(cam_ints) == len(cam_exts) == len(rgbs) == len(depths)):
+ raise ValueError(
+ f"Mismatch in sequence {seq_dir}: "
+ f"{len(cam_ints)} intrinsics, {len(cam_exts)} extrinsics, {len(rgbs)} images, {len(depths)} depths."
+ )
+
+ # Skip sequence if it has already been processed
+ if len(os.listdir(out_img_dir)) == len(rgbs):
+ return
+
+ # Process each frame in the sequence
+ for i in tqdm(range(len(cam_exts)), desc="Processing frames", leave=False):
+ # Extract frame index from filenames
+ basename_img = rgbs[i].split(".")[0].split("_")[-1]
+ basename_depth = depths[i].split(".")[0].split("_")[-1]
+ if int(basename_img) != i or int(basename_depth) != i:
+ raise ValueError(
+ f"Frame index mismatch in sequence {seq_dir} for frame {i}"
+ )
+
+ img_path = os.path.join(img_dir, rgbs[i])
+ depth_path = os.path.join(depth_dir, depths[i])
+
+ # Retrieve intrinsics and compute camera pose by inverting the extrinsic matrix
+ intrins = cam_ints[i]
+ cam_extrinsic = cam_exts[i]
+ pose = np.linalg.inv(cam_extrinsic)
+ if np.any(np.isinf(pose)) or np.any(np.isnan(pose)):
+ raise ValueError(
+ f"Invalid pose computed from extrinsics for frame {i} in {seq_dir}"
+ )
+
+ # Read and process depth image
+ depth_16bit = cv2.imread(depth_path, cv2.IMREAD_ANYDEPTH)
+ depth = depth_16bit.astype(np.float32) / 65535.0 * 1000.0
+
+ # Save processed files: copy the RGB image and save depth and camera parameters
+ basename = basename_img # or str(i)
+ out_img_path = os.path.join(out_img_dir, basename + ".jpg")
+ shutil.copyfile(img_path, out_img_path)
+ np.save(os.path.join(out_depth_dir, basename + ".npy"), depth)
+ np.savez(
+ os.path.join(out_cam_dir, basename + ".npz"), intrinsics=intrins, pose=pose
+ )
+
+
+def process_split(split_dir, out_split_dir):
+ """
+ Process all sequences within a data split (e.g., train, test, or val).
+
+ Args:
+ split_dir (str): Directory for the split.
+ out_split_dir (str): Output directory for the processed split.
+ """
+ sequences = sorted(
+ [d for d in os.listdir(split_dir) if os.path.isdir(os.path.join(split_dir, d))]
+ )
+ for seq in tqdm(
+ sequences, desc=f"Processing sequences in {os.path.basename(split_dir)}"
+ ):
+ seq_dir = os.path.join(split_dir, seq)
+ out_seq_dir = os.path.join(out_split_dir, seq)
+ process_sequence(seq_dir, out_seq_dir)
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Preprocess Point Odyssey dataset by processing images, depth maps, and camera parameters."
+ )
+ parser.add_argument(
+ "--input_dir",
+ type=str,
+ required=True,
+ help="Path to the root input dataset directory.",
+ )
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ required=True,
+ help="Path to the root output directory where processed data will be stored.",
+ )
+ args = parser.parse_args()
+
+ # Define the expected dataset splits
+ splits = ["train", "test", "val"]
+ for split in splits:
+ split_dir = os.path.join(args.input_dir, split)
+ out_split_dir = os.path.join(args.output_dir, split)
+ if not os.path.exists(split_dir):
+ print(
+ f"Warning: Split directory {split_dir} does not exist. Skipping this split."
+ )
+ continue
+ os.makedirs(out_split_dir, exist_ok=True)
+ process_split(split_dir, out_split_dir)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_re10k.py b/extern/CUT3R/datasets_preprocess/preprocess_re10k.py
new file mode 100644
index 0000000000000000000000000000000000000000..95edecf07e314049a38f8450481861664b671223
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_re10k.py
@@ -0,0 +1,210 @@
+#!/usr/bin/env python3
+"""
+Usage:
+ python preprocess_re10k.py --root_dir /path/to/train \
+ --info_dir /path/to/RealEstate10K/train \
+ --out_dir /path/to/processed_re10k
+"""
+
+import os
+import shutil
+import argparse
+import numpy as np
+from PIL import Image
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor, as_completed
+
+
+def build_intrinsics(intrinsics_array, image_size):
+ """
+ Build a 3x3 camera intrinsics matrix from the given intrinsics array and image size.
+
+ Args:
+ intrinsics_array (np.ndarray): An array containing [fx_rel, fy_rel, cx_rel, cy_rel, ...].
+ We assume the first four components define focal and center
+ in normalized device coordinates (0..1).
+ image_size (tuple): The (width, height) of the image.
+
+ Returns:
+ np.ndarray: A 3x3 intrinsics matrix.
+ """
+ # focal_length = intrinsics[:2] * (width, height)
+ # principal_point = intrinsics[2:4] * (width, height)
+ width, height = image_size
+ fx_rel, fy_rel, cx_rel, cy_rel = intrinsics_array[:4]
+ fx = fx_rel * width
+ fy = fy_rel * height
+ cx = cx_rel * width
+ cy = cy_rel * height
+
+ K = np.eye(3, dtype=np.float64)
+ K[0, 0] = fx
+ K[1, 1] = fy
+ K[0, 2] = cx
+ K[1, 2] = cy
+
+ return K
+
+
+def compute_pose(extrinsics_array):
+ """
+ Compute the 4x4 pose matrix by inverting the 3x4 extrinsic matrix (plus a row [0, 0, 0, 1]).
+
+ Args:
+ extrinsics_array (np.ndarray): A 12-element array reshaped to (3,4) that
+ represents a camera-to-world or world-to-camera transform.
+
+ Returns:
+ np.ndarray: A 4x4 pose matrix (world-to-camera, or vice versa depending on your convention).
+ """
+ extrinsics_3x4 = extrinsics_array.reshape(3, 4)
+ extrinsics_4x4 = np.vstack([extrinsics_3x4, [0, 0, 0, 1]])
+ # Invert the extrinsics to get the pose
+ pose = np.linalg.inv(extrinsics_4x4)
+ return pose
+
+
+def process_frame(task):
+ """
+ Process a single frame:
+ - Reads the timestamp, intrinsics, and extrinsics.
+ - Copies the image to the output directory.
+ - Creates a .npz file containing camera intrinsics and the computed pose.
+
+ Args:
+ task (tuple): A tuple that contains:
+ (seq_dir, out_rgb_dir, out_cam_dir, raw_line).
+
+ Returns:
+ str or None:
+ A string with an error message if something fails; otherwise None on success.
+ """
+ seq_dir, out_rgb_dir, out_cam_dir, raw_line = task
+
+ try:
+ # Unpack the raw metadata line
+ # Format (assuming): [timestamp, fx_rel, fy_rel, cx_rel, cy_rel, <2 unused>, extrinsics...]
+ # Adjust as needed based on the real format of 'raw_line'.
+ timestamp = int(raw_line[0])
+ intrinsics_array = raw_line[1:7]
+ extrinsics_array = raw_line[7:]
+
+ img_name = f"{timestamp}.png"
+ src_img_path = os.path.join(seq_dir, img_name)
+ if not os.path.isfile(src_img_path):
+ return f"Image file not found: {src_img_path}"
+
+ # Derive output paths
+ out_img_path = os.path.join(out_rgb_dir, img_name)
+ out_cam_path = os.path.join(out_cam_dir, f"{timestamp}.npz")
+
+ # Skip if the camera file already exists
+ if os.path.isfile(out_cam_path):
+ return None
+
+ # Determine image size without loading the entire image
+ with Image.open(src_img_path) as img:
+ width, height = img.size
+
+ # Build the intrinsics matrix (K)
+ K = build_intrinsics(intrinsics_array, (width, height))
+
+ # Compute the pose matrix
+ pose = compute_pose(extrinsics_array)
+
+ # Copy the image to the output directory
+ shutil.copyfile(src_img_path, out_img_path)
+
+ # Save intrinsics and pose
+ np.savez(out_cam_path, intrinsics=K, pose=pose)
+
+ except Exception as e:
+ return f"Error processing frame for {seq_dir} at timestamp {timestamp}: {e}"
+
+ return None # Success indicator
+
+
+def process_sequence(seq, root_dir, info_dir, out_dir):
+ """
+ Process a single sequence:
+ - Reads a metadata .txt file containing intrinsics and extrinsics for each frame.
+ - Prepares a list of tasks for parallel processing.
+
+ Args:
+ seq (str): Name of the sequence.
+ root_dir (str): Directory where the original sequence images (e.g., .png) are stored.
+ info_dir (str): Directory containing the .txt file with camera metadata for this sequence.
+ out_dir (str): Output directory where processed frames will be stored.
+ """
+ seq_dir = os.path.join(root_dir, seq)
+ scene_info_path = os.path.join(info_dir, f"{seq}.txt")
+
+ if not os.path.isfile(scene_info_path):
+ tqdm.write(f"Metadata file not found for sequence {seq} - skipping.")
+ return
+
+ # Load scene information
+ try:
+ # skiprows=1 if there's a header line in the .txt, adjust as needed
+ scene_info = np.loadtxt(
+ scene_info_path, delimiter=" ", dtype=np.float64, skiprows=1
+ )
+ except Exception as e:
+ tqdm.write(f"Error reading scene info for {seq}: {e}")
+ return
+
+ # Create output subdirectories
+ out_seq_dir = os.path.join(out_dir, seq)
+ out_rgb_dir = os.path.join(out_seq_dir, "rgb")
+ out_cam_dir = os.path.join(out_seq_dir, "cam")
+ os.makedirs(out_rgb_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ # Build tasks
+ tasks = [(seq_dir, out_rgb_dir, out_cam_dir, line) for line in scene_info]
+
+ # Process frames in parallel
+ with ProcessPoolExecutor(max_workers=os.cpu_count() // 2 or 1) as executor:
+ futures = {executor.submit(process_frame, t): t for t in tasks}
+ for future in as_completed(futures):
+ error_msg = future.result()
+ if error_msg:
+ tqdm.write(error_msg)
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Process video frames and associated camera metadata."
+ )
+ parser.add_argument(
+ "--root_dir",
+ required=True,
+ help="Directory containing sequence folders with .png images.",
+ )
+ parser.add_argument(
+ "--info_dir", required=True, help="Directory containing metadata .txt files."
+ )
+ parser.add_argument(
+ "--out_dir", required=True, help="Output directory for processed data."
+ )
+ args = parser.parse_args()
+
+ # Gather a list of sequences (each sequence is a folder under root_dir)
+ if not os.path.isdir(args.root_dir):
+ raise FileNotFoundError(f"Root directory not found: {args.root_dir}")
+
+ seqs = [
+ d
+ for d in os.listdir(args.root_dir)
+ if os.path.isdir(os.path.join(args.root_dir, d))
+ ]
+ if not seqs:
+ raise ValueError(f"No sequence folders found in {args.root_dir}.")
+
+ # Process each sequence
+ for seq in tqdm(seqs, desc="Sequences"):
+ process_sequence(seq, args.root_dir, args.info_dir, args.out_dir)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_scannet.py b/extern/CUT3R/datasets_preprocess/preprocess_scannet.py
new file mode 100644
index 0000000000000000000000000000000000000000..cd8af83640975e39d0bdddd26d41c42be3934a99
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_scannet.py
@@ -0,0 +1,91 @@
+import argparse
+import random
+import gzip
+import json
+import os
+import os.path as osp
+
+import torch
+import PIL.Image
+from PIL import Image
+import numpy as np
+import cv2
+import multiprocessing
+from tqdm import tqdm
+import matplotlib.pyplot as plt
+import shutil
+import path_to_root # noqa
+import datasets_preprocess.utils.cropping as cropping # noqa
+
+
+def get_parser():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--scannet_dir", default="data/data_scannet")
+ parser.add_argument("--output_dir", default="data/dust3r_data/processed_scannet")
+ return parser
+
+
+def process_scene(args):
+ rootdir, outdir, split, scene = args
+ frame_dir = osp.join(rootdir, split, scene)
+ rgb_dir = osp.join(frame_dir, "color")
+ depth_dir = osp.join(frame_dir, "depth")
+ pose_dir = osp.join(frame_dir, "pose")
+ depth_intrinsic = np.loadtxt(
+ osp.join(frame_dir, "intrinsic", "intrinsic_depth.txt")
+ )[:3, :3].astype(np.float32)
+ color_intrinsic = np.loadtxt(
+ osp.join(frame_dir, "intrinsic", "intrinsic_color.txt")
+ )[:3, :3].astype(np.float32)
+ if not np.isfinite(depth_intrinsic).all() or not np.isfinite(color_intrinsic).all():
+ return
+ os.makedirs(osp.join(outdir, split, scene), exist_ok=True)
+ frame_num = len(os.listdir(rgb_dir))
+ assert frame_num == len(os.listdir(depth_dir)) == len(os.listdir(pose_dir))
+ out_rgb_dir = osp.join(outdir, split, scene, "color")
+ out_depth_dir = osp.join(outdir, split, scene, "depth")
+ out_cam_dir = osp.join(outdir, split, scene, "cam")
+
+ os.makedirs(out_rgb_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+ for i in tqdm(range(frame_num)):
+ rgb_path = osp.join(rgb_dir, f"{i}.jpg")
+ depth_path = osp.join(depth_dir, f"{i}.png")
+ pose_path = osp.join(pose_dir, f"{i}.txt")
+
+ rgb = Image.open(rgb_path)
+ depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
+ rgb = rgb.resize(depth.shape[::-1], resample=Image.Resampling.LANCZOS)
+ pose = np.loadtxt(pose_path).reshape(4, 4).astype(np.float32)
+ if not np.isfinite(pose).all():
+ continue
+
+ out_rgb_path = osp.join(out_rgb_dir, f"{i:05d}.jpg")
+ out_depth_path = osp.join(out_depth_dir, f"{i:05d}.png")
+ out_cam_path = osp.join(out_cam_dir, f"{i:05d}.npz")
+ np.savez(out_cam_path, intrinsics=depth_intrinsic, pose=pose)
+ rgb.save(out_rgb_path)
+ cv2.imwrite(out_depth_path, depth)
+
+
+def main(rootdir, outdir):
+ os.makedirs(outdir, exist_ok=True)
+ splits = ["scans_test", "scans_train"]
+ pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
+
+ for split in splits:
+ scenes = [
+ f
+ for f in os.listdir(os.path.join(rootdir, split))
+ if os.path.isdir(osp.join(rootdir, split, f))
+ ]
+ pool.map(process_scene, [(rootdir, outdir, split, scene) for scene in scenes])
+ pool.close()
+ pool.join()
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ main(args.scannet_dir, args.output_dir)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_scannetpp.py b/extern/CUT3R/datasets_preprocess/preprocess_scannetpp.py
new file mode 100644
index 0000000000000000000000000000000000000000..cf24c795c25621ffbb6daaf69474763aefc32863
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_scannetpp.py
@@ -0,0 +1,477 @@
+#!/usr/bin/env python3
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Script to pre-process the scannet++ dataset.
+# Usage:
+# python3 datasets_preprocess/preprocess_scannetpp.py --scannetpp_dir /path/to/scannetpp --precomputed_pairs /path/to/scannetpp_pairs --pyopengl-platform egl
+# --------------------------------------------------------
+import os
+import argparse
+import os.path as osp
+import re
+from tqdm import tqdm
+import json
+from scipy.spatial.transform import Rotation
+import pyrender
+import trimesh
+import trimesh.exchange.ply
+import numpy as np
+import cv2
+import PIL.Image as Image
+
+from datasets_preprocess.utils.cropping import rescale_image_depthmap
+import dust3r.utils.geometry as geometry
+
+inv = np.linalg.inv
+norm = np.linalg.norm
+REGEXPR_DSLR = re.compile(r"^DSC(?P\d+).JPG$")
+REGEXPR_IPHONE = re.compile(r"frame_(?P\d+).jpg$")
+
+DEBUG_VIZ = None # 'iou'
+if DEBUG_VIZ is not None:
+ import matplotlib.pyplot as plt # noqa
+
+
+OPENGL_TO_OPENCV = np.float32(
+ [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]
+)
+
+
+def get_parser():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--scannetpp_dir", required=True)
+ parser.add_argument("--precomputed_pairs", required=True)
+ parser.add_argument("--output_dir", default="data/scannetpp_processed")
+ parser.add_argument(
+ "--target_resolution", default=920, type=int, help="images resolution"
+ )
+ parser.add_argument(
+ "--pyopengl-platform", type=str, default="", help="PyOpenGL env variable"
+ )
+ return parser
+
+
+def pose_from_qwxyz_txyz(elems):
+ qw, qx, qy, qz, tx, ty, tz = map(float, elems)
+ pose = np.eye(4)
+ pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix()
+ pose[:3, 3] = (tx, ty, tz)
+ return np.linalg.inv(pose) # returns cam2world
+
+
+def get_frame_number(name, cam_type="dslr"):
+ if cam_type == "dslr":
+ regex_expr = REGEXPR_DSLR
+ elif cam_type == "iphone":
+ regex_expr = REGEXPR_IPHONE
+ else:
+ raise NotImplementedError(f"wrong {cam_type=} for get_frame_number")
+ matches = re.match(regex_expr, name)
+ return matches["frameid"]
+
+
+def load_sfm(sfm_dir, cam_type="dslr"):
+ # load cameras
+ with open(osp.join(sfm_dir, "cameras.txt"), "r") as f:
+ raw = f.read().splitlines()[3:] # skip header
+
+ intrinsics = {}
+ for camera in tqdm(raw, position=1, leave=False):
+ camera = camera.split(" ")
+ intrinsics[int(camera[0])] = [camera[1]] + [float(cam) for cam in camera[2:]]
+
+ # load images
+ with open(os.path.join(sfm_dir, "images.txt"), "r") as f:
+ raw = f.read().splitlines()
+ raw = [line for line in raw if not line.startswith("#")] # skip header
+
+ img_idx = {}
+ img_infos = {}
+ for image, points in tqdm(
+ zip(raw[0::2], raw[1::2]), total=len(raw) // 2, position=1, leave=False
+ ):
+ image = image.split(" ")
+ points = points.split(" ")
+
+ idx = image[0]
+ img_name = image[-1]
+ assert img_name not in img_idx, "duplicate db image: " + img_name
+ img_idx[img_name] = idx # register image name
+
+ current_points2D = {
+ int(i): (float(x), float(y))
+ for i, x, y in zip(points[2::3], points[0::3], points[1::3])
+ if i != "-1"
+ }
+ img_infos[idx] = dict(
+ intrinsics=intrinsics[int(image[-2])],
+ path=img_name,
+ frame_id=get_frame_number(img_name, cam_type),
+ cam_to_world=pose_from_qwxyz_txyz(image[1:-2]),
+ sparse_pts2d=current_points2D,
+ )
+
+ # load 3D points
+ with open(os.path.join(sfm_dir, "points3D.txt"), "r") as f:
+ raw = f.read().splitlines()
+ raw = [line for line in raw if not line.startswith("#")] # skip header
+
+ points3D = {}
+ observations = {idx: [] for idx in img_infos.keys()}
+ for point in tqdm(raw, position=1, leave=False):
+ point = point.split()
+ point_3d_idx = int(point[0])
+ points3D[point_3d_idx] = tuple(map(float, point[1:4]))
+ if len(point) > 8:
+ for idx, point_2d_idx in zip(point[8::2], point[9::2]):
+ observations[idx].append((point_3d_idx, int(point_2d_idx)))
+
+ return img_idx, img_infos, points3D, observations
+
+
+def subsample_img_infos(img_infos, num_images, allowed_name_subset=None):
+ img_infos_val = [(idx, val) for idx, val in img_infos.items()]
+ if allowed_name_subset is not None:
+ img_infos_val = [
+ (idx, val)
+ for idx, val in img_infos_val
+ if val["path"] in allowed_name_subset
+ ]
+
+ if len(img_infos_val) > num_images:
+ img_infos_val = sorted(img_infos_val, key=lambda x: x[1]["frame_id"])
+ kept_idx = (
+ np.round(np.linspace(0, len(img_infos_val) - 1, num_images))
+ .astype(int)
+ .tolist()
+ )
+ img_infos_val = [img_infos_val[idx] for idx in kept_idx]
+ return {idx: val for idx, val in img_infos_val}
+
+
+def undistort_images(intrinsics, rgb, mask):
+ camera_type = intrinsics[0]
+
+ width = int(intrinsics[1])
+ height = int(intrinsics[2])
+ fx = intrinsics[3]
+ fy = intrinsics[4]
+ cx = intrinsics[5]
+ cy = intrinsics[6]
+ distortion = np.array(intrinsics[7:])
+
+ K = np.zeros([3, 3])
+ K[0, 0] = fx
+ K[0, 2] = cx
+ K[1, 1] = fy
+ K[1, 2] = cy
+ K[2, 2] = 1
+
+ K = geometry.colmap_to_opencv_intrinsics(K)
+ if camera_type == "OPENCV_FISHEYE":
+ assert len(distortion) == 4
+
+ new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify(
+ K,
+ distortion,
+ (width, height),
+ np.eye(3),
+ balance=0.0,
+ )
+ # Make the cx and cy to be the center of the image
+ new_K[0, 2] = width / 2.0
+ new_K[1, 2] = height / 2.0
+
+ map1, map2 = cv2.fisheye.initUndistortRectifyMap(
+ K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1
+ )
+ else:
+ new_K, _ = cv2.getOptimalNewCameraMatrix(
+ K, distortion, (width, height), 1, (width, height), True
+ )
+ map1, map2 = cv2.initUndistortRectifyMap(
+ K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1
+ )
+
+ undistorted_image = cv2.remap(
+ rgb,
+ map1,
+ map2,
+ interpolation=cv2.INTER_LINEAR,
+ borderMode=cv2.BORDER_REFLECT_101,
+ )
+ undistorted_mask = cv2.remap(
+ mask,
+ map1,
+ map2,
+ interpolation=cv2.INTER_LINEAR,
+ borderMode=cv2.BORDER_CONSTANT,
+ borderValue=255,
+ )
+ K = geometry.opencv_to_colmap_intrinsics(K)
+ return width, height, new_K, undistorted_image, undistorted_mask
+
+
+def process_scenes(root, pairsdir, output_dir, target_resolution):
+ os.makedirs(output_dir, exist_ok=True)
+
+ # default values from
+ # https://github.com/scannetpp/scannetpp/blob/main/common/configs/render.yml
+ znear = 0.05
+ zfar = 20.0
+
+ listfile = osp.join(pairsdir, "scene_list.json")
+ with open(listfile, "r") as f:
+ scenes = json.load(f)
+
+ # for each of these, we will select some dslr images and some iphone images
+ # we will undistort them and render their depth
+ renderer = pyrender.OffscreenRenderer(0, 0)
+ for scene in tqdm(scenes, position=0, leave=True):
+ data_dir = os.path.join(root, "data", scene)
+ dir_dslr = os.path.join(data_dir, "dslr")
+ dir_iphone = os.path.join(data_dir, "iphone")
+ dir_scans = os.path.join(data_dir, "scans")
+
+ assert (
+ os.path.isdir(data_dir)
+ and os.path.isdir(dir_dslr)
+ and os.path.isdir(dir_iphone)
+ and os.path.isdir(dir_scans)
+ )
+
+ output_dir_scene = os.path.join(output_dir, scene)
+ scene_metadata_path = osp.join(output_dir_scene, "scene_metadata.npz")
+ if osp.isfile(scene_metadata_path):
+ continue
+
+ pairs_dir_scene = os.path.join(pairsdir, scene)
+ pairs_dir_scene_selected_pairs = os.path.join(
+ pairs_dir_scene, "selected_pairs.npz"
+ )
+ assert osp.isfile(pairs_dir_scene_selected_pairs)
+ selected_npz = np.load(pairs_dir_scene_selected_pairs)
+ selection, pairs = selected_npz["selection"], selected_npz["pairs"]
+
+ # set up the output paths
+ output_dir_scene_rgb = os.path.join(output_dir_scene, "images")
+ output_dir_scene_depth = os.path.join(output_dir_scene, "depth")
+ os.makedirs(output_dir_scene_rgb, exist_ok=True)
+ os.makedirs(output_dir_scene_depth, exist_ok=True)
+
+ ply_path = os.path.join(dir_scans, "mesh_aligned_0.05.ply")
+
+ sfm_dir_dslr = os.path.join(dir_dslr, "colmap")
+ rgb_dir_dslr = os.path.join(dir_dslr, "resized_images")
+ mask_dir_dslr = os.path.join(dir_dslr, "resized_anon_masks")
+
+ sfm_dir_iphone = os.path.join(dir_iphone, "colmap")
+ rgb_dir_iphone = os.path.join(dir_iphone, "rgb")
+ mask_dir_iphone = os.path.join(dir_iphone, "rgb_masks")
+
+ # load the mesh
+ with open(ply_path, "rb") as f:
+ mesh_kwargs = trimesh.exchange.ply.load_ply(f)
+ mesh_scene = trimesh.Trimesh(**mesh_kwargs)
+
+ # read colmap reconstruction, we will only use the intrinsics and pose here
+ img_idx_dslr, img_infos_dslr, points3D_dslr, observations_dslr = load_sfm(
+ sfm_dir_dslr, cam_type="dslr"
+ )
+ dslr_paths = {
+ "in_colmap": sfm_dir_dslr,
+ "in_rgb": rgb_dir_dslr,
+ "in_mask": mask_dir_dslr,
+ }
+
+ img_idx_iphone, img_infos_iphone, points3D_iphone, observations_iphone = (
+ load_sfm(sfm_dir_iphone, cam_type="iphone")
+ )
+ iphone_paths = {
+ "in_colmap": sfm_dir_iphone,
+ "in_rgb": rgb_dir_iphone,
+ "in_mask": mask_dir_iphone,
+ }
+
+ mesh = pyrender.Mesh.from_trimesh(mesh_scene, smooth=False)
+ pyrender_scene = pyrender.Scene()
+ pyrender_scene.add(mesh)
+
+ selection_dslr = [
+ imgname + ".JPG" for imgname in selection if imgname.startswith("DSC")
+ ]
+ selection_iphone = [
+ imgname + ".jpg" for imgname in selection if imgname.startswith("frame_")
+ ]
+
+ # resize the image to a more manageable size and render depth
+ for selection_cam, img_idx, img_infos, paths_data in [
+ (selection_dslr, img_idx_dslr, img_infos_dslr, dslr_paths),
+ (selection_iphone, img_idx_iphone, img_infos_iphone, iphone_paths),
+ ]:
+ rgb_dir = paths_data["in_rgb"]
+ mask_dir = paths_data["in_mask"]
+ for imgname in tqdm(selection_cam, position=1, leave=False):
+ imgidx = img_idx[imgname]
+ img_infos_idx = img_infos[imgidx]
+ rgb = np.array(Image.open(os.path.join(rgb_dir, img_infos_idx["path"])))
+ mask = np.array(
+ Image.open(
+ os.path.join(mask_dir, img_infos_idx["path"][:-3] + "png")
+ )
+ )
+
+ _, _, K, rgb, mask = undistort_images(
+ img_infos_idx["intrinsics"], rgb, mask
+ )
+
+ # rescale_image_depthmap assumes opencv intrinsics
+ intrinsics = geometry.colmap_to_opencv_intrinsics(K)
+ image, mask, intrinsics = rescale_image_depthmap(
+ rgb,
+ mask,
+ intrinsics,
+ (target_resolution, target_resolution * 3.0 / 4),
+ )
+
+ W, H = image.size
+ intrinsics = geometry.opencv_to_colmap_intrinsics(intrinsics)
+
+ # update inpace img_infos_idx
+ img_infos_idx["intrinsics"] = intrinsics
+ rgb_outpath = os.path.join(
+ output_dir_scene_rgb, img_infos_idx["path"][:-3] + "jpg"
+ )
+ image.save(rgb_outpath)
+
+ depth_outpath = os.path.join(
+ output_dir_scene_depth, img_infos_idx["path"][:-3] + "png"
+ )
+ # render depth image
+ renderer.viewport_width, renderer.viewport_height = W, H
+ fx, fy, cx, cy = (
+ intrinsics[0, 0],
+ intrinsics[1, 1],
+ intrinsics[0, 2],
+ intrinsics[1, 2],
+ )
+ camera = pyrender.camera.IntrinsicsCamera(
+ fx, fy, cx, cy, znear=znear, zfar=zfar
+ )
+ camera_node = pyrender_scene.add(
+ camera, pose=img_infos_idx["cam_to_world"] @ OPENGL_TO_OPENCV
+ )
+
+ depth = renderer.render(
+ pyrender_scene, flags=pyrender.RenderFlags.DEPTH_ONLY
+ )
+ pyrender_scene.remove_node(camera_node) # dont forget to remove camera
+
+ depth = (depth * 1000).astype("uint16")
+ # invalidate depth from mask before saving
+ depth_mask = mask < 255
+ depth[depth_mask] = 0
+ Image.fromarray(depth).save(depth_outpath)
+
+ trajectories = []
+ intrinsics = []
+ for imgname in selection:
+ if imgname.startswith("DSC"):
+ imgidx = img_idx_dslr[imgname + ".JPG"]
+ img_infos_idx = img_infos_dslr[imgidx]
+ elif imgname.startswith("frame_"):
+ imgidx = img_idx_iphone[imgname + ".jpg"]
+ img_infos_idx = img_infos_iphone[imgidx]
+ else:
+ raise ValueError("invalid image name")
+
+ intrinsics.append(img_infos_idx["intrinsics"])
+ trajectories.append(img_infos_idx["cam_to_world"])
+
+ intrinsics = np.stack(intrinsics, axis=0)
+ trajectories = np.stack(trajectories, axis=0)
+ # save metadata for this scene
+ np.savez(
+ scene_metadata_path,
+ trajectories=trajectories,
+ intrinsics=intrinsics,
+ images=selection,
+ pairs=pairs,
+ )
+
+ del img_infos
+ del pyrender_scene
+
+ # concat all scene_metadata.npz into a single file
+ scene_data = {}
+ for scene_subdir in scenes:
+ scene_metadata_path = osp.join(output_dir, scene_subdir, "scene_metadata.npz")
+ with np.load(scene_metadata_path) as data:
+ trajectories = data["trajectories"]
+ intrinsics = data["intrinsics"]
+ images = data["images"]
+ pairs = data["pairs"]
+ scene_data[scene_subdir] = {
+ "trajectories": trajectories,
+ "intrinsics": intrinsics,
+ "images": images,
+ "pairs": pairs,
+ }
+
+ offset = 0
+ counts = []
+ scenes = []
+ sceneids = []
+ images = []
+ intrinsics = []
+ trajectories = []
+ pairs = []
+ for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()):
+ num_imgs = data["images"].shape[0]
+ img_pairs = data["pairs"]
+
+ scenes.append(scene_subdir)
+ sceneids.extend([scene_idx] * num_imgs)
+
+ images.append(data["images"])
+
+ intrinsics.append(data["intrinsics"])
+ trajectories.append(data["trajectories"])
+
+ # offset pairs
+ img_pairs[:, 0:2] += offset
+ pairs.append(img_pairs)
+ counts.append(offset)
+
+ offset += num_imgs
+
+ images = np.concatenate(images, axis=0)
+ intrinsics = np.concatenate(intrinsics, axis=0)
+ trajectories = np.concatenate(trajectories, axis=0)
+ pairs = np.concatenate(pairs, axis=0)
+ np.savez(
+ osp.join(output_dir, "all_metadata.npz"),
+ counts=counts,
+ scenes=scenes,
+ sceneids=sceneids,
+ images=images,
+ intrinsics=intrinsics,
+ trajectories=trajectories,
+ pairs=pairs,
+ )
+ print("all done")
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ if args.pyopengl_platform.strip():
+ os.environ["PYOPENGL_PLATFORM"] = args.pyopengl_platform
+ process_scenes(
+ args.scannetpp_dir,
+ args.precomputed_pairs,
+ args.output_dir,
+ args.target_resolution,
+ )
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_smartportraits.py b/extern/CUT3R/datasets_preprocess/preprocess_smartportraits.py
new file mode 100644
index 0000000000000000000000000000000000000000..9bd7178fb05e83084b25d6e59ad692eb8e6975ec
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_smartportraits.py
@@ -0,0 +1,174 @@
+#!/usr/bin/env python3
+"""
+Preprocess Script for SmartPortraits Dataset
+
+This script processes each sequence in a specified input directory. Each sequence must contain:
+ - An "association.txt" file listing (timestamp_rgb, rgb_filename, timestamp_depth, depth_filename)
+ - Pairs of .png files (one for RGB and one for depth)
+
+The script copies each RGB .png file to an output "rgb" folder and converts each 16-bit depth
+image to a float32 .npy file in an output "depth" folder. It runs in parallel using
+ProcessPoolExecutor for faster performance on multi-core systems.
+
+Usage:
+ python preprocess_smartportraits.py \
+ --input_dir /path/to/processed_smartportraits1 \
+ --output_dir /path/to/processed_smartportraits
+"""
+
+import os
+import shutil
+import argparse
+import numpy as np
+import cv2
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor, as_completed
+
+
+def process_pair(args):
+ """
+ Process a single (RGB, depth) pair by:
+ - Reading the depth .png file and converting it to float32 (depth_in_meters = depth_val / 5000).
+ - Copying the RGB file to the output directory.
+ - Saving the converted depth to a .npy file.
+
+ Args:
+ args (tuple): A tuple containing:
+ - seq_dir (str): Path to the sequence directory.
+ - seq (str): The name of the current sequence.
+ - pair_index (int): Index of the pair in the association file (for naming outputs).
+ - pair (tuple): (rgb_filename, depth_filename).
+ - out_rgb_dir (str): Output directory for RGB images.
+ - out_depth_dir (str): Output directory for depth .npy files.
+
+ Returns:
+ None or str:
+ - Returns None upon successful processing.
+ - Returns an error message (str) if something fails.
+ """
+ seq_dir, seq, pair_index, pair, out_rgb_dir, out_depth_dir = args
+ out_rgb_path = os.path.join(out_rgb_dir, f"{pair_index:06d}.png")
+ out_depth_path = os.path.join(out_depth_dir, f"{pair_index:06d}.npy")
+
+ # Skip if both output files already exist
+ if os.path.exists(out_rgb_path) and os.path.exists(out_depth_path):
+ return None
+
+ try:
+ rgb_path = os.path.join(seq_dir, pair[0])
+ depth_path = os.path.join(seq_dir, pair[1])
+
+ if not os.path.isfile(rgb_path):
+ return f"RGB image not found: {rgb_path}"
+ if not os.path.isfile(depth_path):
+ return f"Depth image not found: {depth_path}"
+
+ # Read the 16-bit depth file
+ depth = cv2.imread(depth_path, cv2.IMREAD_ANYDEPTH)
+ if depth is None:
+ return f"Failed to read depth image: {depth_path}"
+
+ # Convert depth values to float32, scale by 1/5000
+ depth = depth.astype(np.float32) / 5000.0
+
+ # Copy the RGB image
+ shutil.copyfile(rgb_path, out_rgb_path)
+
+ # Save depth as a .npy file
+ np.save(out_depth_path, depth)
+
+ except Exception as e:
+ return f"Error processing pair {pair_index} in sequence '{seq}': {e}"
+
+ return None
+
+
+def process_sequence(seq, input_dir, output_dir):
+ """
+ Process all (RGB, depth) pairs within a single sequence directory.
+
+ Args:
+ seq (str): Name of the sequence (subdirectory).
+ input_dir (str): Base input directory containing all sequences.
+ output_dir (str): Base output directory where processed data will be stored.
+ """
+ seq_dir = os.path.join(input_dir, seq)
+ assoc_file = os.path.join(seq_dir, "association.txt")
+
+ # If the association file does not exist, skip this sequence
+ if not os.path.isfile(assoc_file):
+ tqdm.write(f"No association.txt found for sequence {seq}. Skipping.")
+ return
+
+ # Prepare output directories
+ out_rgb_dir = os.path.join(output_dir, seq, "rgb")
+ out_depth_dir = os.path.join(output_dir, seq, "depth")
+ os.makedirs(out_rgb_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+
+ # Read the association file
+ pairs = []
+ with open(assoc_file, "r") as f:
+ for line in f:
+ items = line.strip().split()
+ # Format:
+ if len(items) < 4:
+ continue
+ rgb_file = items[1]
+ depth_file = items[3]
+ pairs.append((rgb_file, depth_file))
+
+ # Build a list of tasks for parallel processing
+ tasks = []
+ for i, pair in enumerate(pairs):
+ task_args = (seq_dir, seq, i, pair, out_rgb_dir, out_depth_dir)
+ tasks.append(task_args)
+
+ # Process pairs in parallel
+ num_workers = max(1, os.cpu_count() or 1)
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ futures = {executor.submit(process_pair, t): t for t in tasks}
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc=f"Processing sequence {seq}"
+ ):
+ error = future.result()
+ if error:
+ tqdm.write(error)
+
+
+def main():
+ parser = argparse.ArgumentParser(description="Preprocess SmartPortraits dataset.")
+ parser.add_argument(
+ "--input_dir",
+ required=True,
+ help="Path to the directory containing all sequences with association.txt files.",
+ )
+ parser.add_argument(
+ "--output_dir",
+ required=True,
+ help="Path to the directory where processed results will be saved.",
+ )
+ args = parser.parse_args()
+
+ # Gather sequences
+ if not os.path.isdir(args.input_dir):
+ raise ValueError(f"Input directory not found: {args.input_dir}")
+
+ seqs = sorted(
+ [
+ d
+ for d in os.listdir(args.input_dir)
+ if os.path.isdir(os.path.join(args.input_dir, d))
+ ]
+ )
+
+ if not seqs:
+ raise ValueError(f"No valid subdirectories found in {args.input_dir}")
+
+ # Process each sequence
+ for seq in tqdm(seqs, desc="Sequences"):
+ process_sequence(seq, args.input_dir, args.output_dir)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_spring.py b/extern/CUT3R/datasets_preprocess/preprocess_spring.py
new file mode 100644
index 0000000000000000000000000000000000000000..0dd3e9c0ee5efb31ebb04acab95bb8fc4a94ee9e
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_spring.py
@@ -0,0 +1,318 @@
+#!/usr/bin/env python3
+"""
+Preprocessing Script for Spring Dataset
+
+This script:
+ - Recursively processes each sequence in a given 'root_dir' for the Spring dataset.
+ - Reads RGB, disparity, optical flow files, and camera intrinsics/extrinsics.
+ - Converts disparity to depth, rescales images/flows, and writes processed results
+ (RGB, Depth, Cam intrinsics/poses, Forward Flow, Backward Flow) to 'out_dir'.
+
+Usage:
+ python preprocess_spring.py \
+ --root_dir /path/to/spring/train \
+ --out_dir /path/to/processed_spring \
+ --baseline 0.065 \
+ --output_size 960 540
+
+"""
+
+import os
+import argparse
+import numpy as np
+import cv2
+from PIL import Image
+import shutil
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor, as_completed
+
+# Custom modules (adapt these imports to your actual module locations)
+import flow_IO
+import src.dust3r.datasets.utils.cropping as cropping
+
+
+def rescale_flow(flow, size):
+ """
+ Resize an optical flow field to a new resolution and scale its vectors accordingly.
+
+ Args:
+ flow (np.ndarray): Flow array of shape [H, W, 2].
+ size (tuple): Desired (width, height) for the resized flow.
+
+ Returns:
+ np.ndarray: Resized and scaled flow array.
+ """
+ h, w = flow.shape[:2]
+ new_w, new_h = size
+
+ # Resize the flow map
+ flow_resized = cv2.resize(
+ flow.astype("float32"), (new_w, new_h), interpolation=cv2.INTER_LINEAR
+ )
+
+ # Scale the flow vectors to match the new resolution
+ flow_resized[..., 0] *= new_w / w
+ flow_resized[..., 1] *= new_h / h
+
+ return flow_resized
+
+
+def get_depth(disparity, fx_baseline):
+ """
+ Convert disparity to depth using baseline * focal_length / disparity.
+
+ Args:
+ disparity (np.ndarray): Disparity map (same resolution as the RGB).
+ fx_baseline (float): Product of the focal length (fx) and baseline.
+
+ Returns:
+ np.ndarray: Depth map.
+ """
+ # Avoid divide-by-zero
+ depth = np.zeros_like(disparity, dtype=np.float32)
+ valid_mask = disparity != 0
+ depth[valid_mask] = fx_baseline / disparity[valid_mask]
+ return depth
+
+
+def process_sequence(seq, root_dir, out_dir, baseline, output_size):
+ """
+ Process a single sequence from the Spring dataset:
+ - Reads RGB frames, disparity maps, forward/backward optical flow, intrinsics, extrinsics.
+ - Converts disparity to depth.
+ - Rescales images, depth, and flow to the specified 'output_size'.
+ - Saves the processed data to the output directory.
+
+ Args:
+ seq (str): Name of the sequence (subdirectory).
+ root_dir (str): Root directory containing the Spring dataset sequences.
+ out_dir (str): Output directory to store processed files.
+ baseline (float): Stereo baseline for disparity-to-depth conversion (SPRING_BASELINE).
+ output_size (tuple): (width, height) for output images and flows.
+
+ Returns:
+ None or str:
+ - Returns None if processing is successful.
+ - Returns an error message (str) if an error occurs.
+ """
+ seq_dir = os.path.join(root_dir, seq)
+ img_dir = os.path.join(seq_dir, "frame_left")
+ disp1_dir = os.path.join(seq_dir, "disp1_left")
+ fflow_dir = os.path.join(seq_dir, "flow_FW_left")
+ bflow_dir = os.path.join(seq_dir, "flow_BW_left")
+ intrinsics_path = os.path.join(seq_dir, "cam_data", "intrinsics.txt")
+ extrinsics_path = os.path.join(seq_dir, "cam_data", "extrinsics.txt")
+
+ try:
+ # Check required files/folders
+ for path in (
+ img_dir,
+ disp1_dir,
+ fflow_dir,
+ bflow_dir,
+ intrinsics_path,
+ extrinsics_path,
+ ):
+ if not os.path.exists(path):
+ return f"Missing required path: {path}"
+
+ # Prepare output directories
+ out_img_dir = os.path.join(out_dir, seq, "rgb")
+ out_depth_dir = os.path.join(out_dir, seq, "depth")
+ out_cam_dir = os.path.join(out_dir, seq, "cam")
+ out_fflow_dir = os.path.join(out_dir, seq, "flow_forward")
+ out_bflow_dir = os.path.join(out_dir, seq, "flow_backward")
+ for d in [
+ out_img_dir,
+ out_depth_dir,
+ out_cam_dir,
+ out_fflow_dir,
+ out_bflow_dir,
+ ]:
+ os.makedirs(d, exist_ok=True)
+
+ # Read camera data
+ all_intrinsics = np.loadtxt(intrinsics_path)
+ all_extrinsics = np.loadtxt(extrinsics_path)
+
+ # Collect filenames
+ rgbs = sorted([f for f in os.listdir(img_dir) if f.endswith(".png")])
+ disps = sorted([f for f in os.listdir(disp1_dir) if f.endswith(".dsp5")])
+ fflows = sorted([f for f in os.listdir(fflow_dir) if f.endswith(".flo5")])
+ bflows = sorted([f for f in os.listdir(bflow_dir) if f.endswith(".flo5")])
+
+ # Basic consistency check
+ if not (len(all_intrinsics) == len(all_extrinsics) == len(rgbs) == len(disps)):
+ return (
+ f"Inconsistent lengths in {seq}: "
+ f"Intrinsics {len(all_intrinsics)}, "
+ f"Extrinsics {len(all_extrinsics)}, "
+ f"RGBs {len(rgbs)}, "
+ f"Disparities {len(disps)}"
+ )
+ # Note: fflows+1 == len(all_intrinsics), bflows+1 == len(all_intrinsics)
+
+ # Check if already processed
+ if len(os.listdir(out_img_dir)) == len(rgbs):
+ return None # Already done, skip
+
+ # Process each frame
+ for i in tqdm(
+ range(len(all_intrinsics)), desc=f"Processing {seq}", leave=False
+ ):
+ frame_num = i + 1 # frames appear as 1-based in filenames
+ img_path = os.path.join(img_dir, f"frame_left_{frame_num:04d}.png")
+ disp1_path = os.path.join(disp1_dir, f"disp1_left_{frame_num:04d}.dsp5")
+ fflow_path = None
+ bflow_path = None
+
+ if i < len(all_intrinsics) - 1:
+ fflow_path = os.path.join(
+ fflow_dir, f"flow_FW_left_{frame_num:04d}.flo5"
+ )
+ if i > 0:
+ bflow_path = os.path.join(
+ bflow_dir, f"flow_BW_left_{frame_num:04d}.flo5"
+ )
+
+ # Load image
+ image = Image.open(img_path).convert("RGB")
+
+ # Build the intrinsics matrix
+ K = np.eye(3, dtype=np.float32)
+ K[0, 0] = all_intrinsics[i][0] # fx
+ K[1, 1] = all_intrinsics[i][1] # fy
+ K[0, 2] = all_intrinsics[i][2] # cx
+ K[1, 2] = all_intrinsics[i][3] # cy
+
+ # Build the pose
+ cam_ext = all_extrinsics[i].reshape(4, 4)
+ pose = np.linalg.inv(cam_ext).astype(np.float32)
+ if np.any(np.isinf(pose)) or np.any(np.isnan(pose)):
+ return f"Invalid pose for frame {i} in {seq}"
+
+ # Load disparity
+ disp1 = flow_IO.readDispFile(disp1_path)
+ # Subsample by 2
+ disp1 = disp1[::2, ::2]
+
+ # Convert disparity to depth
+ fx_baseline = all_intrinsics[i][0] * baseline # fx * baseline
+ depth = get_depth(disp1, fx_baseline)
+ depth[np.isinf(depth)] = 0.0
+ depth[np.isnan(depth)] = 0.0
+
+ # Load optical flows if available
+ fflow = None
+ bflow = None
+ if fflow_path and os.path.exists(fflow_path):
+ fflow = flow_IO.readFlowFile(fflow_path)
+ fflow = fflow[::2, ::2]
+ if bflow_path and os.path.exists(bflow_path):
+ bflow = flow_IO.readFlowFile(bflow_path)
+ bflow = bflow[::2, ::2]
+
+ # Rescale image, depth, and intrinsics
+ image, depth, K_scaled = cropping.rescale_image_depthmap(
+ image, depth, K, output_size
+ )
+ W_new, H_new = image.size # after rescale_image_depthmap
+
+ # Rescale forward/backward flow
+ if fflow is not None:
+ fflow = rescale_flow(fflow, (W_new, H_new))
+ if bflow is not None:
+ bflow = rescale_flow(bflow, (W_new, H_new))
+
+ # Save output
+ out_index_str = f"{i:04d}"
+ out_img_path = os.path.join(out_img_dir, out_index_str + ".png")
+ image.save(out_img_path)
+
+ out_depth_path = os.path.join(out_depth_dir, out_index_str + ".npy")
+ np.save(out_depth_path, depth)
+
+ out_cam_path = os.path.join(out_cam_dir, out_index_str + ".npz")
+ np.savez(out_cam_path, intrinsics=K_scaled, pose=pose)
+
+ if fflow is not None:
+ out_fflow_path = os.path.join(out_fflow_dir, out_index_str + ".npy")
+ np.save(out_fflow_path, fflow)
+ if bflow is not None:
+ out_bflow_path = os.path.join(out_bflow_dir, out_index_str + ".npy")
+ np.save(out_bflow_path, bflow)
+
+ except Exception as e:
+ return f"Error processing sequence {seq}: {e}"
+
+ return None # success
+
+
+def main():
+ parser = argparse.ArgumentParser(description="Preprocess Spring dataset.")
+ parser.add_argument(
+ "--root_dir",
+ required=True,
+ help="Path to the root directory containing Spring dataset sequences.",
+ )
+ parser.add_argument(
+ "--out_dir",
+ required=True,
+ help="Path to the output directory where processed files will be saved.",
+ )
+ parser.add_argument(
+ "--baseline",
+ type=float,
+ default=0.065,
+ help="Stereo baseline for disparity-to-depth conversion (default: 0.065).",
+ )
+ parser.add_argument(
+ "--output_size",
+ type=int,
+ nargs=2,
+ default=[960, 540],
+ help="Output image size (width height) for rescaling.",
+ )
+ args = parser.parse_args()
+
+ # Gather sequences
+ if not os.path.isdir(args.root_dir):
+ raise ValueError(f"Root directory not found: {args.root_dir}")
+ os.makedirs(args.out_dir, exist_ok=True)
+
+ seqs = sorted(
+ [
+ d
+ for d in os.listdir(args.root_dir)
+ if os.path.isdir(os.path.join(args.root_dir, d))
+ ]
+ )
+ if not seqs:
+ raise ValueError(f"No valid sequence folders found in {args.root_dir}")
+
+ # Process each sequence in parallel
+ with ProcessPoolExecutor(max_workers=os.cpu_count() // 2) as executor:
+ future_to_seq = {
+ executor.submit(
+ process_sequence,
+ seq,
+ args.root_dir,
+ args.out_dir,
+ args.baseline,
+ args.output_size,
+ ): seq
+ for seq in seqs
+ }
+ for future in tqdm(
+ as_completed(future_to_seq),
+ total=len(future_to_seq),
+ desc="Processing all sequences",
+ ):
+ seq = future_to_seq[future]
+ error = future.result()
+ if error:
+ print(f"Sequence '{seq}' failed: {error}")
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_synscapes.py b/extern/CUT3R/datasets_preprocess/preprocess_synscapes.py
new file mode 100644
index 0000000000000000000000000000000000000000..b85c4ab0a712b078e437256c4e0f639c122966c5
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_synscapes.py
@@ -0,0 +1,228 @@
+#!/usr/bin/env python3
+"""
+Preprocess Synscapes Data
+
+This script processes Synscapes data by:
+ 1. Copying the RGB images.
+ 2. Reading the EXR depth data and saving it as .npy.
+ 3. Generating a sky mask using the class labels.
+ 4. Extracting camera intrinsics from the meta file.
+
+The directory structure is expected to be:
+ synscapes_dir/
+ img/
+ rgb/
+ depth/
+ class/
+ meta/
+ Each file shares the same base name, e.g. 000000.png/exr in corresponding folders.
+
+Usage:
+ python preprocess_synscapes.py \
+ --synscapes_dir /path/to/Synscapes/Synscapes \
+ --output_dir /path/to/processed_synscapes
+"""
+
+import os
+import json
+import shutil
+import argparse
+import numpy as np
+import cv2
+import OpenEXR
+from tqdm import tqdm
+
+# Enable EXR support in OpenCV if desired:
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+
+
+def process_basename(
+ basename,
+ rgb_dir,
+ depth_dir,
+ class_dir,
+ meta_dir,
+ out_rgb_dir,
+ out_depth_dir,
+ out_mask_dir,
+ out_cam_dir,
+ sky_id=23,
+):
+ """
+ Process a single sample of the Synscapes dataset:
+ 1. Reads an RGB .png and depth .exr file.
+ 2. Reads a class label .png, generating a sky mask.
+ 3. Reads camera intrinsics from the meta .json file.
+ 4. Saves the resulting data to the specified output folders.
+
+ Args:
+ basename (str): The base filename (without extension).
+ rgb_dir (str): Directory containing RGB .png files.
+ depth_dir (str): Directory containing depth .exr files.
+ class_dir (str): Directory containing class .png files.
+ meta_dir (str): Directory containing camera metadata .json files.
+ out_rgb_dir (str): Output directory for RGB files.
+ out_depth_dir (str): Output directory for depth .npy files.
+ out_mask_dir (str): Output directory for sky masks.
+ out_cam_dir (str): Output directory for camera intrinsics (.npz).
+ sky_id (int): Class ID for sky pixels in the class label images.
+
+ Returns:
+ None or str:
+ If an error occurs, returns an error message (str). Otherwise, returns None.
+ """
+ try:
+ # Input file paths
+ rgb_file = os.path.join(rgb_dir, f"{basename}.png")
+ depth_file = os.path.join(depth_dir, f"{basename}.exr")
+ class_file = os.path.join(class_dir, f"{basename}.png")
+ meta_file = os.path.join(meta_dir, f"{basename}.json")
+
+ # Output file paths
+ out_img_path = os.path.join(out_rgb_dir, f"{basename}.png")
+ out_depth_path = os.path.join(out_depth_dir, f"{basename}.npy")
+ out_mask_path = os.path.join(out_mask_dir, f"{basename}.png")
+ out_cam_path = os.path.join(out_cam_dir, f"{basename}.npz")
+
+ # --- Read Depth Data ---
+ # If you want to use OpenEXR directly (matching your code), do so here:
+ exr_file = OpenEXR.InputFile(depth_file)
+ # e.g. reading "Z" channel. Adjust channel name as needed.
+ # It's possible that the data is stored in multiple channels (R/G/B or separate "Z").
+ # Check your file structure to match the correct channel name.
+ # The snippet below is just an example approach using .parts and .channels.
+ # If your EXR file is a single-part file with a standard channel, you'd do something like:
+ # depth = np.frombuffer(exr_file.channel('Z', Imath.PixelType(Imath.PixelType.FLOAT)), dtype=np.float32)
+ # The way you've shown "parts[0].channels['Z'].pixels" may or may not be valid for your version of PyOpenEXR.
+
+ # This example code is approximate and may need to be adapted:
+ # If your version of OpenEXR has a different interface, change accordingly.
+ # The snippet below won't work unless you install a specific PyOpenEXR wrapper that supports .parts, .channels, etc.
+ #
+ # For demonstration, let's assume a single-part EXR with channel 'Z':
+ # depth_data = exr_file.channel('Z') # returns raw bytes
+ # depth = np.frombuffer(depth_data, dtype=np.float32).reshape((height, width)) # you need to know (height, width) or read header
+
+ # As you mentioned "np.array(OpenEXR.File(depth_file).parts[0].channels['Z'].pixels)",
+ # let's keep it consistent with your original snippet:
+ depth = np.array(OpenEXR.InputFile(depth_file).parts[0].channels["Z"].pixels)
+
+ # --- Read Class Image (for Sky Mask) ---
+ class_img = cv2.imread(class_file, cv2.IMREAD_UNCHANGED)
+ # Create sky mask
+ sky_mask = (class_img == sky_id).astype(np.uint8) * 255
+
+ # --- Read Meta Data (for Camera Intrinsics) ---
+ with open(meta_file, "r") as f:
+ cam_info = json.load(f)["camera"]
+ intrinsic = cam_info["intrinsic"]
+ fx, fy, cx, cy = (
+ intrinsic["fx"],
+ intrinsic["fy"],
+ intrinsic["u0"],
+ intrinsic["v0"],
+ )
+
+ K = np.eye(3, dtype=np.float32)
+ K[0, 0] = fx
+ K[1, 1] = fy
+ K[0, 2] = cx
+ K[1, 2] = cy
+
+ # --- Copy RGB ---
+ shutil.copy(rgb_file, out_img_path)
+
+ # --- Save Depth, Mask, and Intrinsics ---
+ np.save(out_depth_path, depth)
+ cv2.imwrite(out_mask_path, sky_mask)
+ np.savez(out_cam_path, intrinsics=K)
+
+ except Exception as e:
+ return f"Error processing {basename}: {e}"
+
+ return None
+
+
+def main():
+ parser = argparse.ArgumentParser(description="Preprocess Synscapes data.")
+ parser.add_argument(
+ "--synscapes_dir",
+ required=True,
+ help="Path to the main Synscapes directory (contains 'img' and 'meta' folders).",
+ )
+ parser.add_argument(
+ "--output_dir",
+ required=True,
+ help="Path to the output directory for processed data.",
+ )
+ parser.add_argument(
+ "--sky_id",
+ type=int,
+ default=23,
+ help="Class ID for sky pixels in class .png. Default is 23.",
+ )
+ args = parser.parse_args()
+
+ synscapes_dir = os.path.abspath(args.synscapes_dir)
+ output_dir = os.path.abspath(args.output_dir)
+ os.makedirs(output_dir, exist_ok=True)
+
+ # Define input subdirectories
+ rgb_dir = os.path.join(synscapes_dir, "img", "rgb")
+ depth_dir = os.path.join(synscapes_dir, "img", "depth")
+ class_dir = os.path.join(synscapes_dir, "img", "class")
+ meta_dir = os.path.join(synscapes_dir, "meta")
+
+ # Define output subdirectories
+ out_rgb_dir = os.path.join(output_dir, "rgb")
+ out_depth_dir = os.path.join(output_dir, "depth")
+ out_mask_dir = os.path.join(output_dir, "sky_mask")
+ out_cam_dir = os.path.join(output_dir, "cam")
+ for d in [out_rgb_dir, out_depth_dir, out_mask_dir, out_cam_dir]:
+ os.makedirs(d, exist_ok=True)
+
+ # Collect all EXR depth filenames (excluding extension)
+ basenames = sorted(
+ [
+ os.path.splitext(fname)[0]
+ for fname in os.listdir(depth_dir)
+ if fname.endswith(".exr")
+ ]
+ )
+
+ # Parallel processing
+ from concurrent.futures import ProcessPoolExecutor, as_completed
+
+ num_workers = max(1, os.cpu_count() // 2)
+
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ future_to_basename = {
+ executor.submit(
+ process_basename,
+ bname,
+ rgb_dir,
+ depth_dir,
+ class_dir,
+ meta_dir,
+ out_rgb_dir,
+ out_depth_dir,
+ out_mask_dir,
+ out_cam_dir,
+ args.sky_id,
+ ): bname
+ for bname in basenames
+ }
+
+ for future in tqdm(
+ as_completed(future_to_basename),
+ total=len(future_to_basename),
+ desc="Processing Synscapes",
+ ):
+ basename = future_to_basename[future]
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_tartanair.py b/extern/CUT3R/datasets_preprocess/preprocess_tartanair.py
new file mode 100644
index 0000000000000000000000000000000000000000..c726ef9b4f371e4310d9710b292cd6a5c33f0bd9
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_tartanair.py
@@ -0,0 +1,115 @@
+import argparse
+import random
+import gzip
+import json
+import os
+import os.path as osp
+import torch
+import PIL.Image
+from PIL import Image
+import numpy as np
+import cv2
+from tqdm import tqdm
+import matplotlib.pyplot as plt
+import shutil
+import src.dust3r.datasets.utils.cropping as cropping # noqa
+from scipy.spatial.transform import Rotation as R
+
+
+def get_parser():
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--tartanair_dir",
+ default="data/tartanair",
+ )
+ parser.add_argument(
+ "--output_dir",
+ default="data/mast3r_data/processed_tartanair",
+ )
+ return parser
+
+
+def main(rootdir, outdir):
+ os.makedirs(outdir, exist_ok=True)
+ envs = [
+ f for f in sorted(os.listdir(rootdir)) if os.path.isdir(osp.join(rootdir, f))
+ ]
+ for env in tqdm(envs):
+ for difficulty in ["Easy", "Hard"]:
+ subscenes = [
+ f
+ for f in os.listdir(osp.join(rootdir, env, difficulty))
+ if os.path.isdir(osp.join(rootdir, env, difficulty, f))
+ ]
+ for subscene in tqdm(subscenes):
+ frame_dir = osp.join(rootdir, env, difficulty, subscene)
+ rgb_dir = osp.join(frame_dir, "image_left")
+ depth_dir = osp.join(frame_dir, "depth_left")
+ flow_dir = osp.join(frame_dir, "flow")
+ intrinsics = np.array(
+ [[320.0, 0.0, 320.0], [0.0, 320.0, 240.0], [0.0, 0.0, 1.0]]
+ ).astype(np.float32)
+ poses = np.loadtxt(osp.join(frame_dir, "pose_left.txt"))
+ frame_num = len(poses)
+ os.makedirs(osp.join(outdir, env, difficulty, subscene), exist_ok=True)
+ assert (
+ len(os.listdir(rgb_dir))
+ == len(os.listdir(depth_dir))
+ == len(os.listdir(flow_dir)) // 2 + 1
+ == frame_num
+ )
+ for i in tqdm(range(frame_num)):
+ rgb_path = osp.join(rgb_dir, f"{i:06d}_left.png")
+ out_rgb_path = osp.join(
+ outdir, env, difficulty, subscene, f"{i:06d}_rgb.png"
+ )
+ depth_path = osp.join(depth_dir, f"{i:06d}_left_depth.npy")
+ out_depth_path = osp.join(
+ outdir, env, difficulty, subscene, f"{i:06d}_depth.npy"
+ )
+ if i < frame_num - 1:
+ fflow_path = osp.join(flow_dir, f"{i:06d}_{i+1:06d}_flow.npy")
+ mask_path = osp.join(flow_dir, f"{i:06d}_{i+1:06d}_mask.npy")
+ else:
+ fflow_path = None
+ mask_path = None
+ out_fflow_path = (
+ osp.join(outdir, env, difficulty, subscene, f"{i:06d}_flow.npy")
+ if fflow_path is not None
+ else None
+ )
+ out_mask_path = (
+ osp.join(outdir, env, difficulty, subscene, f"{i:06d}_mask.npy")
+ if mask_path is not None
+ else None
+ )
+ pose = poses[i]
+ x, y, z, qx, qy, qz, qw = pose
+ rotation = R.from_quat([qx, qy, qz, qw]).as_matrix()
+ c2w = np.eye(4)
+ c2w[:3, :3] = rotation
+ c2w[:3, 3] = [x, y, z]
+ w2c = np.linalg.inv(c2w)
+ w2c = w2c[[1, 2, 0, 3]]
+ c2w = np.linalg.inv(w2c)
+ K = intrinsics
+ # copy
+ shutil.copy(rgb_path, out_rgb_path)
+ shutil.copy(depth_path, out_depth_path)
+ if fflow_path is not None:
+ shutil.copy(fflow_path, out_fflow_path)
+ if mask_path is not None:
+ shutil.copy(mask_path, out_mask_path)
+ np.savez(
+ osp.join(outdir, env, difficulty, subscene, f"{i:06d}_cam.npz"),
+ camera_pose=c2w.astype(np.float32),
+ camera_intrinsics=K.astype(np.float32),
+ )
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ main(args.tartanair_dir, args.output_dir)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_uasol.py b/extern/CUT3R/datasets_preprocess/preprocess_uasol.py
new file mode 100644
index 0000000000000000000000000000000000000000..16126d3cca420bf4e9a8bd535d349151868d83ea
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_uasol.py
@@ -0,0 +1,222 @@
+#!/usr/bin/env python3
+"""
+Preprocess Script for UASOL Dataset
+
+This script processes sequences in the UASOL dataset by:
+ - Parsing camera parameters from a 'log.txt' file.
+ - Reading a 'complete.json' manifest that describes frames (RGB + depth).
+ - Converting depth from millimeters to meters.
+ - Rescaling images and depth maps to a fixed resolution (default 640x480).
+ - Saving the camera intrinsics and pose in .npz files.
+
+Usage:
+ python preprocess_uasol.py \
+ --input_dir /path/to/data_uasol \
+ --output_dir /path/to/processed_uasol
+"""
+
+import os
+import json
+import numpy as np
+import cv2
+from PIL import Image
+from tqdm import tqdm
+from concurrent.futures import ProcessPoolExecutor, as_completed
+import argparse
+
+import src.dust3r.datasets.utils.cropping as cropping
+
+
+def parse_log_file(log_file):
+ """
+ Parses the log.txt file and returns a dictionary of camera parameters.
+
+ Args:
+ log_file (str): Path to the log.txt file containing camera parameters.
+
+ Returns:
+ dict: A dictionary of camera parameters parsed from the file.
+ """
+ camera_dict = {}
+ start_parse = False
+ with open(log_file, "r") as f:
+ for line in f:
+ line = line.strip()
+ if line.startswith("LEFT CAMERA PARAMETERS"):
+ start_parse = True
+ continue
+ if start_parse and ":" in line:
+ key, value = line.split(":", 1)
+ key = key.strip().replace(" ", "_").lower()
+ value = value.strip().strip(".")
+ # Handle numeric/list values
+ if "," in value or "[" in value:
+ # Convert to list of floats
+ value = [float(v.strip()) for v in value.strip("[]").split(",")]
+ else:
+ try:
+ value = float(value)
+ except ValueError:
+ pass
+ camera_dict[key] = value
+ return camera_dict
+
+
+def process_data(task_args):
+ """
+ Process a single frame of the dataset:
+ - Reads the RGB image and depth map.
+ - Converts depth from mm to meters.
+ - Rescales the image and depth to a fixed output resolution.
+ - Saves results (RGB, depth, camera intrinsics, and pose).
+
+ Args:
+ task_args (tuple): A tuple containing:
+ - data (dict): Frame info from 'complete.json'.
+ - seq_dir (str): Path to the sequence directory.
+ - out_rgb_dir (str): Output directory for RGB images.
+ - out_depth_dir (str): Output directory for depth maps.
+ - out_cam_dir (str): Output directory for camera intrinsics/pose.
+ - K (np.ndarray): 3x3 camera intrinsics matrix.
+ - H (int): Original image height.
+ - W (int): Original image width.
+
+ Returns:
+ str or None:
+ Returns an error message (str) if something goes wrong.
+ Otherwise, returns None on success.
+ """
+ data, seq_dir, out_rgb_dir, out_depth_dir, out_cam_dir, K, H, W = task_args
+ try:
+ img_p = data["color_frame_left"]
+ depth_p = data["depth_frame"]
+ matrix = data["m"]
+
+ # Input file paths
+ img_path = os.path.join(seq_dir, "Images", img_p + ".png")
+ depth_path = os.path.join(seq_dir, "Images", depth_p + ".png")
+
+ if not (os.path.isfile(img_path) and os.path.isfile(depth_path)):
+ return f"Missing files for {img_p}"
+
+ # Read RGB
+ img = Image.open(img_path).convert("RGB")
+
+ # Read depth (16-bit or 32-bit), then convert mm to meters
+ depth = cv2.imread(depth_path, cv2.IMREAD_ANYDEPTH).astype(np.float32)
+ if depth.shape[0] != H or depth.shape[1] != W:
+ return f"Depth shape mismatch for {img_p}"
+ depth = depth / 1000.0 # mm to meters
+
+ # Build the pose matrix
+ pose = np.array(matrix, dtype=np.float32)
+ # Convert translation (last column) from mm to meters
+ pose[:3, 3] /= 1000.0
+
+ # Rescale image and depth to desired output size (e.g., 640x480)
+ image, depthmap, camera_intrinsics = cropping.rescale_image_depthmap(
+ img, depth, K, output_resolution=(640, 480)
+ )
+
+ # Save outputs
+ out_img_path = os.path.join(out_rgb_dir, img_p + ".png")
+ out_depth_path = os.path.join(out_depth_dir, img_p + ".npy")
+ out_cam_path = os.path.join(out_cam_dir, img_p + ".npz")
+
+ image.save(out_img_path)
+ np.save(out_depth_path, depthmap)
+ np.savez(out_cam_path, intrinsics=camera_intrinsics, pose=pose)
+
+ except Exception as e:
+ return f"Error processing {img_p}: {e}"
+ return None
+
+
+def main():
+ parser = argparse.ArgumentParser(description="Preprocess UASOL dataset.")
+ parser.add_argument(
+ "--input_dir", required=True, help="Path to the root UASOL directory."
+ )
+ parser.add_argument(
+ "--output_dir",
+ required=True,
+ help="Path to the directory where processed data will be stored.",
+ )
+ args = parser.parse_args()
+
+ root = os.path.abspath(args.input_dir)
+ out_dir = os.path.abspath(args.output_dir)
+ os.makedirs(out_dir, exist_ok=True)
+
+ # Find all sequences that have a 'Images' folder
+ seqs = []
+ for d in os.listdir(root):
+ images_path = os.path.join(root, d, "Images")
+ if os.path.isdir(images_path):
+ seqs.append(d)
+
+ for seq in seqs:
+ seq_dir = os.path.join(root, seq)
+ log_file = os.path.join(seq_dir, "log.txt")
+ manifest_file = os.path.join(seq_dir, "complete.json")
+
+ # Create output subdirectories
+ out_rgb_dir = os.path.join(out_dir, seq, "rgb")
+ out_depth_dir = os.path.join(out_dir, seq, "depth")
+ out_cam_dir = os.path.join(out_dir, seq, "cam")
+ os.makedirs(out_rgb_dir, exist_ok=True)
+ os.makedirs(out_depth_dir, exist_ok=True)
+ os.makedirs(out_cam_dir, exist_ok=True)
+
+ # Parse camera parameters from log.txt
+ camera_dict = parse_log_file(log_file)
+
+ # Extract relevant camera info
+ cx = camera_dict["optical_center_along_x_axis,_defined_in_pixels"]
+ cy = camera_dict["optical_center_along_y_axis,_defined_in_pixels"]
+ fx = camera_dict["focal_length_in_pixels_alog_x_axis"]
+ fy = camera_dict["focal_length_in_pixels_alog_y_axis"]
+ W, H = map(int, camera_dict["resolution"])
+ # Optionally read any 'depth_min_and_max_range_values' if needed
+ # depth_range = camera_dict['depth_min_and_max_range_values']
+
+ # Construct intrinsic matrix
+ K = np.eye(3, dtype=np.float32)
+ K[0, 0] = fx
+ K[1, 1] = fy
+ K[0, 2] = cx
+ K[1, 2] = cy
+
+ # Read the JSON manifest
+ if not os.path.isfile(manifest_file):
+ print(
+ f"Warning: No manifest file found at {manifest_file}. Skipping {seq}."
+ )
+ continue
+
+ with open(manifest_file, "r") as f:
+ metadata = json.load(f)["Data"]
+
+ # Build tasks for parallel processing
+ tasks = []
+ for data in metadata:
+ tasks.append(
+ (data, seq_dir, out_rgb_dir, out_depth_dir, out_cam_dir, K, H, W)
+ )
+
+ # Process frames in parallel
+ with ProcessPoolExecutor(max_workers=os.cpu_count() or 4) as executor:
+ futures = {
+ executor.submit(process_data, t): t[0]["color_frame_left"]
+ for t in tasks
+ }
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc=f"Processing {seq}"
+ ):
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_unreal4k.py b/extern/CUT3R/datasets_preprocess/preprocess_unreal4k.py
new file mode 100644
index 0000000000000000000000000000000000000000..0af54cd2311db44261de2fb7d615fa98a4f5e302
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_unreal4k.py
@@ -0,0 +1,110 @@
+import argparse
+import random
+import gzip
+import json
+import os
+import os.path as osp
+import torch
+import PIL.Image
+from PIL import Image
+import numpy as np
+import cv2
+from tqdm import tqdm
+import matplotlib.pyplot as plt
+import shutil
+import src.dust3r.datasets.utils.cropping as cropping # noqa
+from scipy.spatial.transform import Rotation as R
+
+
+def get_parser():
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ "--unreal4k_dir",
+ default="",
+ )
+ parser.add_argument(
+ "--output_dir",
+ default="",
+ )
+ return parser
+
+
+def parse_extrinsics(file_path):
+ """
+ Parse the extrinsics file to extract the intrinsics and pose matrices.
+
+ Args:
+ file_path (str): The path to the file containing the extrinsics data.
+
+ Returns:
+ tuple: A tuple containing the intrinsics matrix (3x3) and pose matrix (3x4).
+ """
+ with open(file_path, "r") as file:
+ lines = file.readlines()
+
+ # Parse the intrinsics matrix
+ intrinsics_data = list(map(float, lines[0].strip().split()))
+ intrinsics_matrix = np.array(intrinsics_data).reshape(3, 3)
+
+ # Parse the pose matrix
+ cam2world = np.eye(4)
+ pose_data = list(map(float, lines[1].strip().split()))
+ pose_matrix = np.array(pose_data).reshape(3, 4)
+ cam2world[:3] = pose_matrix
+ cam2world = np.linalg.inv(cam2world)
+
+ return intrinsics_matrix, cam2world
+
+
+def main(rootdir, outdir):
+ os.makedirs(outdir, exist_ok=True)
+ envs = [
+ f for f in sorted(os.listdir(rootdir)) if os.path.isdir(osp.join(rootdir, f))
+ ]
+ for env in tqdm(envs):
+ subscenes = ["0", "1"]
+ for subscene in tqdm(subscenes):
+ frame_dir = osp.join(rootdir, env)
+ rgb_dir = osp.join(frame_dir, f"Image{subscene}")
+ disp_dir = osp.join(frame_dir, f"Disp{subscene}")
+ ext_dir = osp.join(frame_dir, f"Extrinsics{subscene}")
+
+ frame_num = len(os.listdir(rgb_dir))
+ os.makedirs(osp.join(outdir, env, subscene), exist_ok=True)
+ for i in tqdm(range(frame_num)):
+ rgb_path = osp.join(rgb_dir, f"{i:05d}.png")
+ out_rgb_path = osp.join(outdir, env, subscene, f"{i:05d}_rgb.png")
+ disp_path = osp.join(disp_dir, f"{i:05d}.npy")
+ out_depth_path = osp.join(outdir, env, subscene, f"{i:05d}_depth.npy")
+ out_cam_path = osp.join(outdir, env, subscene, f"{i:05d}.npz")
+ ext_path0 = osp.join(frame_dir, f"Extrinsics0", f"{i:05d}.txt")
+ ext_path1 = osp.join(frame_dir, f"Extrinsics1", f"{i:05d}.txt")
+ K0, c2w0 = parse_extrinsics(ext_path0)
+ K1, c2w1 = parse_extrinsics(ext_path1)
+ if subscene == "0":
+ K = K0
+ c2w = c2w0
+ else:
+ K = K1
+ c2w = c2w1
+
+ img = Image.open(rgb_path).convert("RGB")
+ disp = np.load(disp_path).astype(np.float32)
+ baseline = (np.linalg.inv(c2w0) @ c2w1)[0, 3]
+ depth = baseline * K[0, 0] / disp
+
+ image, depthmap, camera_intrinsics = cropping.rescale_image_depthmap(
+ img, depth, K, output_resolution=(512, 384)
+ )
+
+ image.save(out_rgb_path)
+ np.save(out_depth_path, depthmap)
+ np.savez(out_cam_path, intrinsics=camera_intrinsics, cam2world=c2w)
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ main(args.unreal4k_dir, args.output_dir)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_urbansyn.py b/extern/CUT3R/datasets_preprocess/preprocess_urbansyn.py
new file mode 100644
index 0000000000000000000000000000000000000000..073b9df32fec4d0fcf9a63ff53d39d4ae90860d6
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_urbansyn.py
@@ -0,0 +1,234 @@
+#!/usr/bin/env python3
+"""
+Preprocess Script for UrbanSyn Dataset
+
+This script:
+ 1. Reads RGB, depth (EXR), and semantic segmentation (class) files from an UrbanSyn dataset directory.
+ 2. Retrieves camera intrinsics from a JSON metadata file.
+ 3. Rescales images, depth maps, and masks to a fixed resolution (e.g., 640×480).
+ 4. Saves processed data (RGB, .npy depth, .png sky mask, and .npz intrinsics) in an organized structure.
+
+Usage:
+ python preprocess_urbansyn.py \
+ --input_dir /path/to/data_urbansyn \
+ --output_dir /path/to/processed_urbansyn
+"""
+
+import os
+import json
+import argparse
+import shutil
+from concurrent.futures import ProcessPoolExecutor, as_completed
+import cv2
+import numpy as np
+from tqdm import tqdm
+from PIL import Image
+
+# Make sure OpenCV EXR support is enabled
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+
+# Custom "cropping" module (ensure cropping.py is available/installed)
+import cropping
+
+
+def process_basename(
+ basename,
+ rgb_dir,
+ depth_dir,
+ class_dir,
+ cam_info,
+ out_rgb_dir,
+ out_depth_dir,
+ out_mask_dir,
+ out_cam_dir,
+):
+ """
+ Process a single file triplet (RGB, depth, class) for a given basename.
+
+ Args:
+ basename (str): Base name without file extension (e.g., 'image_0001').
+ rgb_dir (str): Directory containing RGB .png files.
+ depth_dir (str): Directory containing .exr depth files.
+ class_dir (str): Directory containing class .png files (semantic segmentation).
+ cam_info (dict): Dictionary with camera metadata (focal length, sensor size).
+ out_rgb_dir (str): Output directory for rescaled RGB images.
+ out_depth_dir (str): Output directory for rescaled depth files.
+ out_mask_dir (str): Output directory for sky masks.
+ out_cam_dir (str): Output directory for camera intrinsics.
+
+ Returns:
+ str or None:
+ - Returns None if successful.
+ - Returns an error message if something fails.
+ """
+
+ # Construct output file paths
+ out_img_path = os.path.join(out_rgb_dir, f"{basename}.png")
+ out_depth_path = os.path.join(out_depth_dir, f"{basename}.npy")
+ out_mask_path = os.path.join(out_mask_dir, f"{basename}.png")
+ out_cam_path = os.path.join(out_cam_dir, f"{basename}.npz")
+
+ # Skip if already processed
+ if (
+ os.path.exists(out_img_path)
+ and os.path.exists(out_depth_path)
+ and os.path.exists(out_mask_path)
+ and os.path.exists(out_cam_path)
+ ):
+ return None
+
+ try:
+ # Build file paths
+ img_file = os.path.join(rgb_dir, f"{basename}.png")
+ depth_file = os.path.join(depth_dir, f'{basename.replace("rgb", "depth")}.exr')
+ class_file = os.path.join(class_dir, basename.replace("rgb", "ss") + ".png")
+
+ # 1. Read RGB image
+ img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
+ if img is None:
+ return f"Error: Could not read image file {img_file}"
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert BGR -> RGB
+ H, W = img.shape[:2]
+
+ # 2. Read depth from EXR
+ depth = cv2.imread(depth_file, cv2.IMREAD_UNCHANGED)
+ if depth is None:
+ # Attempt fallback if there's a '.exr.1' file
+ alt_exr_1 = depth_file + ".1"
+ if os.path.exists(alt_exr_1):
+ temp_exr = depth_file.replace(".exr", "_tmp.exr")
+ os.rename(alt_exr_1, temp_exr)
+ depth = cv2.imread(temp_exr, cv2.IMREAD_UNCHANGED)
+ if depth is None:
+ return f"Error reading depth file (fallback) {temp_exr}"
+ depth *= 1e5
+ else:
+ return f"Error reading depth file {depth_file}"
+ else:
+ depth *= 1e5 # multiply by 1e5, consistent with your original code
+
+ # 3. Read class image, build sky mask
+ cl = cv2.imread(class_file, cv2.IMREAD_UNCHANGED)
+ if cl is None:
+ return f"Error: Could not read class file {class_file}"
+ sky_mask = (cl[..., 0] == 10).astype(np.uint8) # class ID 10 => sky
+
+ # 4. Build camera intrinsics
+ f_mm = cam_info["focalLength_mm"]
+ w_mm = cam_info["sensorWidth_mm"]
+ h_mm = cam_info["sensorHeight_mm"]
+ K = np.eye(3, dtype=np.float32)
+ K[0, 0] = f_mm / w_mm * W
+ K[1, 1] = f_mm / h_mm * H
+ K[0, 2] = W / 2
+ K[1, 2] = H / 2
+
+ # 5. Combine depth + sky_mask in a single array for rescaling
+ depth_with_mask = np.stack([depth, sky_mask], axis=-1)
+
+ # 6. Rescale to desired size
+ image_pil = Image.fromarray(img)
+ image_rescaled, depth_with_mask_rescaled, K_rescaled = (
+ cropping.rescale_image_depthmap(
+ image_pil, depth_with_mask, K, output_resolution=(640, 480)
+ )
+ )
+
+ # Write outputs
+ image_rescaled.save(out_img_path)
+ np.save(out_depth_path, depth_with_mask_rescaled[..., 0])
+ cv2.imwrite(
+ out_mask_path, (depth_with_mask_rescaled[..., 1] * 255).astype(np.uint8)
+ )
+ np.savez(out_cam_path, intrinsics=K_rescaled)
+
+ except Exception as e:
+ return f"Error processing {basename}: {e}"
+
+ return None
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Preprocess UrbanSyn dataset by loading RGB/Depth/Seg "
+ "and rescaling them with camera intrinsics."
+ )
+ parser.add_argument(
+ "--input_dir", required=True, help="Path to the UrbanSyn dataset directory."
+ )
+ parser.add_argument(
+ "--output_dir",
+ required=True,
+ help="Path to the directory where processed data will be stored.",
+ )
+ args = parser.parse_args()
+
+ input_dir = os.path.abspath(args.input_dir)
+ output_dir = os.path.abspath(args.output_dir)
+ os.makedirs(output_dir, exist_ok=True)
+
+ # Define input subdirectories
+ rgb_dir = os.path.join(input_dir, "rgb")
+ depth_dir = os.path.join(input_dir, "depth")
+ class_dir = os.path.join(input_dir, "ss")
+ meta_file = os.path.join(input_dir, "camera_metadata.json")
+
+ # Define output subdirectories
+ out_rgb_dir = os.path.join(output_dir, "rgb")
+ out_depth_dir = os.path.join(output_dir, "depth")
+ out_mask_dir = os.path.join(output_dir, "sky_mask")
+ out_cam_dir = os.path.join(output_dir, "cam")
+ for d in [out_rgb_dir, out_depth_dir, out_mask_dir, out_cam_dir]:
+ os.makedirs(d, exist_ok=True)
+
+ # Gather basenames from RGB files
+ basenames = sorted(
+ [
+ os.path.splitext(fname)[0]
+ for fname in os.listdir(rgb_dir)
+ if fname.endswith(".png")
+ ]
+ )
+ if not basenames:
+ print(f"No RGB .png files found in {rgb_dir}. Exiting.")
+ return
+
+ # Load camera metadata
+ if not os.path.isfile(meta_file):
+ print(f"Error: metadata file not found at {meta_file}. Exiting.")
+ return
+
+ with open(meta_file, "r") as f:
+ cam_info_full = json.load(f)
+ cam_info = cam_info_full["parameters"][0]["Camera"]
+
+ # Process in parallel
+ num_workers = max(1, os.cpu_count() or 1)
+ with ProcessPoolExecutor(max_workers=num_workers) as executor:
+ futures = {
+ executor.submit(
+ process_basename,
+ basename,
+ rgb_dir,
+ depth_dir,
+ class_dir,
+ cam_info,
+ out_rgb_dir,
+ out_depth_dir,
+ out_mask_dir,
+ out_cam_dir,
+ ): basename
+ for basename in basenames
+ }
+
+ # Use tqdm for progress
+ for future in tqdm(
+ as_completed(futures), total=len(futures), desc="Processing UrbanSyn"
+ ):
+ error = future.result()
+ if error:
+ print(error)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_waymo.py b/extern/CUT3R/datasets_preprocess/preprocess_waymo.py
new file mode 100644
index 0000000000000000000000000000000000000000..6130bc932c0dd6fe33110f40d02fb2ff3b9e3552
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_waymo.py
@@ -0,0 +1,280 @@
+#!/usr/bin/env python3
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Preprocessing code for the WayMo Open dataset
+# dataset at https://github.com/waymo-research/waymo-open-dataset
+# 1) Accept the license
+# 2) download all training/*.tfrecord files from Perception Dataset, version 1.4.2
+# 3) put all .tfrecord files in '/path/to/waymo_dir'
+# 4) install the waymo_open_dataset package with
+# `python3 -m pip install gcsfs waymo-open-dataset-tf-2-12-0==1.6.4`
+# 5) execute this script as `python preprocess_waymo.py --waymo_dir /path/to/waymo_dir`
+# --------------------------------------------------------
+import sys
+import os
+import os.path as osp
+import shutil
+import json
+from tqdm import tqdm
+import PIL.Image
+import numpy as np
+
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+import cv2
+
+import tensorflow.compat.v1 as tf
+
+tf.enable_eager_execution()
+
+import path_to_root # noqa
+from src.dust3r.utils.geometry import geotrf, inv
+from src.dust3r.utils.image import imread_cv2
+from src.dust3r.utils.parallel import parallel_processes as parallel_map
+from datasets_preprocess.utils import cropping
+from src.dust3r.viz import show_raw_pointcloud
+
+
+def get_parser():
+ import argparse
+
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--waymo_dir", required=True)
+ parser.add_argument("--precomputed_pairs", required=True)
+ parser.add_argument("--output_dir", default="data/waymo_processed")
+ parser.add_argument("--workers", type=int, default=1)
+ return parser
+
+
+def main(waymo_root, pairs_path, output_dir, workers=1):
+ extract_frames(waymo_root, output_dir, workers=workers)
+ make_crops(output_dir, workers=args.workers)
+
+ # make sure all pairs are there
+ with np.load(pairs_path) as data:
+ scenes = data["scenes"]
+ frames = data["frames"]
+ pairs = data["pairs"] # (array of (scene_id, img1_id, img2_id)
+
+ for scene_id, im1_id, im2_id in pairs:
+ for im_id in (im1_id, im2_id):
+ path = osp.join(output_dir, scenes[scene_id], frames[im_id] + ".jpg")
+ assert osp.isfile(
+ path
+ ), f"Missing a file at {path=}\nDid you download all .tfrecord files?"
+
+ shutil.rmtree(osp.join(output_dir, "tmp"))
+ print("Done! all data generated at", output_dir)
+
+
+def _list_sequences(db_root):
+ print(">> Looking for sequences in", db_root)
+ res = sorted(f for f in os.listdir(db_root) if f.endswith(".tfrecord"))
+ print(f" found {len(res)} sequences")
+ return res
+
+
+def extract_frames(db_root, output_dir, workers=8):
+ sequences = _list_sequences(db_root)
+ output_dir = osp.join(output_dir, "tmp")
+ print(">> outputing result to", output_dir)
+ args = [(db_root, output_dir, seq) for seq in sequences]
+ parallel_map(process_one_seq, args, star_args=True, workers=workers)
+
+
+def process_one_seq(db_root, output_dir, seq):
+ out_dir = osp.join(output_dir, seq)
+ os.makedirs(out_dir, exist_ok=True)
+ calib_path = osp.join(out_dir, "calib.json")
+ if osp.isfile(calib_path):
+ return
+
+ try:
+ with tf.device("/CPU:0"):
+ calib, frames = extract_frames_one_seq(osp.join(db_root, seq))
+ except RuntimeError:
+ print(f"/!\\ Error with sequence {seq} /!\\", file=sys.stderr)
+ return # nothing is saved
+
+ for f, (frame_name, views) in enumerate(tqdm(frames, leave=False)):
+ for cam_idx, view in views.items():
+ img = PIL.Image.fromarray(view.pop("img"))
+ img.save(osp.join(out_dir, f"{f:05d}_{cam_idx}.jpg"))
+ np.savez(osp.join(out_dir, f"{f:05d}_{cam_idx}.npz"), **view)
+
+ with open(calib_path, "w") as f:
+ json.dump(calib, f)
+
+
+def extract_frames_one_seq(filename):
+ from waymo_open_dataset import dataset_pb2 as open_dataset
+ from waymo_open_dataset.utils import frame_utils
+
+ print(">> Opening", filename)
+ dataset = tf.data.TFRecordDataset(filename, compression_type="")
+
+ calib = None
+ frames = []
+
+ for data in tqdm(dataset, leave=False):
+ frame = open_dataset.Frame()
+ frame.ParseFromString(bytearray(data.numpy()))
+
+ content = frame_utils.parse_range_image_and_camera_projection(frame)
+ range_images, camera_projections, _, range_image_top_pose = content
+
+ views = {}
+ frames.append((frame.context.name, views))
+
+ # once in a sequence, read camera calibration info
+ if calib is None:
+ calib = []
+ for cam in frame.context.camera_calibrations:
+ calib.append(
+ (
+ cam.name,
+ dict(
+ width=cam.width,
+ height=cam.height,
+ intrinsics=list(cam.intrinsic),
+ extrinsics=list(cam.extrinsic.transform),
+ ),
+ )
+ )
+
+ # convert LIDAR to pointcloud
+ points, cp_points = frame_utils.convert_range_image_to_point_cloud(
+ frame, range_images, camera_projections, range_image_top_pose
+ )
+
+ # 3d points in vehicle frame.
+ points_all = np.concatenate(points, axis=0)
+ cp_points_all = np.concatenate(cp_points, axis=0)
+
+ # The distance between lidar points and vehicle frame origin.
+ cp_points_all_tensor = tf.constant(cp_points_all, dtype=tf.int32)
+
+ for i, image in enumerate(frame.images):
+ # select relevant 3D points for this view
+ mask = tf.equal(cp_points_all_tensor[..., 0], image.name)
+ cp_points_msk_tensor = tf.cast(
+ tf.gather_nd(cp_points_all_tensor, tf.where(mask)), dtype=tf.float32
+ )
+
+ pose = np.asarray(image.pose.transform).reshape(4, 4)
+ timestamp = image.pose_timestamp
+
+ rgb = tf.image.decode_jpeg(image.image).numpy()
+
+ pix = cp_points_msk_tensor[..., 1:3].numpy().round().astype(np.int16)
+ pts3d = points_all[mask.numpy()]
+
+ views[image.name] = dict(
+ img=rgb, pose=pose, pixels=pix, pts3d=pts3d, timestamp=timestamp
+ )
+
+ if not "show full point cloud":
+ show_raw_pointcloud(
+ [v["pts3d"] for v in views.values()], [v["img"] for v in views.values()]
+ )
+
+ return calib, frames
+
+
+def make_crops(output_dir, workers=16, **kw):
+ tmp_dir = osp.join(output_dir, "tmp")
+ sequences = _list_sequences(tmp_dir)
+ args = [(tmp_dir, output_dir, seq) for seq in sequences]
+ parallel_map(crop_one_seq, args, star_args=True, workers=workers, front_num=0)
+
+
+def crop_one_seq(input_dir, output_dir, seq, resolution=512):
+ seq_dir = osp.join(input_dir, seq)
+ out_dir = osp.join(output_dir, seq)
+ if osp.isfile(osp.join(out_dir, "00100_1.jpg")):
+ return
+ os.makedirs(out_dir, exist_ok=True)
+
+ # load calibration file
+ try:
+ with open(osp.join(seq_dir, "calib.json")) as f:
+ calib = json.load(f)
+ except IOError:
+ print(f"/!\\ Error: Missing calib.json in sequence {seq} /!\\", file=sys.stderr)
+ return
+
+ axes_transformation = np.array(
+ [[0, -1, 0, 0], [0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 0, 1]]
+ )
+
+ cam_K = {}
+ cam_distortion = {}
+ cam_res = {}
+ cam_to_car = {}
+ for cam_idx, cam_info in calib:
+ cam_idx = str(cam_idx)
+ cam_res[cam_idx] = (W, H) = (cam_info["width"], cam_info["height"])
+ f1, f2, cx, cy, k1, k2, p1, p2, k3 = cam_info["intrinsics"]
+ cam_K[cam_idx] = np.asarray([(f1, 0, cx), (0, f2, cy), (0, 0, 1)])
+ cam_distortion[cam_idx] = np.asarray([k1, k2, p1, p2, k3])
+ cam_to_car[cam_idx] = np.asarray(cam_info["extrinsics"]).reshape(
+ 4, 4
+ ) # cam-to-vehicle
+
+ frames = sorted(f[:-3] for f in os.listdir(seq_dir) if f.endswith(".jpg"))
+
+ # from dust3r.viz import SceneViz
+ # viz = SceneViz()
+
+ for frame in tqdm(frames, leave=False):
+ cam_idx = frame[-2] # cam index
+ assert cam_idx in "12345", f"bad {cam_idx=} in {frame=}"
+ data = np.load(osp.join(seq_dir, frame + "npz"))
+ car_to_world = data["pose"]
+ W, H = cam_res[cam_idx]
+
+ # load depthmap
+ pos2d = data["pixels"].round().astype(np.uint16)
+ x, y = pos2d.T
+ pts3d = data["pts3d"] # already in the car frame
+ pts3d = geotrf(axes_transformation @ inv(cam_to_car[cam_idx]), pts3d)
+ # X=LEFT_RIGHT y=ALTITUDE z=DEPTH
+
+ # load image
+ image = imread_cv2(osp.join(seq_dir, frame + "jpg"))
+
+ # downscale image
+ output_resolution = (resolution, 1) if W > H else (1, resolution)
+ image, _, intrinsics2 = cropping.rescale_image_depthmap(
+ image, None, cam_K[cam_idx], output_resolution
+ )
+ image.save(osp.join(out_dir, frame + "jpg"), quality=80)
+
+ # save as an EXR file? yes it's smaller (and easier to load)
+ W, H = image.size
+ depthmap = np.zeros((H, W), dtype=np.float32)
+ pos2d = (
+ geotrf(intrinsics2 @ inv(cam_K[cam_idx]), pos2d).round().astype(np.int16)
+ )
+ x, y = pos2d.T
+ depthmap[y.clip(min=0, max=H - 1), x.clip(min=0, max=W - 1)] = pts3d[:, 2]
+ cv2.imwrite(osp.join(out_dir, frame + "exr"), depthmap)
+
+ # save camera parametes
+ cam2world = car_to_world @ cam_to_car[cam_idx] @ inv(axes_transformation)
+ np.savez(
+ osp.join(out_dir, frame + "npz"),
+ intrinsics=intrinsics2,
+ cam2world=cam2world,
+ distortion=cam_distortion[cam_idx],
+ )
+
+ # viz.add_rgbd(np.asarray(image), depthmap, intrinsics2, cam2world)
+ # viz.show()
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ main(args.waymo_dir, args.precomputed_pairs, args.output_dir, workers=args.workers)
diff --git a/extern/CUT3R/datasets_preprocess/preprocess_wildrgbd.py b/extern/CUT3R/datasets_preprocess/preprocess_wildrgbd.py
new file mode 100644
index 0000000000000000000000000000000000000000..ccd0fc3a5738aedaccb22b7a6999fe010f74d4fc
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/preprocess_wildrgbd.py
@@ -0,0 +1,259 @@
+#!/usr/bin/env python3
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Script to pre-process the WildRGB-D dataset.
+# Usage:
+# python3 datasets_preprocess/preprocess_wildrgbd.py --wildrgbd_dir /path/to/wildrgbd
+# --------------------------------------------------------
+
+import argparse
+import random
+import json
+import os
+import os.path as osp
+
+import PIL.Image
+import numpy as np
+import cv2
+
+from tqdm.auto import tqdm
+import matplotlib.pyplot as plt
+
+import path_to_root # noqa
+import datasets_preprocess.utils.cropping as cropping # noqa
+from dust3r.utils.image import imread_cv2
+
+
+def get_parser():
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--output_dir", type=str, default="data/processed_wildrgbd")
+ parser.add_argument("--wildrgbd_dir", type=str, required=True)
+ parser.add_argument("--train_num_sequences_per_object", type=int, default=50)
+ parser.add_argument("--test_num_sequences_per_object", type=int, default=10)
+ parser.add_argument("--num_frames", type=int, default=100)
+ parser.add_argument("--seed", type=int, default=42)
+
+ parser.add_argument(
+ "--img_size",
+ type=int,
+ default=512,
+ help=(
+ "lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size"
+ ),
+ )
+ return parser
+
+
+def get_set_list(category_dir, split):
+ listfiles = ["camera_eval_list.json", "nvs_list.json"]
+
+ sequences_all = {s: {k: set() for k in listfiles} for s in ["train", "val"]}
+ for listfile in listfiles:
+ with open(osp.join(category_dir, listfile)) as f:
+ subset_lists_data = json.load(f)
+ for s in ["train", "val"]:
+ sequences_all[s][listfile].update(subset_lists_data[s])
+ train_intersection = set.intersection(*list(sequences_all["train"].values()))
+ if split == "train":
+ return train_intersection
+ else:
+ all_seqs = set.union(
+ *list(sequences_all["train"].values()), *list(sequences_all["val"].values())
+ )
+ return all_seqs.difference(train_intersection)
+
+
+def prepare_sequences(
+ category,
+ wildrgbd_dir,
+ output_dir,
+ img_size,
+ split,
+ max_num_sequences_per_object,
+ output_num_frames,
+ seed,
+):
+ random.seed(seed)
+ category_dir = osp.join(wildrgbd_dir, category)
+ category_output_dir = osp.join(output_dir, category)
+ sequences_all = get_set_list(category_dir, split)
+ sequences_all = sorted(sequences_all)
+
+ sequences_all_tmp = []
+ for seq_name in sequences_all:
+ scene_dir = osp.join(wildrgbd_dir, category_dir, seq_name)
+ if not os.path.isdir(scene_dir):
+ print(f"{scene_dir} does not exist, skipped")
+ continue
+ sequences_all_tmp.append(seq_name)
+ sequences_all = sequences_all_tmp
+ if len(sequences_all) <= max_num_sequences_per_object:
+ selected_sequences = sequences_all
+ else:
+ selected_sequences = random.sample(sequences_all, max_num_sequences_per_object)
+
+ selected_sequences_numbers_dict = {}
+ for seq_name in tqdm(selected_sequences, leave=False):
+ scene_dir = osp.join(category_dir, seq_name)
+ scene_output_dir = osp.join(category_output_dir, seq_name)
+ with open(osp.join(scene_dir, "metadata"), "r") as f:
+ metadata = json.load(f)
+
+ K = np.array(metadata["K"]).reshape(3, 3).T
+ fx, fy, cx, cy = K[0, 0], K[1, 1], K[0, 2], K[1, 2]
+ w, h = metadata["w"], metadata["h"]
+
+ camera_intrinsics = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
+ camera_to_world_path = os.path.join(scene_dir, "cam_poses.txt")
+ camera_to_world_content = np.genfromtxt(camera_to_world_path)
+ camera_to_world = camera_to_world_content[:, 1:].reshape(-1, 4, 4)
+
+ frame_idx = camera_to_world_content[:, 0]
+ num_frames = frame_idx.shape[0]
+ assert num_frames >= output_num_frames
+ assert np.all(frame_idx == np.arange(num_frames))
+
+ # selected_sequences_numbers_dict[seq_name] = num_frames
+
+ selected_frames = (
+ np.round(np.linspace(0, num_frames - 1, output_num_frames))
+ .astype(int)
+ .tolist()
+ )
+ selected_sequences_numbers_dict[seq_name] = selected_frames
+
+ for frame_id in tqdm(selected_frames):
+ depth_path = os.path.join(scene_dir, "depth", f"{frame_id:0>5d}.png")
+ masks_path = os.path.join(scene_dir, "masks", f"{frame_id:0>5d}.png")
+ rgb_path = os.path.join(scene_dir, "rgb", f"{frame_id:0>5d}.png")
+
+ input_rgb_image = PIL.Image.open(rgb_path).convert("RGB")
+ input_mask = plt.imread(masks_path)
+ input_depthmap = imread_cv2(depth_path, cv2.IMREAD_UNCHANGED).astype(
+ np.float64
+ )
+ depth_mask = np.stack((input_depthmap, input_mask), axis=-1)
+ H, W = input_depthmap.shape
+
+ min_margin_x = min(cx, W - cx)
+ min_margin_y = min(cy, H - cy)
+
+ # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy)
+ l, t = int(cx - min_margin_x), int(cy - min_margin_y)
+ r, b = int(cx + min_margin_x), int(cy + min_margin_y)
+ crop_bbox = (l, t, r, b)
+ input_rgb_image, depth_mask, input_camera_intrinsics = (
+ cropping.crop_image_depthmap(
+ input_rgb_image, depth_mask, camera_intrinsics, crop_bbox
+ )
+ )
+
+ # try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384
+ scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8
+ output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
+ if max(output_resolution) < img_size:
+ # let's put the max dimension to img_size
+ scale_final = (img_size / max(H, W)) + 1e-8
+ output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int)
+
+ input_rgb_image, depth_mask, input_camera_intrinsics = (
+ cropping.rescale_image_depthmap(
+ input_rgb_image,
+ depth_mask,
+ input_camera_intrinsics,
+ output_resolution,
+ )
+ )
+ input_depthmap = depth_mask[:, :, 0]
+ input_mask = depth_mask[:, :, 1]
+
+ camera_pose = camera_to_world[frame_id]
+
+ # save crop images and depth, metadata
+ save_img_path = os.path.join(
+ scene_output_dir, "rgb", f"{frame_id:0>5d}.jpg"
+ )
+ save_depth_path = os.path.join(
+ scene_output_dir, "depth", f"{frame_id:0>5d}.png"
+ )
+ save_mask_path = os.path.join(
+ scene_output_dir, "masks", f"{frame_id:0>5d}.png"
+ )
+ os.makedirs(os.path.split(save_img_path)[0], exist_ok=True)
+ os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True)
+ os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True)
+
+ input_rgb_image.save(save_img_path)
+ cv2.imwrite(save_depth_path, input_depthmap.astype(np.uint16))
+ cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8))
+
+ save_meta_path = os.path.join(
+ scene_output_dir, "metadata", f"{frame_id:0>5d}.npz"
+ )
+ os.makedirs(os.path.split(save_meta_path)[0], exist_ok=True)
+ np.savez(
+ save_meta_path,
+ camera_intrinsics=input_camera_intrinsics,
+ camera_pose=camera_pose,
+ )
+
+ return selected_sequences_numbers_dict
+
+
+if __name__ == "__main__":
+ parser = get_parser()
+ args = parser.parse_args()
+ assert args.wildrgbd_dir != args.output_dir
+
+ categories = sorted(
+ [
+ dirname
+ for dirname in os.listdir(args.wildrgbd_dir)
+ if os.path.isdir(os.path.join(args.wildrgbd_dir, dirname, "scenes"))
+ ]
+ )
+
+ os.makedirs(args.output_dir, exist_ok=True)
+
+ splits_num_sequences_per_object = [
+ args.train_num_sequences_per_object,
+ args.test_num_sequences_per_object,
+ ]
+ for split, num_sequences_per_object in zip(
+ ["train", "test"], splits_num_sequences_per_object
+ ):
+ selected_sequences_path = os.path.join(
+ args.output_dir, f"selected_seqs_{split}.json"
+ )
+ if os.path.isfile(selected_sequences_path):
+ continue
+ all_selected_sequences = {}
+ for category in categories:
+ category_output_dir = osp.join(args.output_dir, category)
+ os.makedirs(category_output_dir, exist_ok=True)
+ category_selected_sequences_path = os.path.join(
+ category_output_dir, f"selected_seqs_{split}.json"
+ )
+ if os.path.isfile(category_selected_sequences_path):
+ with open(category_selected_sequences_path, "r") as fid:
+ category_selected_sequences = json.load(fid)
+ else:
+ print(f"Processing {split} - category = {category}")
+ category_selected_sequences = prepare_sequences(
+ category=category,
+ wildrgbd_dir=args.wildrgbd_dir,
+ output_dir=args.output_dir,
+ img_size=args.img_size,
+ split=split,
+ max_num_sequences_per_object=num_sequences_per_object,
+ output_num_frames=args.num_frames,
+ seed=args.seed + int("category".encode("ascii").hex(), 16),
+ )
+ with open(category_selected_sequences_path, "w") as file:
+ json.dump(category_selected_sequences, file)
+
+ all_selected_sequences[category] = category_selected_sequences
+ with open(selected_sequences_path, "w") as file:
+ json.dump(all_selected_sequences, file)
diff --git a/extern/CUT3R/datasets_preprocess/read_write_model.py b/extern/CUT3R/datasets_preprocess/read_write_model.py
new file mode 100644
index 0000000000000000000000000000000000000000..4818fdbcaec1c7c3dc8bca0a0a92ce61abdd526f
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/read_write_model.py
@@ -0,0 +1,622 @@
+# Copyright (c) 2023, ETH Zurich and UNC Chapel Hill.
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution.
+#
+# * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
+# its contributors may be used to endorse or promote products derived
+# from this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
+# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+# POSSIBILITY OF SUCH DAMAGE.
+
+
+import os
+import collections
+import numpy as np
+import struct
+import argparse
+
+
+CameraModel = collections.namedtuple(
+ "CameraModel", ["model_id", "model_name", "num_params"]
+)
+Camera = collections.namedtuple("Camera", ["id", "model", "width", "height", "params"])
+BaseImage = collections.namedtuple(
+ "Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"]
+)
+Point3D = collections.namedtuple(
+ "Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"]
+)
+
+
+class Image(BaseImage):
+ def qvec2rotmat(self):
+ return qvec2rotmat(self.qvec)
+
+
+CAMERA_MODELS = {
+ CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
+ CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
+ CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
+ CameraModel(model_id=3, model_name="RADIAL", num_params=5),
+ CameraModel(model_id=4, model_name="OPENCV", num_params=8),
+ CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
+ CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
+ CameraModel(model_id=7, model_name="FOV", num_params=5),
+ CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
+ CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
+ CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12),
+}
+CAMERA_MODEL_IDS = dict(
+ [(camera_model.model_id, camera_model) for camera_model in CAMERA_MODELS]
+)
+CAMERA_MODEL_NAMES = dict(
+ [(camera_model.model_name, camera_model) for camera_model in CAMERA_MODELS]
+)
+
+
+def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
+ """Read and unpack the next bytes from a binary file.
+ :param fid:
+ :param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
+ :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
+ :param endian_character: Any of {@, =, <, >, !}
+ :return: Tuple of read and unpacked values.
+ """
+ data = fid.read(num_bytes)
+ return struct.unpack(endian_character + format_char_sequence, data)
+
+
+def write_next_bytes(fid, data, format_char_sequence, endian_character="<"):
+ """pack and write to a binary file.
+ :param fid:
+ :param data: data to send, if multiple elements are sent at the same time,
+ they should be encapsuled either in a list or a tuple
+ :param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
+ should be the same length as the data list or tuple
+ :param endian_character: Any of {@, =, <, >, !}
+ """
+ if isinstance(data, (list, tuple)):
+ bytes = struct.pack(endian_character + format_char_sequence, *data)
+ else:
+ bytes = struct.pack(endian_character + format_char_sequence, data)
+ fid.write(bytes)
+
+
+def read_cameras_text(path):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::WriteCamerasText(const std::string& path)
+ void Reconstruction::ReadCamerasText(const std::string& path)
+ """
+ cameras = {}
+ with open(path, "r") as fid:
+ while True:
+ line = fid.readline()
+ if not line:
+ break
+ line = line.strip()
+ if len(line) > 0 and line[0] != "#":
+ elems = line.split()
+ camera_id = int(elems[0])
+ model = elems[1]
+ width = int(elems[2])
+ height = int(elems[3])
+ params = np.array(tuple(map(float, elems[4:])))
+ cameras[camera_id] = Camera(
+ id=camera_id,
+ model=model,
+ width=width,
+ height=height,
+ params=params,
+ )
+ return cameras
+
+
+def read_cameras_binary(path_to_model_file):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::WriteCamerasBinary(const std::string& path)
+ void Reconstruction::ReadCamerasBinary(const std::string& path)
+ """
+ cameras = {}
+ with open(path_to_model_file, "rb") as fid:
+ num_cameras = read_next_bytes(fid, 8, "Q")[0]
+ for _ in range(num_cameras):
+ camera_properties = read_next_bytes(
+ fid, num_bytes=24, format_char_sequence="iiQQ"
+ )
+ camera_id = camera_properties[0]
+ model_id = camera_properties[1]
+ model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
+ width = camera_properties[2]
+ height = camera_properties[3]
+ num_params = CAMERA_MODEL_IDS[model_id].num_params
+ params = read_next_bytes(
+ fid,
+ num_bytes=8 * num_params,
+ format_char_sequence="d" * num_params,
+ )
+ cameras[camera_id] = Camera(
+ id=camera_id,
+ model=model_name,
+ width=width,
+ height=height,
+ params=np.array(params),
+ )
+ assert len(cameras) == num_cameras
+ return cameras
+
+
+def write_cameras_text(cameras, path):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::WriteCamerasText(const std::string& path)
+ void Reconstruction::ReadCamerasText(const std::string& path)
+ """
+ HEADER = (
+ "# Camera list with one line of data per camera:\n"
+ + "# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n"
+ + "# Number of cameras: {}\n".format(len(cameras))
+ )
+ with open(path, "w") as fid:
+ fid.write(HEADER)
+ for _, cam in cameras.items():
+ to_write = [cam.id, cam.model, cam.width, cam.height, *cam.params]
+ line = " ".join([str(elem) for elem in to_write])
+ fid.write(line + "\n")
+
+
+def write_cameras_binary(cameras, path_to_model_file):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::WriteCamerasBinary(const std::string& path)
+ void Reconstruction::ReadCamerasBinary(const std::string& path)
+ """
+ with open(path_to_model_file, "wb") as fid:
+ write_next_bytes(fid, len(cameras), "Q")
+ for _, cam in cameras.items():
+ model_id = CAMERA_MODEL_NAMES[cam.model].model_id
+ camera_properties = [cam.id, model_id, cam.width, cam.height]
+ write_next_bytes(fid, camera_properties, "iiQQ")
+ for p in cam.params:
+ write_next_bytes(fid, float(p), "d")
+ return cameras
+
+
+def read_images_text(path):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::ReadImagesText(const std::string& path)
+ void Reconstruction::WriteImagesText(const std::string& path)
+ """
+ images = {}
+ with open(path, "r") as fid:
+ while True:
+ line = fid.readline()
+ if not line:
+ break
+ line = line.strip()
+ if len(line) > 0 and line[0] != "#":
+ elems = line.split()
+ image_id = int(elems[0])
+ qvec = np.array(tuple(map(float, elems[1:5])))
+ tvec = np.array(tuple(map(float, elems[5:8])))
+ camera_id = int(elems[8])
+ image_name = elems[9]
+ elems = fid.readline().split()
+ xys = np.column_stack(
+ [
+ tuple(map(float, elems[0::3])),
+ tuple(map(float, elems[1::3])),
+ ]
+ )
+ point3D_ids = np.array(tuple(map(int, elems[2::3])))
+ images[image_id] = Image(
+ id=image_id,
+ qvec=qvec,
+ tvec=tvec,
+ camera_id=camera_id,
+ name=image_name,
+ xys=xys,
+ point3D_ids=point3D_ids,
+ )
+ return images
+
+
+def read_images_binary(path_to_model_file):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::ReadImagesBinary(const std::string& path)
+ void Reconstruction::WriteImagesBinary(const std::string& path)
+ """
+ images = {}
+ with open(path_to_model_file, "rb") as fid:
+ num_reg_images = read_next_bytes(fid, 8, "Q")[0]
+ for _ in range(num_reg_images):
+ binary_image_properties = read_next_bytes(
+ fid, num_bytes=64, format_char_sequence="idddddddi"
+ )
+ image_id = binary_image_properties[0]
+ qvec = np.array(binary_image_properties[1:5])
+ tvec = np.array(binary_image_properties[5:8])
+ camera_id = binary_image_properties[8]
+ binary_image_name = b""
+ current_char = read_next_bytes(fid, 1, "c")[0]
+ while current_char != b"\x00": # look for the ASCII 0 entry
+ binary_image_name += current_char
+ current_char = read_next_bytes(fid, 1, "c")[0]
+ image_name = binary_image_name.decode("utf-8")
+ num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
+ 0
+ ]
+ x_y_id_s = read_next_bytes(
+ fid,
+ num_bytes=24 * num_points2D,
+ format_char_sequence="ddq" * num_points2D,
+ )
+ xys = np.column_stack(
+ [
+ tuple(map(float, x_y_id_s[0::3])),
+ tuple(map(float, x_y_id_s[1::3])),
+ ]
+ )
+ point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
+ images[image_id] = Image(
+ id=image_id,
+ qvec=qvec,
+ tvec=tvec,
+ camera_id=camera_id,
+ name=image_name,
+ xys=xys,
+ point3D_ids=point3D_ids,
+ )
+ return images
+
+
+def write_images_text(images, path):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::ReadImagesText(const std::string& path)
+ void Reconstruction::WriteImagesText(const std::string& path)
+ """
+ if len(images) == 0:
+ mean_observations = 0
+ else:
+ mean_observations = sum(
+ (len(img.point3D_ids) for _, img in images.items())
+ ) / len(images)
+ HEADER = (
+ "# Image list with two lines of data per image:\n"
+ + "# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n"
+ + "# POINTS2D[] as (X, Y, POINT3D_ID)\n"
+ + "# Number of images: {}, mean observations per image: {}\n".format(
+ len(images), mean_observations
+ )
+ )
+
+ with open(path, "w") as fid:
+ fid.write(HEADER)
+ for _, img in images.items():
+ image_header = [
+ img.id,
+ *img.qvec,
+ *img.tvec,
+ img.camera_id,
+ img.name,
+ ]
+ first_line = " ".join(map(str, image_header))
+ fid.write(first_line + "\n")
+
+ points_strings = []
+ for xy, point3D_id in zip(img.xys, img.point3D_ids):
+ points_strings.append(" ".join(map(str, [*xy, point3D_id])))
+ fid.write(" ".join(points_strings) + "\n")
+
+
+def write_images_binary(images, path_to_model_file):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::ReadImagesBinary(const std::string& path)
+ void Reconstruction::WriteImagesBinary(const std::string& path)
+ """
+ with open(path_to_model_file, "wb") as fid:
+ write_next_bytes(fid, len(images), "Q")
+ for _, img in images.items():
+ write_next_bytes(fid, img.id, "i")
+ write_next_bytes(fid, img.qvec.tolist(), "dddd")
+ write_next_bytes(fid, img.tvec.tolist(), "ddd")
+ write_next_bytes(fid, img.camera_id, "i")
+ for char in img.name:
+ write_next_bytes(fid, char.encode("utf-8"), "c")
+ write_next_bytes(fid, b"\x00", "c")
+ write_next_bytes(fid, len(img.point3D_ids), "Q")
+ for xy, p3d_id in zip(img.xys, img.point3D_ids):
+ write_next_bytes(fid, [*xy, p3d_id], "ddq")
+
+
+def read_points3D_text(path):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::ReadPoints3DText(const std::string& path)
+ void Reconstruction::WritePoints3DText(const std::string& path)
+ """
+ points3D = {}
+ with open(path, "r") as fid:
+ while True:
+ line = fid.readline()
+ if not line:
+ break
+ line = line.strip()
+ if len(line) > 0 and line[0] != "#":
+ elems = line.split()
+ point3D_id = int(elems[0])
+ xyz = np.array(tuple(map(float, elems[1:4])))
+ rgb = np.array(tuple(map(int, elems[4:7])))
+ error = float(elems[7])
+ image_ids = np.array(tuple(map(int, elems[8::2])))
+ point2D_idxs = np.array(tuple(map(int, elems[9::2])))
+ points3D[point3D_id] = Point3D(
+ id=point3D_id,
+ xyz=xyz,
+ rgb=rgb,
+ error=error,
+ image_ids=image_ids,
+ point2D_idxs=point2D_idxs,
+ )
+ return points3D
+
+
+def read_points3D_binary(path_to_model_file):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::ReadPoints3DBinary(const std::string& path)
+ void Reconstruction::WritePoints3DBinary(const std::string& path)
+ """
+ points3D = {}
+ with open(path_to_model_file, "rb") as fid:
+ num_points = read_next_bytes(fid, 8, "Q")[0]
+ for _ in range(num_points):
+ binary_point_line_properties = read_next_bytes(
+ fid, num_bytes=43, format_char_sequence="QdddBBBd"
+ )
+ point3D_id = binary_point_line_properties[0]
+ xyz = np.array(binary_point_line_properties[1:4])
+ rgb = np.array(binary_point_line_properties[4:7])
+ error = np.array(binary_point_line_properties[7])
+ track_length = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[
+ 0
+ ]
+ track_elems = read_next_bytes(
+ fid,
+ num_bytes=8 * track_length,
+ format_char_sequence="ii" * track_length,
+ )
+ image_ids = np.array(tuple(map(int, track_elems[0::2])))
+ point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
+ points3D[point3D_id] = Point3D(
+ id=point3D_id,
+ xyz=xyz,
+ rgb=rgb,
+ error=error,
+ image_ids=image_ids,
+ point2D_idxs=point2D_idxs,
+ )
+ return points3D
+
+
+def write_points3D_text(points3D, path):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::ReadPoints3DText(const std::string& path)
+ void Reconstruction::WritePoints3DText(const std::string& path)
+ """
+ if len(points3D) == 0:
+ mean_track_length = 0
+ else:
+ mean_track_length = sum(
+ (len(pt.image_ids) for _, pt in points3D.items())
+ ) / len(points3D)
+ HEADER = (
+ "# 3D point list with one line of data per point:\n"
+ + "# POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)\n"
+ + "# Number of points: {}, mean track length: {}\n".format(
+ len(points3D), mean_track_length
+ )
+ )
+
+ with open(path, "w") as fid:
+ fid.write(HEADER)
+ for _, pt in points3D.items():
+ point_header = [pt.id, *pt.xyz, *pt.rgb, pt.error]
+ fid.write(" ".join(map(str, point_header)) + " ")
+ track_strings = []
+ for image_id, point2D in zip(pt.image_ids, pt.point2D_idxs):
+ track_strings.append(" ".join(map(str, [image_id, point2D])))
+ fid.write(" ".join(track_strings) + "\n")
+
+
+def write_points3D_binary(points3D, path_to_model_file):
+ """
+ see: src/colmap/scene/reconstruction.cc
+ void Reconstruction::ReadPoints3DBinary(const std::string& path)
+ void Reconstruction::WritePoints3DBinary(const std::string& path)
+ """
+ with open(path_to_model_file, "wb") as fid:
+ write_next_bytes(fid, len(points3D), "Q")
+ for _, pt in points3D.items():
+ write_next_bytes(fid, pt.id, "Q")
+ write_next_bytes(fid, pt.xyz.tolist(), "ddd")
+ write_next_bytes(fid, pt.rgb.tolist(), "BBB")
+ write_next_bytes(fid, pt.error, "d")
+ track_length = pt.image_ids.shape[0]
+ write_next_bytes(fid, track_length, "Q")
+ for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs):
+ write_next_bytes(fid, [image_id, point2D_id], "ii")
+
+
+def detect_model_format(path, ext):
+ if (
+ os.path.isfile(os.path.join(path, "cameras" + ext))
+ and os.path.isfile(os.path.join(path, "images" + ext))
+ and os.path.isfile(os.path.join(path, "points3D" + ext))
+ ):
+ print("Detected model format: '" + ext + "'")
+ return True
+
+ return False
+
+
+def read_model(path, ext=""):
+ # try to detect the extension automatically
+ if ext == "":
+ if detect_model_format(path, ".bin"):
+ ext = ".bin"
+ elif detect_model_format(path, ".txt"):
+ ext = ".txt"
+ else:
+ print("Provide model format: '.bin' or '.txt'")
+ return
+
+ if ext == ".txt":
+ cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
+ images = read_images_text(os.path.join(path, "images" + ext))
+ points3D = read_points3D_text(os.path.join(path, "points3D") + ext)
+ else:
+ cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
+ images = read_images_binary(os.path.join(path, "images" + ext))
+ points3D = read_points3D_binary(os.path.join(path, "points3D") + ext)
+ return cameras, images, points3D
+
+
+def write_model(cameras, images, points3D, path, ext=".bin"):
+ if ext == ".txt":
+ write_cameras_text(cameras, os.path.join(path, "cameras" + ext))
+ write_images_text(images, os.path.join(path, "images" + ext))
+ write_points3D_text(points3D, os.path.join(path, "points3D") + ext)
+ else:
+ write_cameras_binary(cameras, os.path.join(path, "cameras" + ext))
+ write_images_binary(images, os.path.join(path, "images" + ext))
+ write_points3D_binary(points3D, os.path.join(path, "points3D") + ext)
+ return cameras, images, points3D
+
+
+def qvec2rotmat(qvec):
+ return np.array(
+ [
+ [
+ 1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2,
+ 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
+ 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2],
+ ],
+ [
+ 2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
+ 1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2,
+ 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1],
+ ],
+ [
+ 2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
+ 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
+ 1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2,
+ ],
+ ]
+ )
+
+
+def rotmat2qvec(R):
+ Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
+ K = (
+ np.array(
+ [
+ [Rxx - Ryy - Rzz, 0, 0, 0],
+ [Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
+ [Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
+ [Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz],
+ ]
+ )
+ / 3.0
+ )
+ eigvals, eigvecs = np.linalg.eigh(K)
+ qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
+ if qvec[0] < 0:
+ qvec *= -1
+ return qvec
+
+
+def run(input_model, output_model):
+ if (
+ os.path.exists(os.path.join(output_model, "cameras.txt"))
+ and os.path.exists(os.path.join(output_model, "images.txt"))
+ and os.path.exists(os.path.join(output_model, "points3D.txt"))
+ ):
+ print("Model already exists")
+ return
+ cameras, images, points3D = read_model(path=input_model, ext=".bin")
+ # print("num_cameras:", len(cameras))
+ # print("num_images:", len(images))
+ # print("num_points3D:", len(points3D))
+ write_model(
+ cameras,
+ images,
+ points3D,
+ path=output_model,
+ ext=".txt",
+ )
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Read and write COLMAP binary and text models"
+ )
+ parser.add_argument("--input_model", default="")
+ parser.add_argument(
+ "--input_format",
+ choices=[".bin", ".txt"],
+ help="input model format",
+ default=".bin",
+ )
+ parser.add_argument("--output_model", default=".")
+ parser.add_argument(
+ "--output_format",
+ choices=[".bin", ".txt"],
+ help="output model format",
+ default=".txt",
+ )
+ args = parser.parse_args()
+
+ cameras, images, points3D = read_model(path=args.input_model, ext=args.input_format)
+
+ print("num_cameras:", len(cameras))
+ print("num_images:", len(images))
+ print("num_points3D:", len(points3D))
+
+ if args.output_model is not None:
+ write_model(
+ cameras,
+ images,
+ points3D,
+ path=args.output_model,
+ ext=args.output_format,
+ )
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/datasets_preprocess/utils/cropping.py b/extern/CUT3R/datasets_preprocess/utils/cropping.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa3ac5daceaced49764d1902a9e950e404502692
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/utils/cropping.py
@@ -0,0 +1,169 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# croppping utilities
+# --------------------------------------------------------
+import PIL.Image
+import os
+
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+import cv2 # noqa
+import numpy as np # noqa
+
+try:
+ lanczos = PIL.Image.Resampling.LANCZOS
+ bicubic = PIL.Image.Resampling.BICUBIC
+except AttributeError:
+ lanczos = PIL.Image.LANCZOS
+ bicubic = PIL.Image.BICUBIC
+
+
+def colmap_to_opencv_intrinsics(K):
+ """
+ Modify camera intrinsics to follow a different convention.
+ Coordinates of the center of the top-left pixels are by default:
+ - (0.5, 0.5) in Colmap
+ - (0,0) in OpenCV
+ """
+ K = K.copy()
+ K[0, 2] -= 0.5
+ K[1, 2] -= 0.5
+ return K
+
+
+def opencv_to_colmap_intrinsics(K):
+ """
+ Modify camera intrinsics to follow a different convention.
+ Coordinates of the center of the top-left pixels are by default:
+ - (0.5, 0.5) in Colmap
+ - (0,0) in OpenCV
+ """
+ K = K.copy()
+ K[0, 2] += 0.5
+ K[1, 2] += 0.5
+ return K
+
+
+class ImageList:
+ """Convenience class to aply the same operation to a whole set of images."""
+
+ def __init__(self, images):
+ if not isinstance(images, (tuple, list, set)):
+ images = [images]
+ self.images = []
+ for image in images:
+ if not isinstance(image, PIL.Image.Image):
+ image = PIL.Image.fromarray(image)
+ self.images.append(image)
+
+ def __len__(self):
+ return len(self.images)
+
+ def to_pil(self):
+ return tuple(self.images) if len(self.images) > 1 else self.images[0]
+
+ @property
+ def size(self):
+ sizes = [im.size for im in self.images]
+ assert all(sizes[0] == s for s in sizes)
+ return sizes[0]
+
+ def resize(self, *args, **kwargs):
+ return ImageList(self._dispatch("resize", *args, **kwargs))
+
+ def crop(self, *args, **kwargs):
+ return ImageList(self._dispatch("crop", *args, **kwargs))
+
+ def _dispatch(self, func, *args, **kwargs):
+ return [getattr(im, func)(*args, **kwargs) for im in self.images]
+
+
+def rescale_image_depthmap(
+ image, depthmap, camera_intrinsics, output_resolution, force=True
+):
+ """Jointly rescale a (image, depthmap)
+ so that (out_width, out_height) >= output_res
+ """
+ image = ImageList(image)
+ input_resolution = np.array(image.size) # (W,H)
+ output_resolution = np.array(output_resolution)
+ if depthmap is not None:
+ # can also use this with masks instead of depthmaps
+ assert tuple(depthmap.shape[:2]) == image.size[::-1]
+
+ # define output resolution
+ assert output_resolution.shape == (2,)
+ scale_final = max(output_resolution / image.size) + 1e-8
+ if scale_final >= 1 and not force: # image is already smaller than what is asked
+ return (image.to_pil(), depthmap, camera_intrinsics)
+ output_resolution = np.floor(input_resolution * scale_final).astype(int)
+
+ # first rescale the image so that it contains the crop
+ image = image.resize(
+ tuple(output_resolution), resample=lanczos if scale_final < 1 else bicubic
+ )
+ if depthmap is not None:
+ depthmap = cv2.resize(
+ depthmap,
+ output_resolution,
+ fx=scale_final,
+ fy=scale_final,
+ interpolation=cv2.INTER_NEAREST,
+ )
+
+ # no offset here; simple rescaling
+ camera_intrinsics = camera_matrix_of_crop(
+ camera_intrinsics, input_resolution, output_resolution, scaling=scale_final
+ )
+
+ return image.to_pil(), depthmap, camera_intrinsics
+
+
+def camera_matrix_of_crop(
+ input_camera_matrix,
+ input_resolution,
+ output_resolution,
+ scaling=1,
+ offset_factor=0.5,
+ offset=None,
+):
+ # Margins to offset the origin
+ margins = np.asarray(input_resolution) * scaling - output_resolution
+ assert np.all(margins >= 0.0)
+ if offset is None:
+ offset = offset_factor * margins
+
+ # Generate new camera parameters
+ output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix)
+ output_camera_matrix_colmap[:2, :] *= scaling
+ output_camera_matrix_colmap[:2, 2] -= offset
+ output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap)
+
+ return output_camera_matrix
+
+
+def crop_image_depthmap(image, depthmap, camera_intrinsics, crop_bbox):
+ """
+ Return a crop of the input view.
+ """
+ image = ImageList(image)
+ l, t, r, b = crop_bbox
+
+ image = image.crop((l, t, r, b))
+ depthmap = depthmap[t:b, l:r]
+
+ camera_intrinsics = camera_intrinsics.copy()
+ camera_intrinsics[0, 2] -= l
+ camera_intrinsics[1, 2] -= t
+
+ return image.to_pil(), depthmap, camera_intrinsics
+
+
+def bbox_from_intrinsics_in_out(
+ input_camera_matrix, output_camera_matrix, output_resolution
+):
+ out_width, out_height = output_resolution
+ l, t = np.int32(np.round(input_camera_matrix[:2, 2] - output_camera_matrix[:2, 2]))
+ crop_bbox = (l, t, l + out_width, t + out_height)
+ return crop_bbox
diff --git a/extern/CUT3R/datasets_preprocess/utils/parallel.py b/extern/CUT3R/datasets_preprocess/utils/parallel.py
new file mode 100644
index 0000000000000000000000000000000000000000..5fa1012c820a1aecf56282f76029fdc2086b7b6b
--- /dev/null
+++ b/extern/CUT3R/datasets_preprocess/utils/parallel.py
@@ -0,0 +1,90 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# utilitary functions for multiprocessing
+# --------------------------------------------------------
+from tqdm import tqdm
+from multiprocessing.dummy import Pool as ThreadPool
+from multiprocessing import cpu_count
+
+
+def parallel_threads(
+ function,
+ args,
+ workers=0,
+ star_args=False,
+ kw_args=False,
+ front_num=1,
+ Pool=ThreadPool,
+ **tqdm_kw
+):
+ """tqdm but with parallel execution.
+
+ Will essentially return
+ res = [ function(arg) # default
+ function(*arg) # if star_args is True
+ function(**arg) # if kw_args is True
+ for arg in args]
+
+ Note:
+ the first elements of args will not be parallelized.
+ This can be useful for debugging.
+ """
+ while workers <= 0:
+ workers += cpu_count()
+ if workers == 1:
+ front_num = float("inf")
+
+ # convert into an iterable
+ try:
+ n_args_parallel = len(args) - front_num
+ except TypeError:
+ n_args_parallel = None
+ args = iter(args)
+
+ # sequential execution first
+ front = []
+ while len(front) < front_num:
+ try:
+ a = next(args)
+ except StopIteration:
+ return front # end of the iterable
+ front.append(
+ function(*a) if star_args else function(**a) if kw_args else function(a)
+ )
+
+ # then parallel execution
+ out = []
+ with Pool(workers) as pool:
+ # Pass the elements of args into function
+ if star_args:
+ futures = pool.imap(starcall, [(function, a) for a in args])
+ elif kw_args:
+ futures = pool.imap(starstarcall, [(function, a) for a in args])
+ else:
+ futures = pool.imap(function, args)
+ # Print out the progress as tasks complete
+ for f in tqdm(futures, total=n_args_parallel, **tqdm_kw):
+ out.append(f)
+ return front + out
+
+
+def parallel_processes(*args, **kwargs):
+ """Same as parallel_threads, with processes"""
+ import multiprocessing as mp
+
+ kwargs["Pool"] = mp.Pool
+ return parallel_threads(*args, **kwargs)
+
+
+def starcall(args):
+ """convenient wrapper for Process.Pool"""
+ function, args = args
+ return function(*args)
+
+
+def starstarcall(args):
+ """convenient wrapper for Process.Pool"""
+ function, args = args
+ return function(**args)
diff --git a/extern/CUT3R/demo.py b/extern/CUT3R/demo.py
new file mode 100644
index 0000000000000000000000000000000000000000..df60dbd62ec06dd3e8789661070b92333edf5e28
--- /dev/null
+++ b/extern/CUT3R/demo.py
@@ -0,0 +1,422 @@
+#!/usr/bin/env python3
+"""
+3D Point Cloud Inference and Visualization Script
+
+This script performs inference using the ARCroco3DStereo model and visualizes the
+resulting 3D point clouds with the PointCloudViewer. Use the command-line arguments
+to adjust parameters such as the model checkpoint path, image sequence directory,
+image size, device, etc.
+
+Usage:
+ python demo.py [--model_path MODEL_PATH] [--seq_path SEQ_PATH] [--size IMG_SIZE]
+ [--device DEVICE] [--vis_threshold VIS_THRESHOLD] [--output_dir OUT_DIR]
+
+Example:
+ python demo.py --model_path src/cut3r_512_dpt_4_64.pth \
+ --seq_path examples/001 --device cuda --size 512
+"""
+
+import os
+import numpy as np
+import torch
+import time
+import glob
+import random
+import cv2
+import argparse
+import tempfile
+import shutil
+from copy import deepcopy
+from add_ckpt_path import add_path_to_dust3r
+import imageio.v2 as iio
+
+# Set random seed for reproducibility.
+random.seed(42)
+
+
+def parse_args():
+ """Parse command-line arguments."""
+ parser = argparse.ArgumentParser(
+ description="Run 3D point cloud inference and visualization using ARCroco3DStereo."
+ )
+ parser.add_argument(
+ "--model_path",
+ type=str,
+ default="src/cut3r_512_dpt_4_64.pth",
+ help="Path to the pretrained model checkpoint.",
+ )
+ parser.add_argument(
+ "--seq_path",
+ type=str,
+ default="",
+ help="Path to the directory containing the image sequence.",
+ )
+ parser.add_argument(
+ "--device",
+ type=str,
+ default="cuda",
+ help="Device to run inference on (e.g., 'cuda' or 'cpu').",
+ )
+ parser.add_argument(
+ "--size",
+ type=int,
+ default="512",
+ help="Shape that input images will be rescaled to; if using 224+linear model, choose 224 otherwise 512",
+ )
+ parser.add_argument(
+ "--vis_threshold",
+ type=float,
+ default=1.5,
+ help="Visualization threshold for the point cloud viewer. Ranging from 1 to INF",
+ )
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ default="./demo_tmp",
+ help="value for tempfile.tempdir",
+ )
+
+ return parser.parse_args()
+
+
+def prepare_input(
+ img_paths, img_mask, size, raymaps=None, raymap_mask=None, revisit=1, update=True
+):
+ """
+ Prepare input views for inference from a list of image paths.
+
+ Args:
+ img_paths (list): List of image file paths.
+ img_mask (list of bool): Flags indicating valid images.
+ size (int): Target image size.
+ raymaps (list, optional): List of ray maps.
+ raymap_mask (list, optional): Flags indicating valid ray maps.
+ revisit (int): How many times to revisit each view.
+ update (bool): Whether to update the state on revisits.
+
+ Returns:
+ list: A list of view dictionaries.
+ """
+ # Import image loader (delayed import needed after adding ckpt path).
+ from src.dust3r.utils.image import load_images
+
+ images = load_images(img_paths, size=size)
+ views = []
+
+ if raymaps is None and raymap_mask is None:
+ # Only images are provided.
+ for i in range(len(images)):
+ view = {
+ "img": images[i]["img"],
+ "ray_map": torch.full(
+ (
+ images[i]["img"].shape[0],
+ 6,
+ images[i]["img"].shape[-2],
+ images[i]["img"].shape[-1],
+ ),
+ torch.nan,
+ ),
+ "true_shape": torch.from_numpy(images[i]["true_shape"]),
+ "idx": i,
+ "instance": str(i),
+ "camera_pose": torch.from_numpy(np.eye(4, dtype=np.float32)).unsqueeze(
+ 0
+ ),
+ "img_mask": torch.tensor(True).unsqueeze(0),
+ "ray_mask": torch.tensor(False).unsqueeze(0),
+ "update": torch.tensor(True).unsqueeze(0),
+ "reset": torch.tensor(False).unsqueeze(0),
+ }
+ views.append(view)
+ else:
+ # Combine images and raymaps.
+ num_views = len(images) + len(raymaps)
+ assert len(img_mask) == len(raymap_mask) == num_views
+ assert sum(img_mask) == len(images) and sum(raymap_mask) == len(raymaps)
+
+ j = 0
+ k = 0
+ for i in range(num_views):
+ view = {
+ "img": (
+ images[j]["img"]
+ if img_mask[i]
+ else torch.full_like(images[0]["img"], torch.nan)
+ ),
+ "ray_map": (
+ raymaps[k]
+ if raymap_mask[i]
+ else torch.full_like(raymaps[0], torch.nan)
+ ),
+ "true_shape": (
+ torch.from_numpy(images[j]["true_shape"])
+ if img_mask[i]
+ else torch.from_numpy(np.int32([raymaps[k].shape[1:-1][::-1]]))
+ ),
+ "idx": i,
+ "instance": str(i),
+ "camera_pose": torch.from_numpy(np.eye(4, dtype=np.float32)).unsqueeze(
+ 0
+ ),
+ "img_mask": torch.tensor(img_mask[i]).unsqueeze(0),
+ "ray_mask": torch.tensor(raymap_mask[i]).unsqueeze(0),
+ "update": torch.tensor(img_mask[i]).unsqueeze(0),
+ "reset": torch.tensor(False).unsqueeze(0),
+ }
+ if img_mask[i]:
+ j += 1
+ if raymap_mask[i]:
+ k += 1
+ views.append(view)
+ assert j == len(images) and k == len(raymaps)
+
+ if revisit > 1:
+ new_views = []
+ for r in range(revisit):
+ for i, view in enumerate(views):
+ new_view = deepcopy(view)
+ new_view["idx"] = r * len(views) + i
+ new_view["instance"] = str(r * len(views) + i)
+ if r > 0 and not update:
+ new_view["update"] = torch.tensor(False).unsqueeze(0)
+ new_views.append(new_view)
+ return new_views
+
+ return views
+
+
+def prepare_output(outputs, outdir, revisit=1, use_pose=True):
+ """
+ Process inference outputs to generate point clouds and camera parameters for visualization.
+
+ Args:
+ outputs (dict): Inference outputs.
+ revisit (int): Number of revisits per view.
+ use_pose (bool): Whether to transform points using camera pose.
+
+ Returns:
+ tuple: (points, colors, confidence, camera parameters dictionary)
+ """
+ from src.dust3r.utils.camera import pose_encoding_to_camera
+ from src.dust3r.post_process import estimate_focal_knowing_depth
+ from src.dust3r.utils.geometry import geotrf
+
+ # Only keep the outputs corresponding to one full pass.
+ valid_length = len(outputs["pred"]) // revisit
+ outputs["pred"] = outputs["pred"][-valid_length:]
+ outputs["views"] = outputs["views"][-valid_length:]
+
+ pts3ds_self_ls = [output["pts3d_in_self_view"].cpu() for output in outputs["pred"]]
+ pts3ds_other = [output["pts3d_in_other_view"].cpu() for output in outputs["pred"]]
+ conf_self = [output["conf_self"].cpu() for output in outputs["pred"]]
+ conf_other = [output["conf"].cpu() for output in outputs["pred"]]
+ pts3ds_self = torch.cat(pts3ds_self_ls, 0)
+
+ # Recover camera poses.
+ pr_poses = [
+ pose_encoding_to_camera(pred["camera_pose"].clone()).cpu()
+ for pred in outputs["pred"]
+ ]
+ R_c2w = torch.cat([pr_pose[:, :3, :3] for pr_pose in pr_poses], 0)
+ t_c2w = torch.cat([pr_pose[:, :3, 3] for pr_pose in pr_poses], 0)
+
+ if use_pose:
+ transformed_pts3ds_other = []
+ for pose, pself in zip(pr_poses, pts3ds_self):
+ transformed_pts3ds_other.append(geotrf(pose, pself.unsqueeze(0)))
+ pts3ds_other = transformed_pts3ds_other
+ conf_other = conf_self
+
+ # Estimate focal length based on depth.
+ B, H, W, _ = pts3ds_self.shape
+ pp = torch.tensor([W // 2, H // 2], device=pts3ds_self.device).float().repeat(B, 1)
+ focal = estimate_focal_knowing_depth(pts3ds_self, pp, focal_mode="weiszfeld")
+
+ colors = [
+ 0.5 * (output["img"].permute(0, 2, 3, 1) + 1.0) for output in outputs["views"]
+ ]
+
+ cam_dict = {
+ "focal": focal.cpu().numpy(),
+ "pp": pp.cpu().numpy(),
+ "R": R_c2w.cpu().numpy(),
+ "t": t_c2w.cpu().numpy(),
+ }
+
+ pts3ds_self_tosave = pts3ds_self # B, H, W, 3
+ depths_tosave = pts3ds_self_tosave[..., 2]
+ pts3ds_other_tosave = torch.cat(pts3ds_other) # B, H, W, 3
+ conf_self_tosave = torch.cat(conf_self) # B, H, W
+ conf_other_tosave = torch.cat(conf_other) # B, H, W
+ colors_tosave = torch.cat(
+ [
+ 0.5 * (output["img"].permute(0, 2, 3, 1).cpu() + 1.0)
+ for output in outputs["views"]
+ ]
+ ) # [B, H, W, 3]
+ cam2world_tosave = torch.cat(pr_poses) # B, 4, 4
+ intrinsics_tosave = (
+ torch.eye(3).unsqueeze(0).repeat(cam2world_tosave.shape[0], 1, 1)
+ ) # B, 3, 3
+ intrinsics_tosave[:, 0, 0] = focal.detach().cpu()
+ intrinsics_tosave[:, 1, 1] = focal.detach().cpu()
+ intrinsics_tosave[:, 0, 2] = pp[:, 0]
+ intrinsics_tosave[:, 1, 2] = pp[:, 1]
+
+ os.makedirs(os.path.join(outdir, "depth"), exist_ok=True)
+ os.makedirs(os.path.join(outdir, "conf"), exist_ok=True)
+ os.makedirs(os.path.join(outdir, "color"), exist_ok=True)
+ os.makedirs(os.path.join(outdir, "camera"), exist_ok=True)
+ for f_id in range(len(pts3ds_self)):
+ depth = depths_tosave[f_id].cpu().numpy()
+ conf = conf_self_tosave[f_id].cpu().numpy()
+ color = colors_tosave[f_id].cpu().numpy()
+ c2w = cam2world_tosave[f_id].cpu().numpy()
+ intrins = intrinsics_tosave[f_id].cpu().numpy()
+ np.save(os.path.join(outdir, "depth", f"{f_id:06d}.npy"), depth)
+ np.save(os.path.join(outdir, "conf", f"{f_id:06d}.npy"), conf)
+ iio.imwrite(
+ os.path.join(outdir, "color", f"{f_id:06d}.png"),
+ (color * 255).astype(np.uint8),
+ )
+ np.savez(
+ os.path.join(outdir, "camera", f"{f_id:06d}.npz"),
+ pose=c2w,
+ intrinsics=intrins,
+ )
+
+ return pts3ds_other, colors, conf_other, cam_dict
+
+
+def parse_seq_path(p):
+ if os.path.isdir(p):
+ img_paths = sorted(glob.glob(f"{p}/*"))
+ tmpdirname = None
+ else:
+ cap = cv2.VideoCapture(p)
+ if not cap.isOpened():
+ raise ValueError(f"Error opening video file {p}")
+ video_fps = cap.get(cv2.CAP_PROP_FPS)
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
+ if video_fps == 0:
+ cap.release()
+ raise ValueError(f"Error: Video FPS is 0 for {p}")
+ frame_interval = 1
+ frame_indices = list(range(0, total_frames, frame_interval))
+ print(
+ f" - Video FPS: {video_fps}, Frame Interval: {frame_interval}, Total Frames to Read: {len(frame_indices)}"
+ )
+ img_paths = []
+ tmpdirname = tempfile.mkdtemp()
+ for i in frame_indices:
+ cap.set(cv2.CAP_PROP_POS_FRAMES, i)
+ ret, frame = cap.read()
+ if not ret:
+ break
+ frame_path = os.path.join(tmpdirname, f"frame_{i}.jpg")
+ cv2.imwrite(frame_path, frame)
+ img_paths.append(frame_path)
+ cap.release()
+ return img_paths, tmpdirname
+
+
+def run_inference(args):
+ """
+ Execute the full inference and visualization pipeline.
+
+ Args:
+ args: Parsed command-line arguments.
+ """
+ # Set up the computation device.
+ device = args.device
+ if device == "cuda" and not torch.cuda.is_available():
+ print("CUDA not available. Switching to CPU.")
+ device = "cpu"
+
+ # Add the checkpoint path (required for model imports in the dust3r package).
+ add_path_to_dust3r(args.model_path)
+
+ # Import model and inference functions after adding the ckpt path.
+ from src.dust3r.inference import inference, inference_recurrent
+ from src.dust3r.model import ARCroco3DStereo
+ from viser_utils import PointCloudViewer
+
+ # Prepare image file paths.
+ img_paths, tmpdirname = parse_seq_path(args.seq_path)
+ if not img_paths:
+ print(f"No images found in {args.seq_path}. Please verify the path.")
+ return
+
+ print(f"Found {len(img_paths)} images in {args.seq_path}.")
+ img_mask = [True] * len(img_paths)
+
+ # Prepare input views.
+ print("Preparing input views...")
+ views = prepare_input(
+ img_paths=img_paths,
+ img_mask=img_mask,
+ size=args.size,
+ revisit=1,
+ update=True,
+ )
+ if tmpdirname is not None:
+ shutil.rmtree(tmpdirname)
+
+ # Load and prepare the model.
+ print(f"Loading model from {args.model_path}...")
+ model = ARCroco3DStereo.from_pretrained(args.model_path).to(device)
+ model.eval()
+
+ # Run inference.
+ print("Running inference...")
+ start_time = time.time()
+ outputs, state_args = inference(views, model, device)
+ total_time = time.time() - start_time
+ per_frame_time = total_time / len(views)
+ print(
+ f"Inference completed in {total_time:.2f} seconds (average {per_frame_time:.2f} s per frame)."
+ )
+
+ # Process outputs for visualization.
+ print("Preparing output for visualization...")
+ pts3ds_other, colors, conf, cam_dict = prepare_output(
+ outputs, args.output_dir, 1, True
+ )
+
+ # Convert tensors to numpy arrays for visualization.
+ pts3ds_to_vis = [p.cpu().numpy() for p in pts3ds_other]
+ colors_to_vis = [c.cpu().numpy() for c in colors]
+ edge_colors = [None] * len(pts3ds_to_vis)
+
+ # Create and run the point cloud viewer.
+ print("Launching point cloud viewer...")
+ viewer = PointCloudViewer(
+ model,
+ state_args,
+ pts3ds_to_vis,
+ colors_to_vis,
+ conf,
+ cam_dict,
+ device=device,
+ edge_color_list=edge_colors,
+ show_camera=True,
+ vis_threshold=args.vis_threshold,
+ size = args.size
+ )
+ viewer.run()
+
+
+def main():
+ args = parse_args()
+ if not args.seq_path:
+ print(
+ "No inputs found! Please use our gradio demo if you would like to iteractively upload inputs."
+ )
+ return
+ else:
+ run_inference(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/demo_ga.py b/extern/CUT3R/demo_ga.py
new file mode 100644
index 0000000000000000000000000000000000000000..5ea1c63a932e3bf64d8d714526a70c85b23064ca
--- /dev/null
+++ b/extern/CUT3R/demo_ga.py
@@ -0,0 +1,444 @@
+#!/usr/bin/env python3
+"""
+3D Point Cloud Inference and Visualization Script
+
+This script performs inference using the ARCroco3DStereo model and visualizes the
+resulting 3D point clouds with the PointCloudViewer. Use the command-line arguments
+to adjust parameters such as the model checkpoint path, image sequence directory,
+image size, device, etc.
+
+Usage:
+ python demo_ga.py [--model_path MODEL_PATH] [--seq_path SEQ_PATH] [--size IMG_SIZE]
+ [--device DEVICE] [--vis_threshold VIS_THRESHOLD] [--output_dir OUT_DIR]
+
+Example:
+ python demo_ga.py --model_path src/cut3r_512_dpt_4_64.pth \
+ --seq_path examples/001 --device cuda --size 512
+"""
+
+import os
+import numpy as np
+import torch
+import time
+import glob
+import random
+import cv2
+import argparse
+import tempfile
+import shutil
+from copy import deepcopy
+from add_ckpt_path import add_path_to_dust3r
+import imageio.v2 as iio
+from PIL import Image
+
+# Set random seed for reproducibility.
+random.seed(42)
+
+def forward_backward_permutations(n, interval=1):
+ original = list(range(n))
+ result = [original]
+ for i in range(1, n):
+ new_list = original[i::interval]
+ result.append(new_list)
+ new_list = original[: i + 1][::-interval]
+ result.append(new_list)
+ return result
+
+def listify(elems):
+ return [x for e in elems for x in e]
+
+
+def collate_with_cat(whatever, lists=False):
+ if isinstance(whatever, dict):
+ return {k: collate_with_cat(vals, lists=lists) for k, vals in whatever.items()}
+
+ elif isinstance(whatever, (tuple, list)):
+ if len(whatever) == 0:
+ return whatever
+ elem = whatever[0]
+ T = type(whatever)
+
+ if elem is None:
+ return None
+ if isinstance(elem, (bool, float, int, str)):
+ return whatever
+ if isinstance(elem, tuple):
+ return T(collate_with_cat(x, lists=lists) for x in zip(*whatever))
+ if isinstance(elem, dict):
+ return {
+ k: collate_with_cat([e[k] for e in whatever], lists=lists) for k in elem
+ }
+
+ if isinstance(elem, torch.Tensor):
+ return listify(whatever) if lists else torch.cat(whatever)
+ if isinstance(elem, np.ndarray):
+ return (
+ listify(whatever)
+ if lists
+ else torch.cat([torch.from_numpy(x) for x in whatever])
+ )
+
+ # otherwise, we just chain lists
+ return sum(whatever, T())
+
+
+def parse_args():
+ """Parse command-line arguments."""
+ parser = argparse.ArgumentParser(
+ description="Run 3D point cloud inference and visualization using ARCroco3DStereo."
+ )
+ parser.add_argument(
+ "--model_path",
+ type=str,
+ default="src/cut3r_512_dpt_4_64.pth",
+ help="Path to the pretrained model checkpoint.",
+ )
+ parser.add_argument(
+ "--seq_path",
+ type=str,
+ default="",
+ help="Path to the directory containing the image sequence.",
+ )
+ parser.add_argument(
+ "--device",
+ type=str,
+ default="cuda",
+ help="Device to run inference on (e.g., 'cuda' or 'cpu').",
+ )
+ parser.add_argument(
+ "--size",
+ type=int,
+ default="512",
+ help="Shape that input images will be rescaled to; if using 224+linear model, choose 224 otherwise 512",
+ )
+ parser.add_argument(
+ "--vis_threshold",
+ type=float,
+ default=1.5,
+ help="Visualization threshold for the point cloud viewer. Ranging from 1 to INF",
+ )
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ default="./demo_tmp",
+ help="value for tempfile.tempdir",
+ )
+
+ return parser.parse_args()
+
+
+def prepare_input(
+ img_paths, img_mask, size, raymaps=None, raymap_mask=None, revisit=1, update=True
+):
+ """
+ Prepare input views for inference from a list of image paths.
+
+ Args:
+ img_paths (list): List of image file paths.
+ img_mask (list of bool): Flags indicating valid images.
+ size (int): Target image size.
+ raymaps (list, optional): List of ray maps.
+ raymap_mask (list, optional): Flags indicating valid ray maps.
+ revisit (int): How many times to revisit each view.
+ update (bool): Whether to update the state on revisits.
+
+ Returns:
+ list: A list of view dictionaries.
+ """
+ # Import image loader (delayed import needed after adding ckpt path).
+ from src.dust3r.utils.image import load_images
+
+ images = load_images(img_paths, size=size)
+ views = []
+ num_views = len(images)
+ all_permutations = forward_backward_permutations(num_views, interval=2)
+ for permute in all_permutations:
+ _views = []
+ for idx, i in enumerate(permute):
+ view = {
+ "img": images[i]["img"],
+ "ray_map": torch.full(
+ (
+ images[i]["img"].shape[0],
+ 6,
+ images[i]["img"].shape[-2],
+ images[i]["img"].shape[-1],
+ ),
+ torch.nan,
+ ),
+ "true_shape": torch.from_numpy(images[i]["true_shape"]),
+ "idx": i,
+ "instance": str(i),
+ "camera_pose": torch.from_numpy(np.eye(4).astype(np.float32)).unsqueeze(
+ 0
+ ),
+ "img_mask": torch.tensor(True).unsqueeze(0),
+ "ray_mask": torch.tensor(False).unsqueeze(0),
+ "update": torch.tensor(True).unsqueeze(0),
+ "reset": torch.tensor(False).unsqueeze(0),
+ }
+ _views.append(view)
+ views.append(_views)
+ return views
+
+
+
+
+
+def prepare_output(output, outdir, device):
+ from cloud_opt.dust3r_opt import global_aligner, GlobalAlignerMode
+
+ with torch.enable_grad():
+ mode = GlobalAlignerMode.PointCloudOptimizer
+ scene = global_aligner(
+ output,
+ device=device,
+ mode=mode,
+ verbose=True,
+ )
+ lr = 0.01
+ loss = scene.compute_global_alignment(
+ init="mst",
+ niter=300,
+ schedule="linear",
+ lr=lr,
+ )
+ scene.clean_pointcloud()
+ pts3d = scene.get_pts3d()
+ depths = scene.get_depthmaps()
+ poses = scene.get_im_poses()
+ focals = scene.get_focals()
+ pps = scene.get_principal_points()
+ confs = scene.get_conf(mode="none")
+
+ pts3ds_other = [pts.detach().cpu().unsqueeze(0) for pts in pts3d]
+ depths = [d.detach().cpu().unsqueeze(0) for d in depths]
+ colors = [torch.from_numpy(img).unsqueeze(0) for img in scene.imgs]
+ confs = [conf.detach().cpu().unsqueeze(0) for conf in confs]
+ cam_dict = {
+ "focal": focals.detach().cpu().numpy(),
+ "pp": pps.detach().cpu().numpy(),
+ "R": poses.detach().cpu().numpy()[..., :3, :3],
+ "t": poses.detach().cpu().numpy()[..., :3, 3],
+ }
+
+ depths_tosave = torch.cat(depths) # B, H, W
+ pts3ds_other_tosave = torch.cat(pts3ds_other) # B, H, W, 3
+ conf_self_tosave = torch.cat(confs) # B, H, W
+ colors_tosave = torch.cat(colors) # [B, H, W, 3]
+ cam2world_tosave = poses.detach().cpu() # B, 4, 4
+ intrinsics_tosave = (
+ torch.eye(3).unsqueeze(0).repeat(cam2world_tosave.shape[0], 1, 1)
+ ) # B, 3, 3
+ intrinsics_tosave[:, 0, 0] = focals[:, 0].detach().cpu()
+ intrinsics_tosave[:, 1, 1] = focals[:, 0].detach().cpu()
+ intrinsics_tosave[:, 0, 2] = pps[:, 0].detach().cpu()
+ intrinsics_tosave[:, 1, 2] = pps[:, 1].detach().cpu()
+
+ os.makedirs(os.path.join(outdir, "depth"), exist_ok=True)
+ os.makedirs(os.path.join(outdir, "conf"), exist_ok=True)
+ os.makedirs(os.path.join(outdir, "color"), exist_ok=True)
+ os.makedirs(os.path.join(outdir, "camera"), exist_ok=True)
+ for f_id in range(len(depths_tosave)):
+ depth = depths_tosave[f_id].cpu().numpy()
+ conf = conf_self_tosave[f_id].cpu().numpy()
+ color = colors_tosave[f_id].cpu().numpy()
+ c2w = cam2world_tosave[f_id].cpu().numpy()
+ intrins = intrinsics_tosave[f_id].cpu().numpy()
+ np.save(os.path.join(outdir, "depth", f"{f_id:06d}.npy"), depth)
+ np.save(os.path.join(outdir, "conf", f"{f_id:06d}.npy"), conf)
+ iio.imwrite(
+ os.path.join(outdir, "color", f"{f_id:06d}.png"),
+ (color * 255).astype(np.uint8),
+ )
+ np.savez(
+ os.path.join(outdir, "camera", f"{f_id:06d}.npz"),
+ pose=c2w,
+ intrinsics=intrins,
+ )
+
+ return pts3ds_other, colors, confs, cam_dict
+
+
+def parse_seq_path(p):
+ if os.path.isdir(p):
+ img_paths = sorted(glob.glob(f"{p}/*"))
+ tmpdirname = None
+ else:
+ cap = cv2.VideoCapture(p)
+ if not cap.isOpened():
+ raise ValueError(f"Error opening video file {p}")
+ video_fps = cap.get(cv2.CAP_PROP_FPS)
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
+ if video_fps == 0:
+ cap.release()
+ raise ValueError(f"Error: Video FPS is 0 for {p}")
+ frame_interval = 1
+ frame_indices = list(range(0, total_frames, frame_interval))
+ print(
+ f" - Video FPS: {video_fps}, Frame Interval: {frame_interval}, Total Frames to Read: {len(frame_indices)}"
+ )
+ img_paths = []
+ tmpdirname = tempfile.mkdtemp()
+ for i in frame_indices:
+ cap.set(cv2.CAP_PROP_POS_FRAMES, i)
+ ret, frame = cap.read()
+ if not ret:
+ break
+ frame_path = os.path.join(tmpdirname, f"frame_{i}.jpg")
+ cv2.imwrite(frame_path, frame)
+ img_paths.append(frame_path)
+ cap.release()
+ return img_paths, tmpdirname
+
+
+
+
+def run_inference(args):
+ """
+ Execute the full inference and visualization pipeline.
+
+ Args:
+ args: Parsed command-line arguments.
+ """
+ # Set up the computation device.
+ device = args.device
+ if device == "cuda" and not torch.cuda.is_available():
+ print("CUDA not available. Switching to CPU.")
+ device = "cpu"
+
+ # Add the checkpoint path (required for model imports in the dust3r package).
+ add_path_to_dust3r(args.model_path)
+
+ # Import model and inference functions after adding the ckpt path.
+ from src.dust3r.inference import inference, inference_recurrent
+ from src.dust3r.model import ARCroco3DStereo
+ from viser_utils import PointCloudViewer
+
+ # Prepare image file paths.
+ img_paths, tmpdirname = parse_seq_path(args.seq_path)
+ if not img_paths:
+ print(f"No images found in {args.seq_path}. Please verify the path.")
+ return
+
+ print(f"Found {len(img_paths)} images in {args.seq_path}.")
+ img_mask = [True] * len(img_paths)
+
+ # Prepare input views.
+ print("Preparing input views...")
+ views = prepare_input(
+ img_paths=img_paths,
+ img_mask=img_mask,
+ size=args.size,
+ revisit=1,
+ update=True,
+ )
+ if tmpdirname is not None:
+ shutil.rmtree(tmpdirname)
+
+ # Load and prepare the model.
+ print(f"Loading model from {args.model_path}...")
+ model = ARCroco3DStereo.from_pretrained(args.model_path).to(device)
+ model.eval()
+
+ # Run inference.
+ print("Running inference...")
+ start_time = time.time()
+ output = {
+ "view1": [],
+ "view2": [],
+ "pred1": [],
+ "pred2": [],
+ }
+ edges = []
+ for _views in views:
+ outputs, state_args = inference(_views, model, device)
+ for view_id in range(1, len(outputs["views"])):
+ output["view1"].append(outputs["views"][0])
+ output["view2"].append(outputs["views"][view_id])
+ output["pred1"].append(outputs["pred"][0])
+ output["pred2"].append(outputs["pred"][view_id])
+
+ edges.append((outputs["views"][0]["idx"], outputs["views"][view_id]["idx"]))
+ list_of_tuples = edges
+ sorted_indices = sorted(
+ range(len(list_of_tuples)),
+ key=lambda x: (
+ list_of_tuples[x][0] > list_of_tuples[x][1], # Grouping condition
+ (
+ list_of_tuples[x][1]
+ if list_of_tuples[x][0] > list_of_tuples[x][1]
+ else list_of_tuples[x][0]
+ ), # First sort key
+ (
+ list_of_tuples[x][0]
+ if list_of_tuples[x][0] > list_of_tuples[x][1]
+ else list_of_tuples[x][1]
+ ), # Second sort key
+ ),
+ )
+ new_output = {
+ "view1": [],
+ "view2": [],
+ "pred1": [],
+ "pred2": [],
+ }
+ for i in sorted_indices:
+ new_output["view1"].append(output["view1"][i])
+ new_output["view2"].append(output["view2"][i])
+ new_output["pred1"].append(output["pred1"][i])
+ new_output["pred2"].append(output["pred2"][i])
+ output["view1"] = collate_with_cat(new_output["view1"])
+ output["view2"] = collate_with_cat(new_output["view2"])
+ output["pred1"] = collate_with_cat(new_output["pred1"])
+ output["pred2"] = collate_with_cat(new_output["pred2"])
+
+ total_time = time.time() - start_time
+ per_frame_time = total_time / len(views)
+ print(
+ f"Inference completed in {total_time:.2f} seconds (average {per_frame_time:.2f} s per frame)."
+ )
+
+ # Process outputs for visualization.
+ print("Preparing output for visualization...")
+
+ pts3ds_other, colors, conf, cam_dict = prepare_output(
+ output, args.output_dir, device
+ )
+
+ # Convert tensors to numpy arrays for visualization.
+ pts3ds_to_vis = [p.cpu().numpy() for p in pts3ds_other]
+ colors_to_vis = [c.cpu().numpy() for c in colors]
+ edge_colors = [None] * len(pts3ds_to_vis)
+
+ # Create and run the point cloud viewer.
+ print("Launching point cloud viewer...")
+ viewer = PointCloudViewer(
+ model,
+ state_args,
+ pts3ds_to_vis,
+ colors_to_vis,
+ conf,
+ cam_dict,
+ device=device,
+ edge_color_list=edge_colors,
+ show_camera=True,
+ vis_threshold=args.vis_threshold,
+ size=args.size,
+ )
+ viewer.run()
+
+
+def main():
+ args = parse_args()
+ if not args.seq_path:
+ print(
+ "No inputs found! Please use our gradio demo if you would like to iteractively upload inputs."
+ )
+ return
+ else:
+ run_inference(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/extern/CUT3R/docs/eval.md b/extern/CUT3R/docs/eval.md
new file mode 100644
index 0000000000000000000000000000000000000000..60122805abad76d6563e21fdad415971fcf17769
--- /dev/null
+++ b/extern/CUT3R/docs/eval.md
@@ -0,0 +1,31 @@
+# Evaluation Scripts
+
+## Monodepth
+
+```bash
+bash eval/monodepth/run.sh
+```
+Results will be saved in `eval_results/monodepth/${data}_${model_name}/metric.json`.
+
+### Video Depth
+
+```bash
+bash eval/video_depth/run.sh # You may need to change [--num_processes] to the number of your gpus
+```
+Results will be saved in `eval_results/video_depth/${data}_${model_name}/result_scale.json`.
+
+### Camera Pose Estimation
+
+```bash
+bash eval/relpose/run.sh # You may need to change [--num_processes] to the number of your gpus
+```
+Results will be saved in `eval_results/relpose/${data}_${model_name}/_error_log.txt`.
+
+### Multi-view Reconstruction
+
+```bash
+bash eval/mv_recon/run.sh # You may need to change [--num_processes] to the number of your gpus
+```
+
+Results will be saved in `eval_results/mv_recon/${model_name}_${ckpt_name}/logs_all.txt`.
+
diff --git a/extern/CUT3R/docs/preprocess.md b/extern/CUT3R/docs/preprocess.md
new file mode 100644
index 0000000000000000000000000000000000000000..33108717412ccb2a7b6c4021a912d68982a95774
--- /dev/null
+++ b/extern/CUT3R/docs/preprocess.md
@@ -0,0 +1,816 @@
+# Preprocess Scripts
+
+Please download all datasets from their original sources, except for vKITTI, for which we provide a fully processed version—no need to download the original dataset. For MapFree and DL3DV, we also release depth maps computed using COLMAP Multi-View Stereo (MVS). See the sections below for details on the processing of each dataset. Please ensure compliance with the respective licensing agreements when downloading. The total data takes about 25TB of disk space.
+
+> If you encounter issues in the scripts, please feel free to create an issue.
+
+- [ARKitScenes](#arkitscenes)
+- [BlendedMVS](#blendedmvs)
+- [CO3Dv2](#co3d)
+- [MegaDepth](#megadepth)
+- [ScanNet++](#scannet-1)
+- [ScanNet](#scannet)
+- [WayMo Open dataset](#waymo)
+- [WildRGB-D](#wildrgbd)
+- [Map-free](#mapfree)
+- [TartanAir](#tartanair)
+- [UnrealStereo4K](#unrealstereo4k)
+- [Virtual KITTI 2](#virtual-kitti-2)
+- [3D Ken Burns](#3d-ken-burns)
+- [BEDLAM](#bedlam)
+- [COP3D](#cop3d)
+- [DL3DV](#dl3dv)
+- [Dynamic Replica](#dynamic-replica)
+- [EDEN](#eden)
+- [Hypersim](#hypersim)
+- [IRS](#irs)
+- [Matterport3D](#matterport3d)
+- [MVImgNet](#mvimgnet)
+- [MVS-Synth](#mvs-synth)
+- [OmniObject3D](#omniobject3d)
+- [PointOdyssey](#pointodyssey)
+- [RealEstate10K](#realestate10k)
+- [SmartPortraits](#smartportraits)
+- [Spring](#spring)
+- [Synscapes](#synscapes)
+- [UASOL](#uasol)
+- [UrbanSyn](#urbansyn)
+- [HOI4D](#hoi4d)
+
+## [ARKitScenes](https://github.com/apple/ARKitScenes)
+
+
+First download the pre-computed pairs provided by [DUSt3R](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/arkitscenes_pairs.zip).
+
+Then run the following command,
+```
+python preprocess_arkitscenes.py --arkitscenes_dir /path/to/your/raw/data --precomputed_pairs /path/to/your/pairs --output_dir /path/to/your/outdir
+
+python generate_set_arkitscenes.py --root /path/to/your/outdir --splits Training Test --max_interval 5.0 --num_workers 8
+```
+
+## [ARKitScenes_highres](https://github.com/apple/ARKitScenes)
+
+
+This dataset is a subset of ARKitScenes with high resolution depthmaps.
+
+```
+python preprocess_arkitscenes_highres.py --arkitscenes_dir /path/to/your/raw/data --output_dir /path/to/your/outdir
+```
+
+## [BlendedMVS](https://github.com/YoYo000/BlendedMVS)
+
+
+Follow DUSt3R to generate the processed BlendedMVS data:
+```
+python preprocess_blendedmvs.py --blendedmvs_dir /path/to/your/raw/data --precomputed_pairs /path/to/your/pairs --output_dir /path/to/your/outdir
+```
+Then put our [overlap set](https://drive.google.com/file/d/1anBQhF9BgOvgaWgAwWnf70tzspQZHBBB/view?usp=sharing) under `/path/to/your/outdir`.
+
+## [CO3D](https://github.com/facebookresearch/co3d)
+
+
+Follow DUSt3R to generate the processed CO3D data.
+```
+python3 preprocess_co3d.py --co3d_dir /path/to/your/raw/data --output_dir /path/to/your/outdir
+```
+
+## [MegaDepth](https://www.cs.cornell.edu/projects/megadepth/)
+
+
+First download our [precomputed set](https://drive.google.com/file/d/1bU1VqRu1NdW-4J4BQybqQS64mUG1EtF1/view?usp=sharing) under `/path/to/your/outdir`.
+
+Then run
+```
+python preprocess_megadepth.py --megadepth_dir /path/to/your/raw/data --precomputed_sets /path/to/precomputed_sets --output_dir /path/to/your/outdir
+```
+
+## [Scannet](http://www.scan-net.org/ScanNet/)
+
+
+```
+python preprocess_scannet.py --scannet_dir /path/to/your/raw/data --output_dir /path/to/your/outdir
+
+python generate_set_scannet.py --root /path/to/your/outdir \
+ --splits scans_test scans_train --max_interval 150 --num_workers 8
+```
+
+## [Scannet++](https://kaldir.vc.in.tum.de/scannetpp/)
+
+
+First download the pre-computed pairs provided by [DUSt3R](https://download.europe.naverlabs.com/ComputerVision/DUSt3R/scannetpp_pairs.zip).
+
+Then run the following command,
+```
+python preprocess_scannetpp.py --scannetpp_dir /path/to/your/raw/data --precomputed_pairs /path/to/your/pairs --output_dir /path/to/your/outdir
+
+python generate_set_scannetpp.py --root /path/to/your/outdir \
+ --max_interval 150 --num_workers 8
+```
+
+## [Waymo](https://github.com/waymo-research/waymo-open-dataset)
+
+
+Follow DUSt3R to generate the processed Waymo data.
+```
+python3 preprocess_waymo.py --waymo_dir /path/to/your/raw/data -precomputed_pairs /path/to/precomputed_pairs --output_dir /path/to/your/outdir
+```
+Then download our [invalid_files](https://drive.google.com/file/d/1xI2SHHoXw1Bm7Lqrn7v56x30stCNuhlv/view?usp=sharing) and put it under `/path/to/your/outdir`.
+
+## [WildRGBD](https://github.com/wildrgbd/wildrgbd/)
+
+
+Follow DUSt3R to generate the processed WildRGBD data.
+```
+python3 preprocess_wildrgbd.py --wildrgbd_dir /path/to/your/raw/data --output_dir /path/to/your/outdir
+```
+
+## [Mapfree](https://research.nianticlabs.com/mapfree-reloc-benchmark/dataset)
+
+
+First preprocess the colmap results provided by Mapfree:
+```
+python3 preprocess_mapfree.py --mapfree_dir /path/to/train/data --colmap_dir /path/to/colmap/data --output_dir /path/to/first/outdir
+```
+
+Then re-organize the data structure:
+```
+python3 preprocess_mapfree2.py --mapfree_dir /path/to/first/outdir --output_dir /path/to/final/outdir
+```
+
+Finally, download our released [depths and masks](https://drive.google.com/file/d/1gJGEAV5e08CR6nK2gH9i71a7_WJ4ANwc/view?usp=drive_link) and combine it with your `/path/to/final/outdir`.
+```
+rsync -av --update /path/to/our/release /path/to/final/outdir
+```
+
+## [TartanAir](https://theairlab.org/tartanair-dataset/)
+
+
+```
+python3 preprocess_tartanair.py --tartanair_dir /path/to/your/raw/data --output_dir /path/to/your/outdir
+```
+
+## [UnrealStereo4K](https://github.com/fabiotosi92/SMD-Nets)
+
+
+```
+python3 preprocess_unreal4k.py --unreal4k_dir /path/to/your/raw/data --output_dir /path/to/your/outdir
+```
+
+## [Virtual KITTI 2](https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/)
+
+
+As Virtual KITTI 2 is using CC BY-NC-SA 3.0 License, we directly release our [preprocessed data](https://drive.google.com/file/d/1KdAH4ztRkzss1HCkGrPjQNnMg5c-f3aD/view?usp=sharing).
+
+## [3D Ken Burns](https://github.com/sniklaus/3d-ken-burns.git)
+
+
+```
+python preprocess_3dkb.py --root /path/to/data_3d_ken_burns \
+ --out_dir /path/to/processed_3dkb \
+ [--num_workers 4] [--seed 42]
+```
+
+## [BEDLAM](https://bedlam.is.tue.mpg.de/)
+
+
+```
+python preprocess_bedlam.py --root /path/to/extracted_data \
+ --outdir /path/to/processed_bedlam \
+ [--num_workers 4]
+```
+
+## [COP3D](https://github.com/facebookresearch/cop3d)
+
+
+```
+python3 preprocess_cop3d.py --cop3d_dir /path/to/cop3d \
+ --output_dir /path/to/processed_cop3d
+```
+
+## [DL3DV](https://github.com/DL3DV-10K/Dataset)
+
+
+
+~~Due to current potential problems with license, you may need to run multi-view stereo on DL3DV by yourself (which is extremely time consuming). If this is done, then you can use our preprocess script:~~
+
+~~```~~
+~~python3 preprocess_dl3dv.py --dl3dv_dir /path/to/dl3dv \
+ --output_dir /path/to/processed_dl3dv~~
+~~```~~
+
+**Update: We've released the full version of our processed DL3DV dataset!**
+
+To use our processed DL3DV data, please ensure that you **first** cite the [original DL3DV work](https://github.com/DL3DV-10K/Dataset) and adhere to their licensing terms.
+
+You can then download the following components:
+
+- [RGB images and camera parameters](https://huggingface.co/datasets/zhangify/CUT3R_release/tree/main/processed_dl3dv_ours_rgb_cam_1)
+
+- [Depthmaps and masks](https://drive.google.com/file/d/14E15EG5NJgWH5UVYubrPSSFXmReCIe7f/view?usp=drive_link)
+
+After downloading, merge the components using the provided script:
+```
+python3 merge_dl3dv.py # remember to change necessary paths
+```
+
+## [Dynamic Replica](https://github.com/facebookresearch/dynamic_stereo)
+
+
+```
+python preprocess_dynamic_replica.py --root_dir /path/to/data_dynamic_replica \
+ --out_dir /path/to/processed_dynamic_replica
+```
+
+## [EDEN](https://lhoangan.github.io/eden/)
+
+
+
+

+
+

+
+

+
+

+
+

+
+
+
+```
+python preprocess_eden.py --root /path/to/data_raw_videos/data_eden \
+ --out_dir /path/to/data_raw_videos/processed_eden \
+ [--num_workers N]
+```
+
+## [Hypersim](https://github.com/apple/ml-hypersim)
+
+
+```
+python preprocess_hypersim.py --hypersim_dir /path/to/hypersim \
+ --output_dir /path/to/processed_hypersim
+```
+
+## [IRS](https://github.com/HKBU-HPML/IRS)
+
+
+```
+python preprocess_irs.py
+ --root_dir /path/to/data_irs
+ --out_dir /path/to/processed_irs
+```
+
+## [Matterport3D](https://niessner.github.io/Matterport/)
+
+
+```
+python preprocess_mp3d.py --root_dir /path/to/data_mp3d/v1/scans \
+ --out_dir /path/to/processed_mp3d
+```
+
+## [MVImgNet](https://github.com/GAP-LAB-CUHK-SZ/MVImgNet)
+
+
+```
+python preprocess_mvimgnet.py --data_dir /path/to/MVImgNet_data \
+ --pcd_dir /path/to/MVPNet \
+ --output_dir /path/to/processed_mvimgnet
+```
+
+## [MVS-Synth](https://phuang17.github.io/DeepMVS/mvs-synth.html)
+
+
+```
+python preprocess_mvs_synth.py --root_dir /path/to/data_mvs_synth/GTAV_720/ \
+ --out_dir /path/to/processed_mvs_synth \
+ --num_workers 32
+```
+
+## [OmniObject3D](https://omniobject3d.github.io/)
+
+
+```
+python preprocess_omniobject3d.py --input_dir /path/to/input_root --output_dir /path/to/output_root
+```
+
+## [PointOdyssey](https://pointodyssey.com/)
+
+
+```
+python preprocess_point_odyssey.py --input_dir /path/to/input_dataset --output_dir /path/to/output_dataset
+```
+
+## [RealEstate10K](https://google.github.io/realestate10k/)
+
+
+```
+python preprocess_re10k.py --root_dir /path/to/train \
+ --info_dir /path/to/RealEstate10K/train \
+ --out_dir /path/to/processed_re10k
+```
+
+## [SmartPortraits](https://mobileroboticsskoltech.github.io/SmartPortraits/)
+
+
+You need to follow the [official processing pipeline](https://github.com/MobileRoboticsSkoltech/SmartPortraits-toolkit) first. Replace the `convert_to_TUM/utils/convert_to_tum.py` with our `datasets_preprocess/custom_convert2TUM.py` (You may need to change the input path and output path).
+
+Then run
+```
+python preprocess_smartportraits.py \
+ --input_dir /path/to/official/pipeline/output \
+ --output_dir /path/to/processed_smartportraits
+```
+
+## [Spring](https://spring-benchmark.org/)
+
+
+```
+python preprocess_spring.py \
+ --root_dir /path/to/spring/train \
+ --out_dir /path/to/processed_spring \
+ --baseline 0.065 \
+ --output_size 960 540
+```
+
+## [Synscapes](https://synscapes.on.liu.se/)
+
+
+```
+python preprocess_synscapes.py \
+ --synscapes_dir /path/to/Synscapes/Synscapes \
+ --output_dir /path/to/processed_synscapes
+```
+
+## [UASOL](https://osf.io/64532/)
+
+
+```
+python preprocess_uasol.py \
+ --input_dir /path/to/data_uasol \
+ --output_dir /path/to/processed_uasol
+```
+
+## [UrbanSyn](https://www.urbansyn.org/)
+
+
+
+

+
+

+
+

+

+
+
+

+
+
+
+```
+python preprocess_urbansyn.py \
+ --input_dir /path/to/data_urbansyn \
+ --output_dir /path/to/processed_urbansyn
+```
+
+## [HOI4D](https://hoi4d.github.io/)
+
+
+```
+python preprocess_hoi4d.py \
+ --root_dir /path/to/HOI4D_release \
+ --cam_root /path/to/camera_params \
+ --out_dir /path/to/processed_hoi4d
+```
diff --git a/extern/CUT3R/docs/train.md b/extern/CUT3R/docs/train.md
new file mode 100644
index 0000000000000000000000000000000000000000..a587b8a9486bc66786ee6ac00479462d8c39515a
--- /dev/null
+++ b/extern/CUT3R/docs/train.md
@@ -0,0 +1,47 @@
+# Training
+
+Please note that this is an academic project, and due to resource constraints, we trained our model iteratively while exploring different configurations. As a result, releasing the complete training procedure is challenging. However, if you wish to train the model from scratch, we provide a set of configurations below that we believe are representative. For fine-tuning, we recommend starting with the scripts available [here](#fine-tuning). There are many design choices to consider, particularly under varying computational constraints, and we look forward to seeing the community explore these possibilities further.
+
+## Training Configurations
+
+You could refer to the following commands as a starting point if you would like to train from scratch.
+
+```
+# Remember to replace the dataset path to your own path
+# the script has been tested on a 8xA100(80G) machine
+
+cd src/
+
+# stage 1, train 224+linear model on static datasets
+CUDA_LAUNCH_BLOCKING=1 NCCL_DEBUG=TRACE TORCH_DISTRIBUTED_DEBUG=DETAIL HYDRA_FULL_ERROR=1 accelerate launch --multi_gpu train.py --config-name stage1
+
+# stage 2, finetune 224+linear model on all datasets
+CUDA_LAUNCH_BLOCKING=1 NCCL_DEBUG=TRACE TORCH_DISTRIBUTED_DEBUG=DETAIL HYDRA_FULL_ERROR=1 accelerate launch --multi_gpu train.py --config-name stage2
+
+# stage 3, train 512+dpt model on all datasets
+CUDA_LAUNCH_BLOCKING=1 NCCL_DEBUG=TRACE TORCH_DISTRIBUTED_DEBUG=DETAIL HYDRA_FULL_ERROR=1 accelerate launch --multi_gpu train.py --config-name stage3
+
+# stage 4, train 512+dpt model on long sequences (32 views)
+CUDA_LAUNCH_BLOCKING=1 NCCL_DEBUG=TRACE TORCH_DISTRIBUTED_DEBUG=DETAIL HYDRA_FULL_ERROR=1 accelerate launch --multi_gpu train.py --config-name stage4
+
+# Finally, finetune 512+dpt model on 4-64 views
+CUDA_LAUNCH_BLOCKING=1 NCCL_DEBUG=TRACE TORCH_DISTRIBUTED_DEBUG=DETAIL HYDRA_FULL_ERROR=1 accelerate launch --multi_gpu train.py --config-name dpt_512_vary_4_64
+
+```
+
+## Fine-tuning
+
+To fine-tune the released checkpoints, you can use the two provided config files as a starting point. Note that these configs correspond to the final stage of training, where the goal is to train the model to handle long sequences. Therefore, in these configs, the encoders are frozen, and single-view datasets are removed. You may adjust the configurations as needed to suit your requirements.
+
+```
+# Remember to replace the dataset path to your own path
+# the script has been tested on a 8xA100(80G) machine
+
+cd src/
+
+# finetune 512 checkpoint
+CUDA_LAUNCH_BLOCKING=1 NCCL_DEBUG=TRACE TORCH_DISTRIBUTED_DEBUG=DETAIL HYDRA_FULL_ERROR=1 accelerate launch --multi_gpu train.py --config-name dpt_512_vary_4_64
+
+# finetune 224 checkpoint
+CUDA_LAUNCH_BLOCKING=1 NCCL_DEBUG=TRACE TORCH_DISTRIBUTED_DEBUG=DETAIL HYDRA_FULL_ERROR=1 accelerate launch --multi_gpu train.py --config-name linear_224_fixed_16
+```
\ No newline at end of file
diff --git a/extern/CUT3R/eval/monodepth/eval_metrics.py b/extern/CUT3R/eval/monodepth/eval_metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..81a59325d4551ed86fc3c3f42e74d06fa06b328a
--- /dev/null
+++ b/extern/CUT3R/eval/monodepth/eval_metrics.py
@@ -0,0 +1,211 @@
+import os
+import sys
+
+sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
+from eval.monodepth.tools import depth_evaluation
+import numpy as np
+import json
+from tqdm import tqdm
+import glob
+import cv2
+from eval.monodepth.metadata import dataset_metadata
+import argparse
+from PIL import Image
+
+TAG_FLOAT = 202021.25
+
+
+def depth_read_sintel(filename):
+ """Read depth data from file, return as numpy array."""
+ f = open(filename, "rb")
+ check = np.fromfile(f, dtype=np.float32, count=1)[0]
+ assert (
+ check == TAG_FLOAT
+ ), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
+ TAG_FLOAT, check
+ )
+ width = np.fromfile(f, dtype=np.int32, count=1)[0]
+ height = np.fromfile(f, dtype=np.int32, count=1)[0]
+ size = width * height
+ assert (
+ width > 0 and height > 0 and size > 1 and size < 100000000
+ ), " depth_read:: Wrong input size (width = {0}, height = {1}).".format(
+ width, height
+ )
+ depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width))
+ return depth
+
+
+def depth_read_bonn(filename):
+ # loads depth map D from png file
+ # and returns it as a numpy array
+ depth_png = np.asarray(Image.open(filename))
+ # make sure we have a proper 16bit depth map here.. not 8bit!
+ assert np.max(depth_png) > 255
+ depth = depth_png.astype(np.float64) / 5000.0
+ depth[depth_png == 0] = -1.0
+ return depth
+
+
+def depth_read_kitti(filename):
+ # loads depth map D from png file
+ # and returns it as a numpy array,
+ # for details see readme.txt
+ img_pil = Image.open(filename)
+ depth_png = np.array(img_pil, dtype=int)
+ # make sure we have a proper 16bit depth map here.. not 8bit!
+ assert np.max(depth_png) > 255
+
+ depth = depth_png.astype(float) / 256.0
+ depth[depth_png == 0] = -1.0
+ return depth
+
+
+def get_gt_depth(filename, dataset):
+ if dataset == "sintel":
+ return depth_read_sintel(filename)
+ elif dataset == "bonn":
+ return depth_read_bonn(filename)
+ elif dataset == "kitti":
+ return depth_read_kitti(filename)
+ elif dataset == "nyu":
+ return np.load(filename)
+ else:
+ raise NotImplementedError
+
+
+def get_args_parser():
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ default="",
+ help="value for outdir",
+ )
+ parser.add_argument(
+ "--eval_dataset", type=str, default="nyu", choices=list(dataset_metadata.keys())
+ )
+ return parser
+
+
+def main(args):
+ if args.eval_dataset == "nyu":
+ depth_pathes = glob.glob("data/nyu-v2/val/nyu_depths/*.npy")
+ depth_pathes = sorted(depth_pathes)
+ pred_pathes = glob.glob(
+ f"{args.output_dir}/*.npy"
+ ) # TODO: update the path to your prediction
+ pred_pathes = sorted(pred_pathes)
+ elif args.eval_dataset == "sintel":
+ pred_pathes = glob.glob(
+ f"{args.output_dir}/*/*.npy"
+ ) # TODO: update the path to your prediction
+ pred_pathes = sorted(pred_pathes)
+ full = len(pred_pathes) > 643
+ if full:
+ depth_pathes = glob.glob(f"data/sintel/training/depth/*/*.dpt")
+ depth_pathes = sorted(depth_pathes)
+ else:
+ seq_list = [
+ "alley_2",
+ "ambush_4",
+ "ambush_5",
+ "ambush_6",
+ "cave_2",
+ "cave_4",
+ "market_2",
+ "market_5",
+ "market_6",
+ "shaman_3",
+ "sleeping_1",
+ "sleeping_2",
+ "temple_2",
+ "temple_3",
+ ]
+ depth_pathes_folder = [
+ f"data/sintel/training/depth/{seq}" for seq in seq_list
+ ]
+ depth_pathes = []
+ for depth_pathes_folder_i in depth_pathes_folder:
+ depth_pathes += glob.glob(depth_pathes_folder_i + "/*.dpt")
+ depth_pathes = sorted(depth_pathes)
+ elif args.eval_dataset == "bonn":
+ seq_list = ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"]
+ img_pathes_folder = [
+ f"data/bonn/rgbd_bonn_dataset/rgbd_bonn_{seq}/rgb_110/*.png"
+ for seq in seq_list
+ ]
+ img_pathes = []
+ for img_pathes_folder_i in img_pathes_folder:
+ img_pathes += glob.glob(img_pathes_folder_i)
+ img_pathes = sorted(img_pathes)
+ depth_pathes_folder = [
+ f"data/bonn/rgbd_bonn_dataset/rgbd_bonn_{seq}/depth_110/*.png"
+ for seq in seq_list
+ ]
+ depth_pathes = []
+ for depth_pathes_folder_i in depth_pathes_folder:
+ depth_pathes += glob.glob(depth_pathes_folder_i)
+ depth_pathes = sorted(depth_pathes)
+ pred_pathes = glob.glob(
+ f"{args.output_dir}/*/*.npy"
+ ) # TODO: update the path to your prediction
+ pred_pathes = sorted(pred_pathes)
+ elif args.eval_dataset == "kitti":
+ depth_pathes = glob.glob(
+ "data/kitti/depth_selection/val_selection_cropped/groundtruth_depth_gathered/*/*.png"
+ )
+ depth_pathes = sorted(depth_pathes)
+ pred_pathes = glob.glob(
+ f"{args.output_dir}/*/*depth.npy"
+ ) # TODO: update the path to your prediction
+ pred_pathes = sorted(pred_pathes)
+ else:
+ raise NotImplementedError
+
+ gathered_depth_metrics = []
+ for idx in tqdm(range(len(depth_pathes))):
+ pred_depth = np.load(pred_pathes[idx])
+ gt_depth = get_gt_depth(depth_pathes[idx], args.eval_dataset)
+ pred_depth = cv2.resize(
+ pred_depth,
+ (gt_depth.shape[1], gt_depth.shape[0]),
+ interpolation=cv2.INTER_CUBIC,
+ )
+ if args.eval_dataset == "nyu":
+ depth_results, error_map, depth_predict, depth_gt = depth_evaluation(
+ pred_depth, gt_depth, max_depth=None, lr=1e-3
+ )
+ elif args.eval_dataset == "sintel":
+ depth_results, error_map, depth_predict, depth_gt = depth_evaluation(
+ pred_depth, gt_depth, max_depth=70, use_gpu=True, post_clip_max=70
+ )
+ elif args.eval_dataset == "bonn":
+ depth_results, error_map, depth_predict, depth_gt = depth_evaluation(
+ pred_depth, gt_depth, max_depth=70, use_gpu=True
+ )
+ elif args.eval_dataset == "kitti":
+ depth_results, error_map, depth_predict, depth_gt = depth_evaluation(
+ pred_depth, gt_depth, max_depth=None, use_gpu=True
+ )
+ gathered_depth_metrics.append(depth_results)
+
+ depth_log_path = os.path.join(args.output_dir, "metric.json")
+ average_metrics = {
+ key: np.average(
+ [metrics[key] for metrics in gathered_depth_metrics],
+ weights=[metrics["valid_pixels"] for metrics in gathered_depth_metrics],
+ )
+ for key in gathered_depth_metrics[0].keys()
+ if key != "valid_pixels"
+ }
+ print(f"{args.eval_dataset} - Average depth evaluation metrics:", average_metrics)
+ with open(depth_log_path, "w") as f:
+ f.write(json.dumps(average_metrics))
+
+
+if __name__ == "__main__":
+ args = get_args_parser()
+ args = args.parse_args()
+ main(args)
diff --git a/extern/CUT3R/eval/monodepth/launch.py b/extern/CUT3R/eval/monodepth/launch.py
new file mode 100644
index 0000000000000000000000000000000000000000..5016a63211aac5fdbb3563ccc5c841c3752966fc
--- /dev/null
+++ b/extern/CUT3R/eval/monodepth/launch.py
@@ -0,0 +1,133 @@
+import torch
+import numpy as np
+import cv2
+import glob
+import argparse
+from pathlib import Path
+from tqdm import tqdm
+from copy import deepcopy
+from scipy.optimize import minimize
+import os
+import sys
+
+sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
+from collections import defaultdict
+from eval.monodepth.metadata import dataset_metadata
+from add_ckpt_path import add_path_to_dust3r
+
+
+def get_args_parser():
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--weights", type=str, help="path to the model weights", default=""
+ )
+
+ parser.add_argument("--device", type=str, default="cuda", help="pytorch device")
+ parser.add_argument("--output_dir", type=str, default="", help="value for outdir")
+ parser.add_argument(
+ "--no_crop", type=bool, default=True, help="whether to crop input data"
+ )
+ parser.add_argument(
+ "--full_seq", type=bool, default=False, help="whether to use all seqs"
+ )
+ parser.add_argument("--seq_list", default=None)
+
+ parser.add_argument(
+ "--eval_dataset", type=str, default="nyu", choices=list(dataset_metadata.keys())
+ )
+ return parser
+
+
+def eval_mono_depth_estimation(args, model, device):
+ metadata = dataset_metadata.get(args.eval_dataset)
+ if metadata is None:
+ raise ValueError(f"Unknown dataset: {args.eval_dataset}")
+
+ img_path = metadata.get("img_path")
+ if "img_path_func" in metadata:
+ img_path = metadata["img_path_func"](args)
+
+ process_func = metadata.get("process_func")
+ if process_func is None:
+ raise ValueError(
+ f"No processing function defined for dataset: {args.eval_dataset}"
+ )
+
+ for filelist, save_dir in process_func(args, img_path):
+ Path(save_dir).mkdir(parents=True, exist_ok=True)
+ eval_mono_depth(args, model, device, filelist, save_dir=save_dir)
+
+
+def eval_mono_depth(args, model, device, filelist, save_dir=None):
+ model.eval()
+ load_img_size = 512
+ for file in tqdm(filelist):
+ # construct the "image pair" for the single image
+ file = [file]
+ images = load_images(
+ file, size=load_img_size, verbose=False, crop=not args.no_crop
+ )
+ views = []
+ num_views = len(images)
+
+ for i in range(num_views):
+ view = {
+ "img": images[i]["img"],
+ "ray_map": torch.full(
+ (
+ images[i]["img"].shape[0],
+ 6,
+ images[i]["img"].shape[-2],
+ images[i]["img"].shape[-1],
+ ),
+ torch.nan,
+ ),
+ "true_shape": torch.from_numpy(images[i]["true_shape"]),
+ "idx": i,
+ "instance": str(i),
+ "camera_pose": torch.from_numpy(np.eye(4).astype(np.float32)).unsqueeze(
+ 0
+ ),
+ "img_mask": torch.tensor(True).unsqueeze(0),
+ "ray_mask": torch.tensor(False).unsqueeze(0),
+ "update": torch.tensor(True).unsqueeze(0),
+ "reset": torch.tensor(False).unsqueeze(0),
+ }
+ views.append(view)
+
+ outputs, state_args = inference(views, model, device)
+ pts3ds_self = [output["pts3d_in_self_view"].cpu() for output in outputs["pred"]]
+ depth_map = pts3ds_self[0][..., -1].mean(dim=0)
+
+ if save_dir is not None:
+ # save the depth map to the save_dir as npy
+ np.save(
+ f"{save_dir}/{file[0].split('/')[-1].replace('.png','depth.npy')}",
+ depth_map.cpu().numpy(),
+ )
+ # also save the png
+ depth_map = (depth_map - depth_map.min()) / (
+ depth_map.max() - depth_map.min()
+ )
+ depth_map = (depth_map * 255).cpu().numpy().astype(np.uint8)
+ cv2.imwrite(
+ f"{save_dir}/{file[0].split('/')[-1].replace('.png','depth.png')}",
+ depth_map,
+ )
+
+
+if __name__ == "__main__":
+ args = get_args_parser()
+ args = args.parse_args()
+ if args.eval_dataset == "sintel":
+ args.full_seq = True
+ else:
+ args.full_seq = False
+ add_path_to_dust3r(args.weights)
+ from dust3r.utils.image import load_images_for_eval as load_images
+ from dust3r.inference import inference
+ from dust3r.model import ARCroco3DStereo
+
+ model = ARCroco3DStereo.from_pretrained(args.weights).to(args.device)
+ eval_mono_depth_estimation(args, model, args.device)
diff --git a/extern/CUT3R/eval/monodepth/metadata.py b/extern/CUT3R/eval/monodepth/metadata.py
new file mode 100644
index 0000000000000000000000000000000000000000..459511277cff7cc319780dc665bb2fdba7acbe9d
--- /dev/null
+++ b/extern/CUT3R/eval/monodepth/metadata.py
@@ -0,0 +1,187 @@
+import os
+import glob
+from tqdm import tqdm
+
+# Define the merged dataset metadata dictionary
+dataset_metadata = {
+ "sun_rgbd": {
+ "img_path": "data/sun_rgbd/image/test",
+ "mask_path": None,
+ },
+ "davis": {
+ "img_path": "data/davis/DAVIS/JPEGImages/480p",
+ "mask_path": "data/davis/DAVIS/masked_images/480p",
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
+ "gt_traj_func": lambda img_path, anno_path, seq: None,
+ "traj_format": None,
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: os.path.join(mask_path, seq),
+ "skip_condition": None,
+ "process_func": None, # Not used in mono depth estimation
+ },
+ "kitti": {
+ "img_path": "data/kitti/depth_selection/val_selection_cropped/image_gathered", # Default path
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
+ "gt_traj_func": lambda img_path, anno_path, seq: None,
+ "traj_format": None,
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": lambda args, img_path: process_kitti(args, img_path),
+ },
+ "bonn": {
+ "img_path": "data/bonn/rgbd_bonn_dataset",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(
+ img_path, f"rgbd_bonn_{seq}", "rgb_110"
+ ),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, f"rgbd_bonn_{seq}", "groundtruth_110.txt"
+ ),
+ "traj_format": "tum",
+ "seq_list": ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"],
+ "full_seq": False,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": lambda args, img_path: process_bonn(args, img_path),
+ },
+ "nyu": {
+ "img_path": "data/nyu-v2/val/nyu_images",
+ "mask_path": None,
+ "process_func": lambda args, img_path: process_nyu(args, img_path),
+ },
+ "scannet": {
+ "img_path": "data/scannetv2",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "color_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "pose_90.txt"
+ ),
+ "traj_format": "replica",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None, # lambda save_dir, seq: os.path.exists(os.path.join(save_dir, seq)),
+ "process_func": lambda args, img_path: process_scannet(args, img_path),
+ },
+ "tum": {
+ "img_path": "data/tum",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "rgb_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "groundtruth_90.txt"
+ ),
+ "traj_format": "tum",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": None,
+ },
+ "sintel": {
+ "img_path": "data/sintel/training/final",
+ "anno_path": "data/sintel/training/camdata_left",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(anno_path, seq),
+ "traj_format": None,
+ "seq_list": [
+ "alley_2",
+ "ambush_4",
+ "ambush_5",
+ "ambush_6",
+ "cave_2",
+ "cave_4",
+ "market_2",
+ "market_5",
+ "market_6",
+ "shaman_3",
+ "sleeping_1",
+ "sleeping_2",
+ "temple_2",
+ "temple_3",
+ ],
+ "full_seq": False,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": lambda args, img_path: process_sintel(args, img_path),
+ },
+}
+
+
+# Define processing functions for each dataset
+def process_kitti(args, img_path):
+ for dir in tqdm(sorted(glob.glob(f"{img_path}/*"))):
+ filelist = sorted(glob.glob(f"{dir}/*.png"))
+ save_dir = f"{args.output_dir}/{os.path.basename(dir)}"
+ yield filelist, save_dir
+
+
+def process_bonn(args, img_path):
+ if args.full_seq:
+ for dir in tqdm(sorted(glob.glob(f"{img_path}/*/"))):
+ filelist = sorted(glob.glob(f"{dir}/rgb/*.png"))
+ save_dir = f"{args.output_dir}/{os.path.basename(os.path.dirname(dir))}"
+ yield filelist, save_dir
+ else:
+ seq_list = (
+ ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"]
+ if args.seq_list is None
+ else args.seq_list
+ )
+ for seq in tqdm(seq_list):
+ filelist = sorted(glob.glob(f"{img_path}/rgbd_bonn_{seq}/rgb_110/*.png"))
+ save_dir = f"{args.output_dir}/{seq}"
+ yield filelist, save_dir
+
+
+def process_sunrgbd(args, img_path):
+ filelist = sorted(glob.glob(f"{img_path}/*.jpg"))
+ save_dir = f"{args.output_dir}"
+ yield filelist, save_dir
+
+
+def process_nyu(args, img_path):
+ filelist = sorted(glob.glob(f"{img_path}/*.png"))
+ save_dir = f"{args.output_dir}"
+ yield filelist, save_dir
+
+
+def process_scannet(args, img_path):
+ seq_list = sorted(glob.glob(f"{img_path}/*"))
+ for seq in tqdm(seq_list):
+ filelist = sorted(glob.glob(f"{seq}/color_90/*.jpg"))
+ save_dir = f"{args.output_dir}/{os.path.basename(seq)}"
+ yield filelist, save_dir
+
+
+def process_sintel(args, img_path):
+ if args.full_seq:
+ for dir in tqdm(sorted(glob.glob(f"{img_path}/*/"))):
+ filelist = sorted(glob.glob(f"{dir}/*.png"))
+ save_dir = f"{args.output_dir}/{os.path.basename(os.path.dirname(dir))}"
+ yield filelist, save_dir
+ else:
+ seq_list = [
+ "alley_2",
+ "ambush_4",
+ "ambush_5",
+ "ambush_6",
+ "cave_2",
+ "cave_4",
+ "market_2",
+ "market_5",
+ "market_6",
+ "shaman_3",
+ "sleeping_1",
+ "sleeping_2",
+ "temple_2",
+ "temple_3",
+ ]
+ for seq in tqdm(seq_list):
+ filelist = sorted(glob.glob(f"{img_path}/{seq}/*.png"))
+ save_dir = f"{args.output_dir}/{seq}"
+ yield filelist, save_dir
diff --git a/extern/CUT3R/eval/monodepth/run.sh b/extern/CUT3R/eval/monodepth/run.sh
new file mode 100644
index 0000000000000000000000000000000000000000..5e442116b94e80e7bb832ae7d433493cebe4137d
--- /dev/null
+++ b/extern/CUT3R/eval/monodepth/run.sh
@@ -0,0 +1,25 @@
+#!/bin/bash
+set -e
+
+workdir='.'
+model_name='ours'
+ckpt_name='cut3r_512_dpt_4_64'
+model_weights="${workdir}/src/${ckpt_name}.pth"
+datasets=('sintel' 'bonn' 'kitti' 'nyu')
+
+for data in "${datasets[@]}"; do
+ output_dir="${workdir}/eval_results/monodepth/${data}_${model_name}"
+ echo "$output_dir"
+ python eval/monodepth/launch.py \
+ --weights "$model_weights" \
+ --output_dir "$output_dir" \
+ --eval_dataset "$data"
+done
+
+for data in "${datasets[@]}"; do
+ output_dir="${workdir}/eval_results/monodepth/${data}_${model_name}"
+ python eval/monodepth/eval_metrics.py \
+ --output_dir "$output_dir" \
+ --eval_dataset "$data"
+done
+
diff --git a/extern/CUT3R/eval/monodepth/tools.py b/extern/CUT3R/eval/monodepth/tools.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6786fa6f25def0110ce22dbb7d44a7a08c952c8
--- /dev/null
+++ b/extern/CUT3R/eval/monodepth/tools.py
@@ -0,0 +1,399 @@
+import torch
+import numpy as np
+import cv2
+import glob
+import argparse
+from pathlib import Path
+from tqdm import tqdm
+from copy import deepcopy
+from scipy.optimize import minimize
+import os
+from collections import defaultdict
+
+
+def group_by_directory(pathes, idx=-1):
+ """
+ Groups the file paths based on the second-to-last directory in their paths.
+
+ Parameters:
+ - pathes (list): List of file paths.
+
+ Returns:
+ - dict: A dictionary where keys are the second-to-last directory names and values are lists of file paths.
+ """
+ grouped_pathes = defaultdict(list)
+
+ for path in pathes:
+ # Extract the second-to-last directory
+ dir_name = os.path.dirname(path).split("/")[idx]
+ grouped_pathes[dir_name].append(path)
+
+ return grouped_pathes
+
+
+def depth2disparity(depth, return_mask=False):
+ if isinstance(depth, torch.Tensor):
+ disparity = torch.zeros_like(depth)
+ elif isinstance(depth, np.ndarray):
+ disparity = np.zeros_like(depth)
+ non_negtive_mask = depth > 0
+ disparity[non_negtive_mask] = 1.0 / depth[non_negtive_mask]
+ if return_mask:
+ return disparity, non_negtive_mask
+ else:
+ return disparity
+
+
+def absolute_error_loss(params, predicted_depth, ground_truth_depth):
+ s, t = params
+
+ predicted_aligned = s * predicted_depth + t
+
+ abs_error = np.abs(predicted_aligned - ground_truth_depth)
+ return np.sum(abs_error)
+
+
+def absolute_value_scaling(predicted_depth, ground_truth_depth, s=1, t=0):
+ predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1)
+ ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1)
+
+ initial_params = [s, t] # s = 1, t = 0
+
+ result = minimize(
+ absolute_error_loss,
+ initial_params,
+ args=(predicted_depth_np, ground_truth_depth_np),
+ )
+
+ s, t = result.x
+ return s, t
+
+
+def absolute_value_scaling2(
+ predicted_depth,
+ ground_truth_depth,
+ s_init=1.0,
+ t_init=0.0,
+ lr=1e-4,
+ max_iters=1000,
+ tol=1e-6,
+):
+ # Initialize s and t as torch tensors with requires_grad=True
+ s = torch.tensor(
+ [s_init],
+ requires_grad=True,
+ device=predicted_depth.device,
+ dtype=predicted_depth.dtype,
+ )
+ t = torch.tensor(
+ [t_init],
+ requires_grad=True,
+ device=predicted_depth.device,
+ dtype=predicted_depth.dtype,
+ )
+
+ optimizer = torch.optim.Adam([s, t], lr=lr)
+
+ prev_loss = None
+
+ for i in range(max_iters):
+ optimizer.zero_grad()
+
+ # Compute predicted aligned depth
+ predicted_aligned = s * predicted_depth + t
+
+ # Compute absolute error
+ abs_error = torch.abs(predicted_aligned - ground_truth_depth)
+
+ # Compute loss
+ loss = torch.sum(abs_error)
+
+ # Backpropagate
+ loss.backward()
+
+ # Update parameters
+ optimizer.step()
+
+ # Check convergence
+ if prev_loss is not None and torch.abs(prev_loss - loss) < tol:
+ break
+
+ prev_loss = loss.item()
+
+ return s.detach().item(), t.detach().item()
+
+
+def depth_evaluation(
+ predicted_depth_original,
+ ground_truth_depth_original,
+ max_depth=80,
+ custom_mask=None,
+ post_clip_min=None,
+ post_clip_max=None,
+ pre_clip_min=None,
+ pre_clip_max=None,
+ align_with_lstsq=False,
+ align_with_lad=False,
+ align_with_lad2=False,
+ metric_scale=False,
+ lr=1e-4,
+ max_iters=1000,
+ use_gpu=False,
+ align_with_scale=False,
+ disp_input=False,
+):
+ """
+ Evaluate the depth map using various metrics and return a depth error parity map, with an option for least squares alignment.
+
+ Args:
+ predicted_depth (numpy.ndarray or torch.Tensor): The predicted depth map.
+ ground_truth_depth (numpy.ndarray or torch.Tensor): The ground truth depth map.
+ max_depth (float): The maximum depth value to consider. Default is 80 meters.
+ align_with_lstsq (bool): If True, perform least squares alignment of the predicted depth with ground truth.
+
+ Returns:
+ dict: A dictionary containing the evaluation metrics.
+ torch.Tensor: The depth error parity map.
+ """
+ if isinstance(predicted_depth_original, np.ndarray):
+ predicted_depth_original = torch.from_numpy(predicted_depth_original)
+ if isinstance(ground_truth_depth_original, np.ndarray):
+ ground_truth_depth_original = torch.from_numpy(ground_truth_depth_original)
+ if custom_mask is not None and isinstance(custom_mask, np.ndarray):
+ custom_mask = torch.from_numpy(custom_mask)
+
+ # if the dimension is 3, flatten to 2d along the batch dimension
+ if predicted_depth_original.dim() == 3:
+ _, h, w = predicted_depth_original.shape
+ predicted_depth_original = predicted_depth_original.view(-1, w)
+ ground_truth_depth_original = ground_truth_depth_original.view(-1, w)
+ if custom_mask is not None:
+ custom_mask = custom_mask.view(-1, w)
+
+ # put to device
+ if use_gpu:
+ predicted_depth_original = predicted_depth_original.cuda()
+ ground_truth_depth_original = ground_truth_depth_original.cuda()
+
+ # Filter out depths greater than max_depth
+ if max_depth is not None:
+ mask = (ground_truth_depth_original > 0) & (
+ ground_truth_depth_original < max_depth
+ )
+ else:
+ mask = ground_truth_depth_original > 0
+ predicted_depth = predicted_depth_original[mask]
+ ground_truth_depth = ground_truth_depth_original[mask]
+
+ # Clip the depth values
+ if pre_clip_min is not None:
+ predicted_depth = torch.clamp(predicted_depth, min=pre_clip_min)
+ if pre_clip_max is not None:
+ predicted_depth = torch.clamp(predicted_depth, max=pre_clip_max)
+
+ if disp_input: # align the pred to gt in the disparity space
+ real_gt = ground_truth_depth.clone()
+ ground_truth_depth = 1 / (ground_truth_depth + 1e-8)
+
+ # various alignment methods
+ if metric_scale:
+ predicted_depth = predicted_depth
+ elif align_with_lstsq:
+ # Convert to numpy for lstsq
+ predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1, 1)
+ ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1, 1)
+
+ # Add a column of ones for the shift term
+ A = np.hstack([predicted_depth_np, np.ones_like(predicted_depth_np)])
+
+ # Solve for scale (s) and shift (t) using least squares
+ result = np.linalg.lstsq(A, ground_truth_depth_np, rcond=None)
+ s, t = result[0][0], result[0][1]
+
+ # convert to torch tensor
+ s = torch.tensor(s, device=predicted_depth_original.device)
+ t = torch.tensor(t, device=predicted_depth_original.device)
+
+ # Apply scale and shift
+ predicted_depth = s * predicted_depth + t
+ elif align_with_lad:
+ s, t = absolute_value_scaling(
+ predicted_depth,
+ ground_truth_depth,
+ s=torch.median(ground_truth_depth) / torch.median(predicted_depth),
+ )
+ predicted_depth = s * predicted_depth + t
+ elif align_with_lad2:
+ s_init = (
+ torch.median(ground_truth_depth) / torch.median(predicted_depth)
+ ).item()
+ s, t = absolute_value_scaling2(
+ predicted_depth,
+ ground_truth_depth,
+ s_init=s_init,
+ lr=lr,
+ max_iters=max_iters,
+ )
+ predicted_depth = s * predicted_depth + t
+ elif align_with_scale:
+ # Compute initial scale factor 's' using the closed-form solution (L2 norm)
+ dot_pred_gt = torch.nanmean(ground_truth_depth)
+ dot_pred_pred = torch.nanmean(predicted_depth)
+ s = dot_pred_gt / dot_pred_pred
+
+ # Iterative reweighted least squares using the Weiszfeld method
+ for _ in range(10):
+ # Compute residuals between scaled predictions and ground truth
+ residuals = s * predicted_depth - ground_truth_depth
+ abs_residuals = (
+ residuals.abs() + 1e-8
+ ) # Add small constant to avoid division by zero
+
+ # Compute weights inversely proportional to the residuals
+ weights = 1.0 / abs_residuals
+
+ # Update 's' using weighted sums
+ weighted_dot_pred_gt = torch.sum(
+ weights * predicted_depth * ground_truth_depth
+ )
+ weighted_dot_pred_pred = torch.sum(weights * predicted_depth**2)
+ s = weighted_dot_pred_gt / weighted_dot_pred_pred
+
+ # Optionally clip 's' to prevent extreme scaling
+ s = s.clamp(min=1e-3)
+
+ # Detach 's' if you want to stop gradients from flowing through it
+ s = s.detach()
+
+ # Apply the scale factor to the predicted depth
+ predicted_depth = s * predicted_depth
+
+ else:
+ # Align the predicted depth with the ground truth using median scaling
+ scale_factor = torch.median(ground_truth_depth) / torch.median(predicted_depth)
+ predicted_depth *= scale_factor
+
+ if disp_input:
+ # convert back to depth
+ ground_truth_depth = real_gt
+ predicted_depth = depth2disparity(predicted_depth)
+
+ # Clip the predicted depth values
+ if post_clip_min is not None:
+ predicted_depth = torch.clamp(predicted_depth, min=post_clip_min)
+ if post_clip_max is not None:
+ predicted_depth = torch.clamp(predicted_depth, max=post_clip_max)
+
+ if custom_mask is not None:
+ assert custom_mask.shape == ground_truth_depth_original.shape
+ mask_within_mask = custom_mask.cpu()[mask]
+ predicted_depth = predicted_depth[mask_within_mask]
+ ground_truth_depth = ground_truth_depth[mask_within_mask]
+
+ # Calculate the metrics
+ abs_rel = torch.mean(
+ torch.abs(predicted_depth - ground_truth_depth) / ground_truth_depth
+ ).item()
+ sq_rel = torch.mean(
+ ((predicted_depth - ground_truth_depth) ** 2) / ground_truth_depth
+ ).item()
+
+ # Correct RMSE calculation
+ rmse = torch.sqrt(torch.mean((predicted_depth - ground_truth_depth) ** 2)).item()
+
+ # Clip the depth values to avoid log(0)
+ predicted_depth = torch.clamp(predicted_depth, min=1e-5)
+ log_rmse = torch.sqrt(
+ torch.mean((torch.log(predicted_depth) - torch.log(ground_truth_depth)) ** 2)
+ ).item()
+
+ # Calculate the accuracy thresholds
+ max_ratio = torch.maximum(
+ predicted_depth / ground_truth_depth, ground_truth_depth / predicted_depth
+ )
+ threshold_0 = torch.mean((max_ratio < 1.0).float()).item()
+ threshold_1 = torch.mean((max_ratio < 1.25).float()).item()
+ threshold_2 = torch.mean((max_ratio < 1.25**2).float()).item()
+ threshold_3 = torch.mean((max_ratio < 1.25**3).float()).item()
+
+ # Compute the depth error parity map
+ if metric_scale:
+ predicted_depth_original = predicted_depth_original
+ if disp_input:
+ predicted_depth_original = depth2disparity(predicted_depth_original)
+ depth_error_parity_map = (
+ torch.abs(predicted_depth_original - ground_truth_depth_original)
+ / ground_truth_depth_original
+ )
+ elif align_with_lstsq or align_with_lad or align_with_lad2:
+ predicted_depth_original = predicted_depth_original * s + t
+ if disp_input:
+ predicted_depth_original = depth2disparity(predicted_depth_original)
+ depth_error_parity_map = (
+ torch.abs(predicted_depth_original - ground_truth_depth_original)
+ / ground_truth_depth_original
+ )
+ elif align_with_scale:
+ predicted_depth_original = predicted_depth_original * s
+ if disp_input:
+ predicted_depth_original = depth2disparity(predicted_depth_original)
+ depth_error_parity_map = (
+ torch.abs(predicted_depth_original - ground_truth_depth_original)
+ / ground_truth_depth_original
+ )
+ else:
+ predicted_depth_original = predicted_depth_original * scale_factor
+ if disp_input:
+ predicted_depth_original = depth2disparity(predicted_depth_original)
+ depth_error_parity_map = (
+ torch.abs(predicted_depth_original - ground_truth_depth_original)
+ / ground_truth_depth_original
+ )
+
+ # Reshape the depth_error_parity_map back to the original image size
+ depth_error_parity_map_full = torch.zeros_like(ground_truth_depth_original)
+ depth_error_parity_map_full = torch.where(
+ mask, depth_error_parity_map, depth_error_parity_map_full
+ )
+
+ predict_depth_map_full = predicted_depth_original
+ gt_depth_map_full = torch.zeros_like(ground_truth_depth_original)
+ gt_depth_map_full = torch.where(
+ mask, ground_truth_depth_original, gt_depth_map_full
+ )
+
+ num_valid_pixels = (
+ torch.sum(mask).item()
+ if custom_mask is None
+ else torch.sum(mask_within_mask).item()
+ )
+ if num_valid_pixels == 0:
+ (
+ abs_rel,
+ sq_rel,
+ rmse,
+ log_rmse,
+ threshold_0,
+ threshold_1,
+ threshold_2,
+ threshold_3,
+ ) = (0, 0, 0, 0, 0, 0, 0, 0)
+
+ results = {
+ "Abs Rel": abs_rel,
+ "Sq Rel": sq_rel,
+ "RMSE": rmse,
+ "Log RMSE": log_rmse,
+ "δ < 1.": threshold_0,
+ "δ < 1.25": threshold_1,
+ "δ < 1.25^2": threshold_2,
+ "δ < 1.25^3": threshold_3,
+ "valid_pixels": num_valid_pixels,
+ }
+
+ return (
+ results,
+ depth_error_parity_map_full,
+ predict_depth_map_full,
+ gt_depth_map_full,
+ )
diff --git a/extern/CUT3R/eval/mv_recon/base.py b/extern/CUT3R/eval/mv_recon/base.py
new file mode 100644
index 0000000000000000000000000000000000000000..422259107e977098d8fba07ec76d3b50e1006d2c
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/base.py
@@ -0,0 +1,273 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# base class for implementing datasets
+# --------------------------------------------------------
+import PIL
+import numpy as np
+import torch
+
+from eval.mv_recon.dataset_utils.transforms import ImgNorm
+from dust3r.utils.geometry import depthmap_to_absolute_camera_coordinates
+import eval.mv_recon.dataset_utils.cropping as cropping
+
+
+class BaseStereoViewDataset:
+ """Define all basic options.
+
+ Usage:
+ class MyDataset (BaseStereoViewDataset):
+ def _get_views(self, idx, rng):
+ # overload here
+ views = []
+ views.append(dict(img=, ...))
+ return views
+ """
+
+ def __init__(
+ self,
+ *, # only keyword arguments
+ split=None,
+ resolution=None, # square_size or (width, height) or list of [(width,height), ...]
+ transform=ImgNorm,
+ aug_crop=False,
+ seed=None,
+ ):
+ self.num_views = 2
+ self.split = split
+ self._set_resolutions(resolution)
+
+ self.transform = transform
+ if isinstance(transform, str):
+ transform = eval(transform)
+
+ self.aug_crop = aug_crop
+ self.seed = seed
+
+ def __len__(self):
+ return len(self.scenes)
+
+ def get_stats(self):
+ return f"{len(self)} pairs"
+
+ def __repr__(self):
+ resolutions_str = "[" + ";".join(f"{w}x{h}" for w, h in self._resolutions) + "]"
+ return (
+ f"""{type(self).__name__}({self.get_stats()},
+ {self.split=},
+ {self.seed=},
+ resolutions={resolutions_str},
+ {self.transform=})""".replace(
+ "self.", ""
+ )
+ .replace("\n", "")
+ .replace(" ", "")
+ )
+
+ def _get_views(self, idx, resolution, rng):
+ raise NotImplementedError()
+
+ def __getitem__(self, idx):
+ if isinstance(idx, tuple):
+ # the idx is specifying the aspect-ratio
+ idx, ar_idx = idx
+ else:
+ assert len(self._resolutions) == 1
+ ar_idx = 0
+
+ # set-up the rng
+ if self.seed: # reseed for each __getitem__
+ self._rng = np.random.default_rng(seed=self.seed + idx)
+ elif not hasattr(self, "_rng"):
+ seed = torch.initial_seed() # this is different for each dataloader process
+ self._rng = np.random.default_rng(seed=seed)
+
+ # over-loaded code
+ resolution = self._resolutions[
+ ar_idx
+ ] # DO NOT CHANGE THIS (compatible with BatchedRandomSampler)
+ views = self._get_views(idx, resolution, self._rng)
+
+ # check data-types
+ for v, view in enumerate(views):
+ assert (
+ "pts3d" not in view
+ ), f"pts3d should not be there, they will be computed afterwards based on intrinsics+depthmap for view {view_name(view)}"
+ view["idx"] = v
+
+ # encode the image
+ width, height = view["img"].size
+ view["true_shape"] = np.int32((height, width))
+ view["img"] = self.transform(view["img"])
+
+ assert "camera_intrinsics" in view
+ if "camera_pose" not in view:
+ view["camera_pose"] = np.full((4, 4), np.nan, dtype=np.float32)
+ else:
+ assert np.isfinite(
+ view["camera_pose"]
+ ).all(), f"NaN in camera pose for view {view_name(view)}"
+ assert "pts3d" not in view
+ assert "valid_mask" not in view
+ assert np.isfinite(
+ view["depthmap"]
+ ).all(), f"NaN in depthmap for view {view_name(view)}"
+ pts3d, valid_mask = depthmap_to_absolute_camera_coordinates(**view)
+
+ view["pts3d"] = pts3d
+ view["valid_mask"] = valid_mask & np.isfinite(pts3d).all(axis=-1)
+
+ # check all datatypes
+ for key, val in view.items():
+ res, err_msg = is_good_type(key, val)
+ assert res, f"{err_msg} with {key}={val} for view {view_name(view)}"
+ K = view["camera_intrinsics"]
+ view["img_mask"] = True
+ view["ray_mask"] = False
+ view["ray_map"] = torch.full(
+ (6, view["img"].shape[-2], view["img"].shape[-1]), torch.nan
+ )
+ view["update"] = True
+ view["reset"] = False
+
+ # last thing done!
+ for view in views:
+ # transpose to make sure all views are the same size
+ transpose_to_landscape(view)
+ # this allows to check whether the RNG is is the same state each time
+ view["rng"] = int.from_bytes(self._rng.bytes(4), "big")
+ return views
+
+ def _set_resolutions(self, resolutions):
+ """Set the resolution(s) of the dataset.
+ Params:
+ - resolutions: int or tuple or list of tuples
+ """
+ assert resolutions is not None, "undefined resolution"
+
+ if not isinstance(resolutions, list):
+ resolutions = [resolutions]
+
+ self._resolutions = []
+ for resolution in resolutions:
+ if isinstance(resolution, int):
+ width = height = resolution
+ else:
+ width, height = resolution
+ assert isinstance(
+ width, int
+ ), f"Bad type for {width=} {type(width)=}, should be int"
+ assert isinstance(
+ height, int
+ ), f"Bad type for {height=} {type(height)=}, should be int"
+ assert width >= height
+ self._resolutions.append((width, height))
+
+ def _crop_resize_if_necessary(
+ self, image, depthmap, intrinsics, resolution, rng=None, info=None
+ ):
+ """This function:
+ - first downsizes the image with LANCZOS inteprolation,
+ which is better than bilinear interpolation in
+ """
+ if not isinstance(image, PIL.Image.Image):
+ image = PIL.Image.fromarray(image)
+
+ # downscale with lanczos interpolation so that image.size == resolution
+ # cropping centered on the principal point
+ W, H = image.size
+ cx, cy = intrinsics[:2, 2].round().astype(int)
+
+ # calculate min distance to margin
+ min_margin_x = min(cx, W - cx)
+ min_margin_y = min(cy, H - cy)
+ assert min_margin_x > W / 5, f"Bad principal point in view={info}"
+ assert min_margin_y > H / 5, f"Bad principal point in view={info}"
+
+ ## Center crop
+ # Crop on the principal point, make it always centered
+ # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy)
+ l, t = cx - min_margin_x, cy - min_margin_y
+ r, b = cx + min_margin_x, cy + min_margin_y
+ crop_bbox = (l, t, r, b)
+
+ image, depthmap, intrinsics = cropping.crop_image_depthmap(
+ image, depthmap, intrinsics, crop_bbox
+ )
+
+ # # transpose the resolution if necessary
+ W, H = image.size # new size
+ assert resolution[0] >= resolution[1]
+ if H > 1.1 * W:
+ # image is portrait mode
+ resolution = resolution[::-1]
+ elif 0.9 < H / W < 1.1 and resolution[0] != resolution[1]:
+ # image is square, so we chose (portrait, landscape) randomly
+ if rng.integers(2):
+ resolution = resolution[::-1]
+
+ # high-quality Lanczos down-scaling
+ target_resolution = np.array(resolution)
+ # # if self.aug_crop > 1:
+ # # target_resolution += rng.integers(0, self.aug_crop)
+ # if resolution != (224, 224):
+ # halfw, halfh = ((2*(W//2))//16)*8, ((2*(H//2))//16)*8
+ # ## Recale with max factor, so one of width or height might be larger than target_resolution
+ # image, depthmap, intrinsics = cropping.rescale_image_depthmap(image, depthmap, intrinsics, (2*halfw, 2*halfh))
+ # else:
+ image, depthmap, intrinsics = cropping.rescale_image_depthmap(
+ image, depthmap, intrinsics, target_resolution
+ )
+ # actual cropping (if necessary) with bilinear interpolation
+ # if resolution == (224, 224):
+ intrinsics2 = cropping.camera_matrix_of_crop(
+ intrinsics, image.size, resolution, offset_factor=0.5
+ )
+ crop_bbox = cropping.bbox_from_intrinsics_in_out(
+ intrinsics, intrinsics2, resolution
+ )
+ image, depthmap, intrinsics = cropping.crop_image_depthmap(
+ image, depthmap, intrinsics, crop_bbox
+ )
+ return image, depthmap, intrinsics
+
+
+def is_good_type(key, v):
+ """returns (is_good, err_msg)"""
+ if isinstance(v, (str, int, tuple)):
+ return True, None
+ if v.dtype not in (np.float32, torch.float32, bool, np.int32, np.int64, np.uint8):
+ return False, f"bad {v.dtype=}"
+ return True, None
+
+
+def view_name(view, batch_index=None):
+ def sel(x):
+ return x[batch_index] if batch_index not in (None, slice(None)) else x
+
+ db = sel(view["dataset"])
+ label = sel(view["label"])
+ instance = sel(view["instance"])
+ return f"{db}/{label}/{instance}"
+
+
+def transpose_to_landscape(view):
+ height, width = view["true_shape"]
+
+ if width < height:
+ # rectify portrait to landscape
+ assert view["img"].shape == (3, height, width)
+ view["img"] = view["img"].swapaxes(1, 2)
+
+ assert view["valid_mask"].shape == (height, width)
+ view["valid_mask"] = view["valid_mask"].swapaxes(0, 1)
+
+ assert view["depthmap"].shape == (height, width)
+ view["depthmap"] = view["depthmap"].swapaxes(0, 1)
+
+ assert view["pts3d"].shape == (height, width, 3)
+ view["pts3d"] = view["pts3d"].swapaxes(0, 1)
+
+ # transpose x and y pixels
+ view["camera_intrinsics"] = view["camera_intrinsics"][[1, 0, 2]]
diff --git a/extern/CUT3R/eval/mv_recon/criterion.py b/extern/CUT3R/eval/mv_recon/criterion.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b546dc6e05fe78efd9a45999e8b61fb06d0abe9
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/criterion.py
@@ -0,0 +1,537 @@
+import torch
+import torch.nn as nn
+from copy import copy, deepcopy
+from dust3r.utils.misc import invalid_to_zeros, invalid_to_nans
+from dust3r.utils.geometry import inv, geotrf, depthmap_to_pts3d
+from dust3r.utils.camera import pose_encoding_to_camera
+
+
+class BaseCriterion(nn.Module):
+ def __init__(self, reduction="mean"):
+ super().__init__()
+ self.reduction = reduction
+
+
+class Criterion(nn.Module):
+ def __init__(self, criterion=None):
+ super().__init__()
+ assert isinstance(
+ criterion, BaseCriterion
+ ), f"{criterion} is not a proper criterion!"
+ self.criterion = copy(criterion)
+
+ def get_name(self):
+ return f"{type(self).__name__}({self.criterion})"
+
+ def with_reduction(self, mode="none"):
+ res = loss = deepcopy(self)
+ while loss is not None:
+ assert isinstance(loss, Criterion)
+ loss.criterion.reduction = mode # make it return the loss for each sample
+ loss = loss._loss2 # we assume loss is a Multiloss
+ return res
+
+
+class MultiLoss(nn.Module):
+ """Easily combinable losses (also keep track of individual loss values):
+ loss = MyLoss1() + 0.1*MyLoss2()
+ Usage:
+ Inherit from this class and override get_name() and compute_loss()
+ """
+
+ def __init__(self):
+ super().__init__()
+ self._alpha = 1
+ self._loss2 = None
+
+ def compute_loss(self, *args, **kwargs):
+ raise NotImplementedError()
+
+ def get_name(self):
+ raise NotImplementedError()
+
+ def __mul__(self, alpha):
+ assert isinstance(alpha, (int, float))
+ res = copy(self)
+ res._alpha = alpha
+ return res
+
+ __rmul__ = __mul__ # same
+
+ def __add__(self, loss2):
+ assert isinstance(loss2, MultiLoss)
+ res = cur = copy(self)
+
+ while cur._loss2 is not None:
+ cur = cur._loss2
+ cur._loss2 = loss2
+ return res
+
+ def __repr__(self):
+ name = self.get_name()
+ if self._alpha != 1:
+ name = f"{self._alpha:g}*{name}"
+ if self._loss2:
+ name = f"{name} + {self._loss2}"
+ return name
+
+ def forward(self, *args, **kwargs):
+ loss = self.compute_loss(*args, **kwargs)
+ if isinstance(loss, tuple):
+ loss, details = loss
+ elif loss.ndim == 0:
+ details = {self.get_name(): float(loss)}
+ else:
+ details = {}
+ loss = loss * self._alpha
+
+ if self._loss2:
+ loss2, details2 = self._loss2(*args, **kwargs)
+ loss = loss + loss2
+ details |= details2
+
+ return loss, details
+
+
+class LLoss(BaseCriterion):
+ """L-norm loss"""
+
+ def forward(self, a, b):
+ assert (
+ a.shape == b.shape and a.ndim >= 2 and 1 <= a.shape[-1] <= 3
+ ), f"Bad shape = {a.shape}"
+ dist = self.distance(a, b)
+
+ if self.reduction == "none":
+ return dist
+ if self.reduction == "sum":
+ return dist.sum()
+ if self.reduction == "mean":
+ return dist.mean() if dist.numel() > 0 else dist.new_zeros(())
+ raise ValueError(f"bad {self.reduction=} mode")
+
+ def distance(self, a, b):
+ raise NotImplementedError()
+
+
+class L21Loss(LLoss):
+ """Euclidean distance between 3d points"""
+
+ def distance(self, a, b):
+ return torch.norm(a - b, dim=-1) # normalized L2 distance
+
+
+L21 = L21Loss()
+
+
+def get_pred_pts3d(gt, pred, use_pose=False):
+ if "depth" in pred and "pseudo_focal" in pred:
+ try:
+ pp = gt["camera_intrinsics"][..., :2, 2]
+ except KeyError:
+ pp = None
+ pts3d = depthmap_to_pts3d(**pred, pp=pp)
+
+ elif "pts3d" in pred:
+ # pts3d from my camera
+ pts3d = pred["pts3d"]
+
+ elif "pts3d_in_other_view" in pred:
+ # pts3d from the other camera, already transformed
+ assert use_pose is True
+ return pred["pts3d_in_other_view"] # return!
+
+ if use_pose:
+ camera_pose = pred.get("camera_pose")
+ pts3d = pred.get("pts3d_in_self_view")
+ assert camera_pose is not None
+ assert pts3d is not None
+ pts3d = geotrf(pose_encoding_to_camera(camera_pose), pts3d)
+
+ return pts3d
+
+
+def Sum(losses, masks, conf=None):
+ loss, mask = losses[0], masks[0]
+ if loss.ndim > 0:
+ # we are actually returning the loss for every pixels
+ if conf is not None:
+ return losses, masks, conf
+ return losses, masks
+ else:
+ # we are returning the global loss
+ for loss2 in losses[1:]:
+ loss = loss + loss2
+ return loss
+
+
+def get_norm_factor(pts, norm_mode="avg_dis", valids=None, fix_first=True):
+ assert pts[0].ndim >= 3 and pts[0].shape[-1] == 3
+ assert pts[1] is None or (pts[1].ndim >= 3 and pts[1].shape[-1] == 3)
+ norm_mode, dis_mode = norm_mode.split("_")
+
+ nan_pts = []
+ nnzs = []
+
+ if norm_mode == "avg":
+ # gather all points together (joint normalization)
+
+ for i, pt in enumerate(pts):
+ nan_pt, nnz = invalid_to_zeros(pt, valids[i], ndim=3)
+ nan_pts.append(nan_pt)
+ nnzs.append(nnz)
+
+ if fix_first:
+ break
+ all_pts = torch.cat(nan_pts, dim=1)
+
+ # compute distance to origin
+ all_dis = all_pts.norm(dim=-1)
+ if dis_mode == "dis":
+ pass # do nothing
+ elif dis_mode == "log1p":
+ all_dis = torch.log1p(all_dis)
+ else:
+ raise ValueError(f"bad {dis_mode=}")
+
+ norm_factor = all_dis.sum(dim=1) / (torch.cat(nnzs).sum() + 1e-8)
+ else:
+ raise ValueError(f"Not implemented {norm_mode=}")
+
+ norm_factor = norm_factor.clip(min=1e-8)
+ while norm_factor.ndim < pts[0].ndim:
+ norm_factor.unsqueeze_(-1)
+
+ return norm_factor
+
+
+def normalize_pointcloud_t(
+ pts, norm_mode="avg_dis", valids=None, fix_first=True, gt=False
+):
+ if gt:
+ norm_factor = get_norm_factor(pts, norm_mode, valids, fix_first)
+ res = []
+
+ for i, pt in enumerate(pts):
+ res.append(pt / norm_factor)
+
+ else:
+ # pts_l, pts_r = pts
+ # use pts_l and pts_r[-1] as pts to normalize
+ norm_factor = get_norm_factor(pts, norm_mode, valids, fix_first)
+
+ res = []
+
+ for i in range(len(pts)):
+ res.append(pts[i] / norm_factor)
+ # res_r.append(pts_r[i] / norm_factor)
+
+ # res = [res_l, res_r]
+
+ return res, norm_factor
+
+
+@torch.no_grad()
+def get_joint_pointcloud_depth(zs, valid_masks=None, quantile=0.5):
+ # set invalid points to NaN
+ _zs = []
+ for i in range(len(zs)):
+ valid_mask = valid_masks[i] if valid_masks is not None else None
+ _z = invalid_to_nans(zs[i], valid_mask).reshape(len(zs[i]), -1)
+ _zs.append(_z)
+
+ _zs = torch.cat(_zs, dim=-1)
+
+ # compute median depth overall (ignoring nans)
+ if quantile == 0.5:
+ shift_z = torch.nanmedian(_zs, dim=-1).values
+ else:
+ shift_z = torch.nanquantile(_zs, quantile, dim=-1)
+ return shift_z # (B,)
+
+
+@torch.no_grad()
+def get_joint_pointcloud_center_scale(pts, valid_masks=None, z_only=False, center=True):
+ # set invalid points to NaN
+
+ _pts = []
+ for i in range(len(pts)):
+ valid_mask = valid_masks[i] if valid_masks is not None else None
+ _pt = invalid_to_nans(pts[i], valid_mask).reshape(len(pts[i]), -1, 3)
+ _pts.append(_pt)
+
+ _pts = torch.cat(_pts, dim=1)
+
+ # compute median center
+ _center = torch.nanmedian(_pts, dim=1, keepdim=True).values # (B,1,3)
+ if z_only:
+ _center[..., :2] = 0 # do not center X and Y
+
+ # compute median norm
+ _norm = ((_pts - _center) if center else _pts).norm(dim=-1)
+ scale = torch.nanmedian(_norm, dim=1).values
+ return _center[:, None, :, :], scale[:, None, None, None]
+
+
+class Regr3D_t(Criterion, MultiLoss):
+ def __init__(self, criterion, norm_mode="avg_dis", gt_scale=False, fix_first=True):
+ super().__init__(criterion)
+ self.norm_mode = norm_mode
+ self.gt_scale = gt_scale
+ self.fix_first = fix_first
+
+ def get_all_pts3d_t(self, gts, preds, dist_clip=None):
+ # everything is normalized w.r.t. camera of view1
+ in_camera1 = inv(gts[0]["camera_pose"])
+
+ gt_pts = []
+ valids = []
+ pr_pts = []
+
+ for i, gt in enumerate(gts):
+ # in_camera1: Bs, 4, 4 gt['pts3d']: Bs, H, W, 3
+ gt_pts.append(geotrf(in_camera1, gt["pts3d"]))
+
+ valid = gt["valid_mask"].clone()
+
+ if dist_clip is not None:
+ # points that are too far-away == invalid
+ dis = gt["pts3d"].norm(dim=-1)
+ valid = valid & (dis <= dist_clip)
+
+ valids.append(valid)
+ pr_pts.append(get_pred_pts3d(gt, preds[i], use_pose=True))
+ # if i != len(gts)-1:
+ # pr_pts_l.append(get_pred_pts3d(gt, preds[i][0], use_pose=(i!=0)))
+
+ # if i != 0:
+ # pr_pts_r.append(get_pred_pts3d(gt, preds[i-1][1], use_pose=(i!=0)))
+
+ # pr_pts = (pr_pts_l, pr_pts_r)
+
+ if self.norm_mode:
+ pr_pts, pr_factor = normalize_pointcloud_t(
+ pr_pts, self.norm_mode, valids, fix_first=self.fix_first, gt=False
+ )
+ else:
+ pr_factor = None
+
+ if self.norm_mode and not self.gt_scale:
+ gt_pts, gt_factor = normalize_pointcloud_t(
+ gt_pts, self.norm_mode, valids, fix_first=self.fix_first, gt=True
+ )
+ else:
+ gt_factor = None
+
+ return gt_pts, pr_pts, gt_factor, pr_factor, valids, {}
+
+ def compute_frame_loss(self, gts, preds, **kw):
+ gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = (
+ self.get_all_pts3d_t(gts, preds, **kw)
+ )
+
+ pred_pts_l, pred_pts_r = pred_pts
+
+ loss_all = []
+ mask_all = []
+ conf_all = []
+
+ loss_left = 0
+ loss_right = 0
+ pred_conf_l = 0
+ pred_conf_r = 0
+
+ for i in range(len(gt_pts)):
+
+ # Left (Reference)
+ if i != len(gt_pts) - 1:
+ frame_loss = self.criterion(
+ pred_pts_l[i][masks[i]], gt_pts[i][masks[i]]
+ )
+
+ loss_all.append(frame_loss)
+ mask_all.append(masks[i])
+ conf_all.append(preds[i][0]["conf"])
+
+ # To compare target/reference loss
+ if i != 0:
+ loss_left += frame_loss.cpu().detach().numpy().mean()
+ pred_conf_l += preds[i][0]["conf"].cpu().detach().numpy().mean()
+
+ # Right (Target)
+ if i != 0:
+ frame_loss = self.criterion(
+ pred_pts_r[i - 1][masks[i]], gt_pts[i][masks[i]]
+ )
+
+ loss_all.append(frame_loss)
+ mask_all.append(masks[i])
+ conf_all.append(preds[i - 1][1]["conf"])
+
+ # To compare target/reference loss
+ if i != len(gt_pts) - 1:
+ loss_right += frame_loss.cpu().detach().numpy().mean()
+ pred_conf_r += preds[i - 1][1]["conf"].cpu().detach().numpy().mean()
+
+ if pr_factor is not None and gt_factor is not None:
+ filter_factor = pr_factor[pr_factor > gt_factor]
+ else:
+ filter_factor = []
+
+ if len(filter_factor) > 0:
+ factor_loss = (filter_factor - gt_factor).abs().mean()
+ else:
+ factor_loss = 0.0
+
+ self_name = type(self).__name__
+ details = {
+ self_name + "_pts3d_1": float(loss_all[0].mean()),
+ self_name + "_pts3d_2": float(loss_all[1].mean()),
+ self_name + "loss_left": float(loss_left),
+ self_name + "loss_right": float(loss_right),
+ self_name + "conf_left": float(pred_conf_l),
+ self_name + "conf_right": float(pred_conf_r),
+ }
+
+ return Sum(loss_all, mask_all, conf_all), (details | monitoring), factor_loss
+
+
+class ConfLoss_t(MultiLoss):
+ """Weighted regression by learned confidence.
+ Assuming the input pixel_loss is a pixel-level regression loss.
+
+ Principle:
+ high-confidence means high conf = 0.1 ==> conf_loss = x / 10 + alpha*log(10)
+ low confidence means low conf = 10 ==> conf_loss = x * 10 - alpha*log(10)
+
+ alpha: hyperparameter
+ """
+
+ def __init__(self, pixel_loss, alpha=1):
+ super().__init__()
+ assert alpha > 0
+ self.alpha = alpha
+ self.pixel_loss = pixel_loss.with_reduction("none")
+
+ def get_name(self):
+ return f"ConfLoss({self.pixel_loss})"
+
+ def get_conf_log(self, x):
+ return x, torch.log(x)
+
+ def compute_frame_loss(self, gts, preds, **kw):
+ # compute per-pixel loss
+ (losses, masks, confs), details, loss_factor = (
+ self.pixel_loss.compute_frame_loss(gts, preds, **kw)
+ )
+
+ # weight by confidence
+ conf_losses = []
+ conf_sum = 0
+ for i in range(len(losses)):
+ conf, log_conf = self.get_conf_log(confs[i][masks[i]])
+ conf_sum += conf.mean()
+ conf_loss = losses[i] * conf - self.alpha * log_conf
+ conf_loss = conf_loss.mean() if conf_loss.numel() > 0 else 0
+ conf_losses.append(conf_loss)
+
+ conf_losses = torch.stack(conf_losses) * 2.0
+ conf_loss_mean = conf_losses.mean()
+
+ return (
+ conf_loss_mean,
+ dict(
+ conf_loss_1=float(conf_losses[0]),
+ conf_loss2=float(conf_losses[1]),
+ conf_mean=conf_sum / len(losses),
+ **details,
+ ),
+ loss_factor,
+ )
+
+
+class Regr3D_t_ShiftInv(Regr3D_t):
+ """Same than Regr3D but invariant to depth shift."""
+
+ def get_all_pts3d_t(self, gts, preds):
+ # compute unnormalized points
+ gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = (
+ super().get_all_pts3d_t(gts, preds)
+ )
+
+ # pred_pts_l, pred_pts_r = pred_pts
+ gt_zs = [gt_pt[..., 2] for gt_pt in gt_pts]
+
+ pred_zs = [pred_pt[..., 2] for pred_pt in pred_pts]
+ # pred_zs.append(pred_pts_r[-1][..., 2])
+
+ # compute median depth
+ gt_shift_z = get_joint_pointcloud_depth(gt_zs, masks)[:, None, None]
+ pred_shift_z = get_joint_pointcloud_depth(pred_zs, masks)[:, None, None]
+
+ # subtract the median depth
+ for i in range(len(gt_pts)):
+ gt_pts[i][..., 2] -= gt_shift_z
+
+ for i in range(len(pred_pts)):
+ # for j in range(len(pred_pts[i])):
+ pred_pts[i][..., 2] -= pred_shift_z
+
+ monitoring = dict(
+ monitoring,
+ gt_shift_z=gt_shift_z.mean().detach(),
+ pred_shift_z=pred_shift_z.mean().detach(),
+ )
+ return gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring
+
+
+class Regr3D_t_ScaleInv(Regr3D_t):
+ """Same than Regr3D but invariant to depth shift.
+ if gt_scale == True: enforce the prediction to take the same scale than GT
+ """
+
+ def get_all_pts3d_t(self, gts, preds):
+ # compute depth-normalized points
+ gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = (
+ super().get_all_pts3d_t(gts, preds)
+ )
+
+ # measure scene scale
+
+ # pred_pts_l, pred_pts_r = pred_pts
+
+ pred_pts_all = [
+ x.clone() for x in pred_pts
+ ] # [pred_pt for pred_pt in pred_pts_l]
+ # pred_pts_all.append(pred_pts_r[-1])
+
+ _, gt_scale = get_joint_pointcloud_center_scale(gt_pts, masks)
+ _, pred_scale = get_joint_pointcloud_center_scale(pred_pts_all, masks)
+
+ # prevent predictions to be in a ridiculous range
+ pred_scale = pred_scale.clip(min=1e-3, max=1e3)
+
+ # subtract the median depth
+ if self.gt_scale:
+ for i in range(len(pred_pts)):
+ # for j in range(len(pred_pts[i])):
+ pred_pts[i] *= gt_scale / pred_scale
+
+ else:
+ for i in range(len(pred_pts)):
+ # for j in range(len(pred_pts[i])):
+ pred_pts[i] *= pred_scale / gt_scale
+
+ for i in range(len(gt_pts)):
+ gt_pts[i] *= gt_scale / pred_scale
+
+ monitoring = dict(
+ monitoring, gt_scale=gt_scale.mean(), pred_scale=pred_scale.mean().detach()
+ )
+
+ return gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring
+
+
+class Regr3D_t_ScaleShiftInv(Regr3D_t_ScaleInv, Regr3D_t_ShiftInv):
+ # calls Regr3D_ShiftInv first, then Regr3D_ScaleInv
+ pass
diff --git a/extern/CUT3R/eval/mv_recon/data.py b/extern/CUT3R/eval/mv_recon/data.py
new file mode 100644
index 0000000000000000000000000000000000000000..de9925698cb62503c24deb4e79e35705c5f0e6c4
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/data.py
@@ -0,0 +1,522 @@
+import os
+import cv2
+import json
+import numpy as np
+import os.path as osp
+from collections import deque
+import random
+from eval.mv_recon.base import BaseStereoViewDataset
+from dust3r.utils.image import imread_cv2
+import eval.mv_recon.dataset_utils.cropping as cropping
+
+
+def shuffle_deque(dq, seed=None):
+ # Set the random seed for reproducibility
+ if seed is not None:
+ random.seed(seed)
+
+ # Convert deque to list, shuffle, and convert back
+ shuffled_list = list(dq)
+ random.shuffle(shuffled_list)
+ return deque(shuffled_list)
+
+
+class SevenScenes(BaseStereoViewDataset):
+ def __init__(
+ self,
+ num_seq=1,
+ num_frames=5,
+ min_thresh=10,
+ max_thresh=100,
+ test_id=None,
+ full_video=False,
+ tuple_list=None,
+ seq_id=None,
+ rebuttal=False,
+ shuffle_seed=-1,
+ kf_every=1,
+ *args,
+ ROOT,
+ **kwargs,
+ ):
+ self.ROOT = ROOT
+ super().__init__(*args, **kwargs)
+ self.num_seq = num_seq
+ self.num_frames = num_frames
+ self.max_thresh = max_thresh
+ self.min_thresh = min_thresh
+ self.test_id = test_id
+ self.full_video = full_video
+ self.kf_every = kf_every
+ self.seq_id = seq_id
+ self.rebuttal = rebuttal
+ self.shuffle_seed = shuffle_seed
+
+ # load all scenes
+ self.load_all_tuples(tuple_list)
+ self.load_all_scenes(ROOT)
+
+ def __len__(self):
+ if self.tuple_list is not None:
+ return len(self.tuple_list)
+ return len(self.scene_list) * self.num_seq
+
+ def load_all_tuples(self, tuple_list):
+ if tuple_list is not None:
+ self.tuple_list = tuple_list
+ # with open(tuple_path) as f:
+ # self.tuple_list = f.read().splitlines()
+
+ else:
+ self.tuple_list = None
+
+ def load_all_scenes(self, base_dir):
+
+ if self.tuple_list is not None:
+ # Use pre-defined simplerecon scene_ids
+ self.scene_list = [
+ "stairs/seq-06",
+ "stairs/seq-02",
+ "pumpkin/seq-06",
+ "chess/seq-01",
+ "heads/seq-02",
+ "fire/seq-02",
+ "office/seq-03",
+ "pumpkin/seq-03",
+ "redkitchen/seq-07",
+ "chess/seq-02",
+ "office/seq-01",
+ "redkitchen/seq-01",
+ "fire/seq-01",
+ ]
+ print(f"Found {len(self.scene_list)} sequences in split {self.split}")
+ return
+
+ scenes = os.listdir(base_dir)
+
+ file_split = {"train": "TrainSplit.txt", "test": "TestSplit.txt"}[self.split]
+
+ self.scene_list = []
+ for scene in scenes:
+ if self.test_id is not None and scene != self.test_id:
+ continue
+ # read file split
+ with open(osp.join(base_dir, scene, file_split)) as f:
+ seq_ids = f.read().splitlines()
+
+ for seq_id in seq_ids:
+ # seq is string, take the int part and make it 01, 02, 03
+ # seq_id = 'seq-{:2d}'.format(int(seq_id))
+ num_part = "".join(filter(str.isdigit, seq_id))
+ seq_id = f"seq-{num_part.zfill(2)}"
+ if self.seq_id is not None and seq_id != self.seq_id:
+ continue
+ self.scene_list.append(f"{scene}/{seq_id}")
+
+ print(f"Found {len(self.scene_list)} sequences in split {self.split}")
+
+ def _get_views(self, idx, resolution, rng):
+
+ if self.tuple_list is not None:
+ line = self.tuple_list[idx].split(" ")
+ scene_id = line[0]
+ img_idxs = line[1:]
+
+ else:
+ scene_id = self.scene_list[idx // self.num_seq]
+ seq_id = idx % self.num_seq
+
+ data_path = osp.join(self.ROOT, scene_id)
+ num_files = len([name for name in os.listdir(data_path) if "color" in name])
+ img_idxs = [f"{i:06d}" for i in range(num_files)]
+ img_idxs = img_idxs[:: self.kf_every]
+
+ # Intrinsics used in SimpleRecon
+ fx, fy, cx, cy = 525, 525, 320, 240
+ intrinsics_ = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
+
+ views = []
+ imgs_idxs = deque(img_idxs)
+ if self.shuffle_seed >= 0:
+ imgs_idxs = shuffle_deque(imgs_idxs)
+
+ while len(imgs_idxs) > 0:
+ im_idx = imgs_idxs.popleft()
+ impath = osp.join(self.ROOT, scene_id, f"frame-{im_idx}.color.png")
+ depthpath = osp.join(self.ROOT, scene_id, f"frame-{im_idx}.depth.proj.png")
+ posepath = osp.join(self.ROOT, scene_id, f"frame-{im_idx}.pose.txt")
+
+ rgb_image = imread_cv2(impath)
+ depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED)
+ rgb_image = cv2.resize(rgb_image, (depthmap.shape[1], depthmap.shape[0]))
+
+ depthmap[depthmap == 65535] = 0
+ depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0
+ depthmap[depthmap > 10] = 0
+ depthmap[depthmap < 1e-3] = 0
+
+ camera_pose = np.loadtxt(posepath).astype(np.float32)
+
+ if resolution != (224, 224) or self.rebuttal:
+ rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
+ rgb_image, depthmap, intrinsics_, resolution, rng=rng, info=impath
+ )
+ else:
+ rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
+ rgb_image, depthmap, intrinsics_, (512, 384), rng=rng, info=impath
+ )
+ W, H = rgb_image.size
+ cx = W // 2
+ cy = H // 2
+ l, t = cx - 112, cy - 112
+ r, b = cx + 112, cy + 112
+ crop_bbox = (l, t, r, b)
+ rgb_image, depthmap, intrinsics = cropping.crop_image_depthmap(
+ rgb_image, depthmap, intrinsics, crop_bbox
+ )
+
+ views.append(
+ dict(
+ img=rgb_image,
+ depthmap=depthmap,
+ camera_pose=camera_pose,
+ camera_intrinsics=intrinsics,
+ dataset="7scenes",
+ label=osp.join(scene_id, im_idx),
+ instance=impath,
+ )
+ )
+ return views
+
+
+class DTU(BaseStereoViewDataset):
+ def __init__(
+ self,
+ num_seq=49,
+ num_frames=5,
+ min_thresh=10,
+ max_thresh=30,
+ test_id=None,
+ full_video=False,
+ sample_pairs=False,
+ kf_every=1,
+ *args,
+ ROOT,
+ **kwargs,
+ ):
+ self.ROOT = ROOT
+ super().__init__(*args, **kwargs)
+
+ self.num_seq = num_seq
+ self.num_frames = num_frames
+ self.max_thresh = max_thresh
+ self.min_thresh = min_thresh
+ self.test_id = test_id
+ self.full_video = full_video
+ self.kf_every = kf_every
+ self.sample_pairs = sample_pairs
+
+ # load all scenes
+ self.load_all_scenes(ROOT)
+
+ def __len__(self):
+ return len(self.scene_list) * self.num_seq
+
+ def load_all_scenes(self, base_dir):
+
+ if self.test_id is None:
+ self.scene_list = os.listdir(osp.join(base_dir))
+ print(f"Found {len(self.scene_list)} scenes in split {self.split}")
+
+ else:
+ if isinstance(self.test_id, list):
+ self.scene_list = self.test_id
+ else:
+ self.scene_list = [self.test_id]
+
+ print(f"Test_id: {self.test_id}")
+
+ def load_cam_mvsnet(self, file, interval_scale=1):
+ """read camera txt file"""
+ cam = np.zeros((2, 4, 4))
+ words = file.read().split()
+ # read extrinsic
+ for i in range(0, 4):
+ for j in range(0, 4):
+ extrinsic_index = 4 * i + j + 1
+ cam[0][i][j] = words[extrinsic_index]
+
+ # read intrinsic
+ for i in range(0, 3):
+ for j in range(0, 3):
+ intrinsic_index = 3 * i + j + 18
+ cam[1][i][j] = words[intrinsic_index]
+
+ if len(words) == 29:
+ cam[1][3][0] = words[27]
+ cam[1][3][1] = float(words[28]) * interval_scale
+ cam[1][3][2] = 192
+ cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
+ elif len(words) == 30:
+ cam[1][3][0] = words[27]
+ cam[1][3][1] = float(words[28]) * interval_scale
+ cam[1][3][2] = words[29]
+ cam[1][3][3] = cam[1][3][0] + cam[1][3][1] * cam[1][3][2]
+ elif len(words) == 31:
+ cam[1][3][0] = words[27]
+ cam[1][3][1] = float(words[28]) * interval_scale
+ cam[1][3][2] = words[29]
+ cam[1][3][3] = words[30]
+ else:
+ cam[1][3][0] = 0
+ cam[1][3][1] = 0
+ cam[1][3][2] = 0
+ cam[1][3][3] = 0
+
+ extrinsic = cam[0].astype(np.float32)
+ intrinsic = cam[1].astype(np.float32)
+
+ return intrinsic, extrinsic
+
+ def _get_views(self, idx, resolution, rng):
+ scene_id = self.scene_list[idx // self.num_seq]
+ seq_id = idx % self.num_seq
+
+ print("Scene ID:", scene_id)
+
+ image_path = osp.join(self.ROOT, scene_id, "images")
+ depth_path = osp.join(self.ROOT, scene_id, "depths")
+ mask_path = osp.join(self.ROOT, scene_id, "binary_masks")
+ cam_path = osp.join(self.ROOT, scene_id, "cams")
+ pairs_path = osp.join(self.ROOT, scene_id, "pair.txt")
+
+ if not self.full_video:
+ img_idxs = self.sample_pairs(pairs_path, seq_id)
+ else:
+ img_idxs = sorted(os.listdir(image_path))
+ img_idxs = img_idxs[:: self.kf_every]
+
+ views = []
+ imgs_idxs = deque(img_idxs)
+
+ while len(imgs_idxs) > 0:
+ im_idx = imgs_idxs.pop()
+ impath = osp.join(image_path, im_idx)
+ depthpath = osp.join(depth_path, im_idx.replace(".jpg", ".npy"))
+ campath = osp.join(cam_path, im_idx.replace(".jpg", "_cam.txt"))
+ maskpath = osp.join(mask_path, im_idx.replace(".jpg", ".png"))
+
+ rgb_image = imread_cv2(impath)
+ depthmap = np.load(depthpath)
+ depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0)
+
+ mask = imread_cv2(maskpath, cv2.IMREAD_UNCHANGED) / 255.0
+ mask = mask.astype(np.float32)
+
+ mask[mask > 0.5] = 1.0
+ mask[mask < 0.5] = 0.0
+
+ mask = cv2.resize(
+ mask,
+ (depthmap.shape[1], depthmap.shape[0]),
+ interpolation=cv2.INTER_NEAREST,
+ )
+ kernel = np.ones((10, 10), np.uint8) # Define the erosion kernel
+ mask = cv2.erode(mask, kernel, iterations=1)
+ depthmap = depthmap * mask
+
+ cur_intrinsics, camera_pose = self.load_cam_mvsnet(open(campath, "r"))
+ intrinsics = cur_intrinsics[:3, :3]
+ camera_pose = np.linalg.inv(camera_pose)
+
+ if resolution != (224, 224):
+ rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
+ rgb_image, depthmap, intrinsics, resolution, rng=rng, info=impath
+ )
+ else:
+ rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
+ rgb_image, depthmap, intrinsics, (512, 384), rng=rng, info=impath
+ )
+ W, H = rgb_image.size
+ cx = W // 2
+ cy = H // 2
+ l, t = cx - 112, cy - 112
+ r, b = cx + 112, cy + 112
+ crop_bbox = (l, t, r, b)
+ rgb_image, depthmap, intrinsics = cropping.crop_image_depthmap(
+ rgb_image, depthmap, intrinsics, crop_bbox
+ )
+
+ views.append(
+ dict(
+ img=rgb_image,
+ depthmap=depthmap,
+ camera_pose=camera_pose,
+ camera_intrinsics=intrinsics,
+ dataset="dtu",
+ label=osp.join(scene_id, im_idx),
+ instance=impath,
+ )
+ )
+
+ return views
+
+
+class NRGBD(BaseStereoViewDataset):
+ def __init__(
+ self,
+ num_seq=1,
+ num_frames=5,
+ min_thresh=10,
+ max_thresh=100,
+ test_id=None,
+ full_video=False,
+ tuple_list=None,
+ seq_id=None,
+ rebuttal=False,
+ shuffle_seed=-1,
+ kf_every=1,
+ *args,
+ ROOT,
+ **kwargs,
+ ):
+
+ self.ROOT = ROOT
+ super().__init__(*args, **kwargs)
+ self.num_seq = num_seq
+ self.num_frames = num_frames
+ self.max_thresh = max_thresh
+ self.min_thresh = min_thresh
+ self.test_id = test_id
+ self.full_video = full_video
+ self.kf_every = kf_every
+ self.seq_id = seq_id
+ self.rebuttal = rebuttal
+ self.shuffle_seed = shuffle_seed
+
+ # load all scenes
+ self.load_all_tuples(tuple_list)
+ self.load_all_scenes(ROOT)
+
+ def __len__(self):
+ if self.tuple_list is not None:
+ return len(self.tuple_list)
+ return len(self.scene_list) * self.num_seq
+
+ def load_all_tuples(self, tuple_list):
+ if tuple_list is not None:
+ self.tuple_list = tuple_list
+ # with open(tuple_path) as f:
+ # self.tuple_list = f.read().splitlines()
+
+ else:
+ self.tuple_list = None
+
+ def load_all_scenes(self, base_dir):
+
+ scenes = [
+ d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d))
+ ]
+
+ if self.test_id is not None:
+ self.scene_list = [self.test_id]
+
+ else:
+ self.scene_list = scenes
+
+ print(f"Found {len(self.scene_list)} sequences in split {self.split}")
+
+ def load_poses(self, path):
+ file = open(path, "r")
+ lines = file.readlines()
+ file.close()
+ poses = []
+ valid = []
+ lines_per_matrix = 4
+ for i in range(0, len(lines), lines_per_matrix):
+ if "nan" in lines[i]:
+ valid.append(False)
+ poses.append(np.eye(4, 4, dtype=np.float32).tolist())
+ else:
+ valid.append(True)
+ pose_floats = [
+ [float(x) for x in line.split()]
+ for line in lines[i : i + lines_per_matrix]
+ ]
+ poses.append(pose_floats)
+
+ return np.array(poses, dtype=np.float32), valid
+
+ def _get_views(self, idx, resolution, rng):
+
+ if self.tuple_list is not None:
+ line = self.tuple_list[idx].split(" ")
+ scene_id = line[0]
+ img_idxs = line[1:]
+
+ else:
+ scene_id = self.scene_list[idx // self.num_seq]
+
+ num_files = len(os.listdir(os.path.join(self.ROOT, scene_id, "images")))
+ img_idxs = [f"{i}" for i in range(num_files)]
+ img_idxs = img_idxs[:: min(self.kf_every, len(img_idxs) // 2)]
+
+ fx, fy, cx, cy = 554.2562584220408, 554.2562584220408, 320, 240
+ intrinsics_ = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
+
+ posepath = osp.join(self.ROOT, scene_id, f"poses.txt")
+ camera_poses, valids = self.load_poses(posepath)
+
+ imgs_idxs = deque(img_idxs)
+ if self.shuffle_seed >= 0:
+ imgs_idxs = shuffle_deque(imgs_idxs)
+ views = []
+
+ while len(imgs_idxs) > 0:
+ im_idx = imgs_idxs.popleft()
+
+ impath = osp.join(self.ROOT, scene_id, "images", f"img{im_idx}.png")
+ depthpath = osp.join(self.ROOT, scene_id, "depth", f"depth{im_idx}.png")
+
+ rgb_image = imread_cv2(impath)
+ depthmap = imread_cv2(depthpath, cv2.IMREAD_UNCHANGED)
+ depthmap = np.nan_to_num(depthmap.astype(np.float32), 0.0) / 1000.0
+ depthmap[depthmap > 10] = 0
+ depthmap[depthmap < 1e-3] = 0
+
+ rgb_image = cv2.resize(rgb_image, (depthmap.shape[1], depthmap.shape[0]))
+
+ camera_pose = camera_poses[int(im_idx)]
+ # gl to cv
+ camera_pose[:, 1:3] *= -1.0
+ if resolution != (224, 224) or self.rebuttal:
+ rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
+ rgb_image, depthmap, intrinsics_, resolution, rng=rng, info=impath
+ )
+ else:
+ rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
+ rgb_image, depthmap, intrinsics_, (512, 384), rng=rng, info=impath
+ )
+ W, H = rgb_image.size
+ cx = W // 2
+ cy = H // 2
+ l, t = cx - 112, cy - 112
+ r, b = cx + 112, cy + 112
+ crop_bbox = (l, t, r, b)
+ rgb_image, depthmap, intrinsics = cropping.crop_image_depthmap(
+ rgb_image, depthmap, intrinsics, crop_bbox
+ )
+
+ views.append(
+ dict(
+ img=rgb_image,
+ depthmap=depthmap,
+ camera_pose=camera_pose,
+ camera_intrinsics=intrinsics,
+ dataset="nrgbd",
+ label=osp.join(scene_id, im_idx),
+ instance=impath,
+ )
+ )
+
+ return views
diff --git a/extern/CUT3R/eval/mv_recon/dataset_utils/__init__.py b/extern/CUT3R/eval/mv_recon/dataset_utils/__init__.py
new file mode 100755
index 0000000000000000000000000000000000000000..8b137891791fe96927ad78e64b0aad7bded08bdc
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/dataset_utils/__init__.py
@@ -0,0 +1 @@
+
diff --git a/extern/CUT3R/eval/mv_recon/dataset_utils/corr.py b/extern/CUT3R/eval/mv_recon/dataset_utils/corr.py
new file mode 100755
index 0000000000000000000000000000000000000000..d39d8fad844c65f0f839de6b728f2ab72b19f6a2
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/dataset_utils/corr.py
@@ -0,0 +1,122 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+
+import numpy as np
+from dust3r.utils.device import to_numpy
+from dust3r.utils.geometry import inv, geotrf
+
+
+def reproject_view(pts3d, view2):
+ shape = view2["pts3d"].shape[:2]
+ return reproject(
+ pts3d, view2["camera_intrinsics"], inv(view2["camera_pose"]), shape
+ )
+
+
+def reproject(pts3d, K, world2cam, shape):
+ H, W, THREE = pts3d.shape
+ assert THREE == 3
+
+ with np.errstate(divide="ignore", invalid="ignore"):
+ pos = geotrf(K @ world2cam[:3], pts3d, norm=1, ncol=2)
+
+ return (H, W), ravel_xy(pos, shape)
+
+
+def ravel_xy(pos, shape):
+ H, W = shape
+ with np.errstate(invalid="ignore"):
+ qx, qy = pos.reshape(-1, 2).round().astype(np.int32).T
+ quantized_pos = qx.clip(min=0, max=W - 1, out=qx) + W * qy.clip(
+ min=0, max=H - 1, out=qy
+ )
+ return quantized_pos
+
+
+def unravel_xy(pos, shape):
+
+ return np.unravel_index(pos, shape)[0].base[:, ::-1].copy()
+
+
+def reciprocal_1d(corres_1_to_2, corres_2_to_1, ret_recip=False):
+ is_reciprocal1 = corres_2_to_1[corres_1_to_2] == np.arange(len(corres_1_to_2))
+ pos1 = is_reciprocal1.nonzero()[0]
+ pos2 = corres_1_to_2[pos1]
+ if ret_recip:
+ return is_reciprocal1, pos1, pos2
+ return pos1, pos2
+
+
+def extract_correspondences_from_pts3d(
+ view1, view2, target_n_corres, rng=np.random, ret_xy=True, nneg=0
+):
+ view1, view2 = to_numpy((view1, view2))
+
+ shape1, corres1_to_2 = reproject_view(view1["pts3d"], view2)
+ shape2, corres2_to_1 = reproject_view(view2["pts3d"], view1)
+
+ is_reciprocal1, pos1, pos2 = reciprocal_1d(
+ corres1_to_2, corres2_to_1, ret_recip=True
+ )
+ is_reciprocal2 = corres1_to_2[corres2_to_1] == np.arange(len(corres2_to_1))
+
+ if target_n_corres is None:
+ if ret_xy:
+ pos1 = unravel_xy(pos1, shape1)
+ pos2 = unravel_xy(pos2, shape2)
+ return pos1, pos2
+
+ available_negatives = min((~is_reciprocal1).sum(), (~is_reciprocal2).sum())
+ target_n_positives = int(target_n_corres * (1 - nneg))
+ n_positives = min(len(pos1), target_n_positives)
+ n_negatives = min(target_n_corres - n_positives, available_negatives)
+
+ if n_negatives + n_positives != target_n_corres:
+
+ n_positives = target_n_corres - n_negatives
+ assert n_positives <= len(pos1)
+
+ assert n_positives <= len(pos1)
+ assert n_positives <= len(pos2)
+ assert n_negatives <= (~is_reciprocal1).sum()
+ assert n_negatives <= (~is_reciprocal2).sum()
+ assert n_positives + n_negatives == target_n_corres
+
+ valid = np.ones(n_positives, dtype=bool)
+ if n_positives < len(pos1):
+
+ perm = rng.permutation(len(pos1))[:n_positives]
+ pos1 = pos1[perm]
+ pos2 = pos2[perm]
+
+ if n_negatives > 0:
+
+ def norm(p):
+ return p / p.sum()
+
+ pos1 = np.r_[
+ pos1,
+ rng.choice(
+ shape1[0] * shape1[1],
+ size=n_negatives,
+ replace=False,
+ p=norm(~is_reciprocal1),
+ ),
+ ]
+ pos2 = np.r_[
+ pos2,
+ rng.choice(
+ shape2[0] * shape2[1],
+ size=n_negatives,
+ replace=False,
+ p=norm(~is_reciprocal2),
+ ),
+ ]
+ valid = np.r_[valid, np.zeros(n_negatives, dtype=bool)]
+
+ if ret_xy:
+ pos1 = unravel_xy(pos1, shape1)
+ pos2 = unravel_xy(pos2, shape2)
+ return pos1, pos2, valid
diff --git a/extern/CUT3R/eval/mv_recon/dataset_utils/cropping.py b/extern/CUT3R/eval/mv_recon/dataset_utils/cropping.py
new file mode 100755
index 0000000000000000000000000000000000000000..db1356c2e689337348884674cfc20a1c60902b57
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/dataset_utils/cropping.py
@@ -0,0 +1,142 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+
+import PIL.Image
+import os
+
+os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
+import cv2 # noqa
+import numpy as np # noqa
+from dust3r.utils.geometry import (
+ colmap_to_opencv_intrinsics,
+ opencv_to_colmap_intrinsics,
+) # noqa
+
+try:
+ lanczos = PIL.Image.Resampling.LANCZOS
+ bicubic = PIL.Image.Resampling.BICUBIC
+except AttributeError:
+ lanczos = PIL.Image.LANCZOS
+ bicubic = PIL.Image.BICUBIC
+
+
+class ImageList:
+ """Convenience class to aply the same operation to a whole set of images."""
+
+ def __init__(self, images):
+ if not isinstance(images, (tuple, list, set)):
+ images = [images]
+ self.images = []
+ for image in images:
+ if not isinstance(image, PIL.Image.Image):
+ image = PIL.Image.fromarray(image)
+ self.images.append(image)
+
+ def __len__(self):
+ return len(self.images)
+
+ def to_pil(self):
+ return tuple(self.images) if len(self.images) > 1 else self.images[0]
+
+ @property
+ def size(self):
+ sizes = [im.size for im in self.images]
+ assert all(sizes[0] == s for s in sizes)
+ return sizes[0]
+
+ def resize(self, *args, **kwargs):
+ return ImageList(self._dispatch("resize", *args, **kwargs))
+
+ def crop(self, *args, **kwargs):
+ return ImageList(self._dispatch("crop", *args, **kwargs))
+
+ def _dispatch(self, func, *args, **kwargs):
+ return [getattr(im, func)(*args, **kwargs) for im in self.images]
+
+
+def rescale_image_depthmap(
+ image, depthmap, camera_intrinsics, output_resolution, force=True
+):
+ """Jointly rescale a (image, depthmap)
+ so that (out_width, out_height) >= output_res
+ """
+ image = ImageList(image)
+ input_resolution = np.array(image.size) # (W,H)
+ output_resolution = np.array(output_resolution)
+ if depthmap is not None:
+
+ assert tuple(depthmap.shape[:2]) == image.size[::-1]
+
+ assert output_resolution.shape == (2,)
+ scale_final = max(output_resolution / image.size) + 1e-8
+ if scale_final >= 1 and not force: # image is already smaller than what is asked
+ return (image.to_pil(), depthmap, camera_intrinsics)
+ output_resolution = np.floor(input_resolution * scale_final).astype(int)
+
+ image = image.resize(
+ output_resolution, resample=lanczos if scale_final < 1 else bicubic
+ )
+ if depthmap is not None:
+ depthmap = cv2.resize(
+ depthmap,
+ output_resolution,
+ fx=scale_final,
+ fy=scale_final,
+ interpolation=cv2.INTER_NEAREST,
+ )
+
+ camera_intrinsics = camera_matrix_of_crop(
+ camera_intrinsics, input_resolution, output_resolution, scaling=scale_final
+ )
+
+ return image.to_pil(), depthmap, camera_intrinsics
+
+
+def camera_matrix_of_crop(
+ input_camera_matrix,
+ input_resolution,
+ output_resolution,
+ scaling=1,
+ offset_factor=0.5,
+ offset=None,
+):
+
+ margins = np.asarray(input_resolution) * scaling - output_resolution
+ assert np.all(margins >= 0.0)
+ if offset is None:
+ offset = offset_factor * margins
+
+ output_camera_matrix_colmap = opencv_to_colmap_intrinsics(input_camera_matrix)
+ output_camera_matrix_colmap[:2, :] *= scaling
+ output_camera_matrix_colmap[:2, 2] -= offset
+ output_camera_matrix = colmap_to_opencv_intrinsics(output_camera_matrix_colmap)
+
+ return output_camera_matrix
+
+
+def crop_image_depthmap(image, depthmap, camera_intrinsics, crop_bbox):
+ """
+ Return a crop of the input view.
+ """
+ image = ImageList(image)
+ l, t, r, b = crop_bbox
+
+ image = image.crop((l, t, r, b))
+ depthmap = depthmap[t:b, l:r]
+
+ camera_intrinsics = camera_intrinsics.copy()
+ camera_intrinsics[0, 2] -= l
+ camera_intrinsics[1, 2] -= t
+
+ return image.to_pil(), depthmap, camera_intrinsics
+
+
+def bbox_from_intrinsics_in_out(
+ input_camera_matrix, output_camera_matrix, output_resolution
+):
+ out_width, out_height = output_resolution
+ l, t = np.int32(np.round(input_camera_matrix[:2, 2] - output_camera_matrix[:2, 2]))
+ crop_bbox = (l, t, l + out_width, t + out_height)
+ return crop_bbox
diff --git a/extern/CUT3R/eval/mv_recon/dataset_utils/transforms.py b/extern/CUT3R/eval/mv_recon/dataset_utils/transforms.py
new file mode 100755
index 0000000000000000000000000000000000000000..cf858808ac187ce88a9222a7b525b650394de282
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/dataset_utils/transforms.py
@@ -0,0 +1,77 @@
+# Copyright (C) 2024-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+
+import torchvision.transforms as tvf
+from dust3r.utils.image import ImgNorm
+
+
+ColorJitter = tvf.Compose([tvf.ColorJitter(0.5, 0.5, 0.5, 0.1), ImgNorm])
+
+
+def _check_input(value, center=1, bound=(0, float("inf")), clip_first_on_zero=True):
+ if isinstance(value, (int, float)):
+ if value < 0:
+ raise ValueError(f"If is a single number, it must be non negative.")
+ value = [center - float(value), center + float(value)]
+ if clip_first_on_zero:
+ value[0] = max(value[0], 0.0)
+ elif isinstance(value, (tuple, list)) and len(value) == 2:
+ value = [float(value[0]), float(value[1])]
+ else:
+ raise TypeError(f"should be a single number or a list/tuple with length 2.")
+
+ if not bound[0] <= value[0] <= value[1] <= bound[1]:
+ raise ValueError(f"values should be between {bound}, but got {value}.")
+
+ if value[0] == value[1] == center:
+ return None
+ else:
+ return tuple(value)
+
+
+import torch
+import torchvision.transforms.functional as F
+
+
+def SeqColorJitter():
+ """
+ Return a color jitter transform with same random parameters
+ """
+ brightness = _check_input(0.5)
+ contrast = _check_input(0.5)
+ saturation = _check_input(0.5)
+ hue = _check_input(0.1, center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
+
+ fn_idx = torch.randperm(4)
+ brightness_factor = (
+ None
+ if brightness is None
+ else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
+ )
+ contrast_factor = (
+ None
+ if contrast is None
+ else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
+ )
+ saturation_factor = (
+ None
+ if saturation is None
+ else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
+ )
+ hue_factor = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
+
+ def _color_jitter(img):
+ for fn_id in fn_idx:
+ if fn_id == 0 and brightness_factor is not None:
+ img = F.adjust_brightness(img, brightness_factor)
+ elif fn_id == 1 and contrast_factor is not None:
+ img = F.adjust_contrast(img, contrast_factor)
+ elif fn_id == 2 and saturation_factor is not None:
+ img = F.adjust_saturation(img, saturation_factor)
+ elif fn_id == 3 and hue_factor is not None:
+ img = F.adjust_hue(img, hue_factor)
+ return ImgNorm(img)
+
+ return _color_jitter
diff --git a/extern/CUT3R/eval/mv_recon/launch.py b/extern/CUT3R/eval/mv_recon/launch.py
new file mode 100644
index 0000000000000000000000000000000000000000..544e77dbcb512d57afd705482c443d4fca930ce9
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/launch.py
@@ -0,0 +1,396 @@
+import os
+import sys
+
+sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
+import time
+import torch
+import argparse
+import numpy as np
+import open3d as o3d
+import os.path as osp
+from torch.utils.data import DataLoader
+from add_ckpt_path import add_path_to_dust3r
+from accelerate import Accelerator
+from torch.utils.data._utils.collate import default_collate
+import tempfile
+from tqdm import tqdm
+
+
+def get_args_parser():
+ parser = argparse.ArgumentParser("3D Reconstruction evaluation", add_help=False)
+ parser.add_argument(
+ "--weights",
+ type=str,
+ default="",
+ help="ckpt name",
+ )
+ parser.add_argument("--device", type=str, default="cuda:0", help="device")
+ parser.add_argument("--model_name", type=str, default="")
+ parser.add_argument(
+ "--conf_thresh", type=float, default=0.0, help="confidence threshold"
+ )
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ default="",
+ help="value for outdir",
+ )
+ parser.add_argument("--size", type=int, default=512)
+ parser.add_argument("--revisit", type=int, default=1, help="revisit times")
+ parser.add_argument("--freeze", action="store_true")
+ return parser
+
+
+def main(args):
+ add_path_to_dust3r(args.weights)
+ from eval.mv_recon.data import SevenScenes, NRGBD
+ from eval.mv_recon.utils import accuracy, completion
+
+ if args.size == 512:
+ resolution = (512, 384)
+ elif args.size == 224:
+ resolution = 224
+ else:
+ raise NotImplementedError
+ datasets_all = {
+ "7scenes": SevenScenes(
+ split="test",
+ ROOT="./data/7scenes",
+ resolution=resolution,
+ num_seq=1,
+ full_video=True,
+ kf_every=200,
+ ), # 20),
+ "NRGBD": NRGBD(
+ split="test",
+ ROOT="./data/neural_rgbd",
+ resolution=resolution,
+ num_seq=1,
+ full_video=True,
+ kf_every=500,
+ ),
+ }
+
+ accelerator = Accelerator()
+ device = accelerator.device
+ model_name = args.model_name
+ if model_name == "ours" or model_name == "cut3r":
+ from dust3r.model import ARCroco3DStereo
+ from eval.mv_recon.criterion import Regr3D_t_ScaleShiftInv, L21
+ from dust3r.utils.geometry import geotrf
+ from copy import deepcopy
+
+ model = ARCroco3DStereo.from_pretrained(args.weights).to(device)
+ model.eval()
+ else:
+ raise NotImplementedError
+ os.makedirs(args.output_dir, exist_ok=True)
+
+ criterion = Regr3D_t_ScaleShiftInv(L21, norm_mode=False, gt_scale=True)
+
+ with torch.no_grad():
+ for name_data, dataset in datasets_all.items():
+ save_path = osp.join(args.output_dir, name_data)
+ os.makedirs(save_path, exist_ok=True)
+ log_file = osp.join(save_path, f"logs_{accelerator.process_index}.txt")
+
+ acc_all = 0
+ acc_all_med = 0
+ comp_all = 0
+ comp_all_med = 0
+ nc1_all = 0
+ nc1_all_med = 0
+ nc2_all = 0
+ nc2_all_med = 0
+
+ fps_all = []
+ time_all = []
+
+ with accelerator.split_between_processes(list(range(len(dataset)))) as idxs:
+ for data_idx in tqdm(idxs):
+ batch = default_collate([dataset[data_idx]])
+ ignore_keys = set(
+ [
+ "depthmap",
+ "dataset",
+ "label",
+ "instance",
+ "idx",
+ "true_shape",
+ "rng",
+ ]
+ )
+ for view in batch:
+ for name in view.keys(): # pseudo_focal
+ if name in ignore_keys:
+ continue
+ if isinstance(view[name], tuple) or isinstance(
+ view[name], list
+ ):
+ view[name] = [
+ x.to(device, non_blocking=True) for x in view[name]
+ ]
+ else:
+ view[name] = view[name].to(device, non_blocking=True)
+
+ if model_name == "ours" or model_name == "cut3r":
+ revisit = args.revisit
+ update = not args.freeze
+ if revisit > 1:
+ # repeat input for 'revisit' times
+ new_views = []
+ for r in range(revisit):
+ for i in range(len(batch)):
+ new_view = deepcopy(batch[i])
+ new_view["idx"] = [
+ (r * len(batch) + i)
+ for _ in range(len(batch[i]["idx"]))
+ ]
+ new_view["instance"] = [
+ str(r * len(batch) + i)
+ for _ in range(len(batch[i]["instance"]))
+ ]
+ if r > 0:
+ if not update:
+ new_view["update"] = torch.zeros_like(
+ batch[i]["update"]
+ ).bool()
+ new_views.append(new_view)
+ batch = new_views
+ with torch.cuda.amp.autocast(enabled=False):
+ start = time.time()
+ output = model(batch)
+ end = time.time()
+ preds, batch = output.ress, output.views
+ valid_length = len(preds) // revisit
+ preds = preds[-valid_length:]
+ batch = batch[-valid_length:]
+ fps = len(batch) / (end - start)
+ print(
+ f"Finished reconstruction for {name_data} {data_idx+1}/{len(dataset)}, FPS: {fps:.2f}"
+ )
+ # continue
+ fps_all.append(fps)
+ time_all.append(end - start)
+
+ # Evaluation
+ print(f"Evaluation for {name_data} {data_idx+1}/{len(dataset)}")
+ gt_pts, pred_pts, gt_factor, pr_factor, masks, monitoring = (
+ criterion.get_all_pts3d_t(batch, preds)
+ )
+ pred_scale, gt_scale, pred_shift_z, gt_shift_z = (
+ monitoring["pred_scale"],
+ monitoring["gt_scale"],
+ monitoring["pred_shift_z"],
+ monitoring["gt_shift_z"],
+ )
+
+ in_camera1 = None
+ pts_all = []
+ pts_gt_all = []
+ images_all = []
+ masks_all = []
+ conf_all = []
+
+ for j, view in enumerate(batch):
+ if in_camera1 is None:
+ in_camera1 = view["camera_pose"][0].cpu()
+
+ image = view["img"].permute(0, 2, 3, 1).cpu().numpy()[0]
+ mask = view["valid_mask"].cpu().numpy()[0]
+
+ # pts = preds[j]['pts3d' if j==0 else 'pts3d_in_other_view'].detach().cpu().numpy()[0]
+ pts = pred_pts[j].cpu().numpy()[0]
+ conf = preds[j]["conf"].cpu().data.numpy()[0]
+ # mask = mask & (conf > 1.8)
+
+ pts_gt = gt_pts[j].detach().cpu().numpy()[0]
+
+ H, W = image.shape[:2]
+ cx = W // 2
+ cy = H // 2
+ l, t = cx - 112, cy - 112
+ r, b = cx + 112, cy + 112
+ image = image[t:b, l:r]
+ mask = mask[t:b, l:r]
+ pts = pts[t:b, l:r]
+ pts_gt = pts_gt[t:b, l:r]
+
+ #### Align predicted 3D points to the ground truth
+ pts[..., -1] += gt_shift_z.cpu().numpy().item()
+ pts = geotrf(in_camera1, pts)
+
+ pts_gt[..., -1] += gt_shift_z.cpu().numpy().item()
+ pts_gt = geotrf(in_camera1, pts_gt)
+
+ images_all.append((image[None, ...] + 1.0) / 2.0)
+ pts_all.append(pts[None, ...])
+ pts_gt_all.append(pts_gt[None, ...])
+ masks_all.append(mask[None, ...])
+ conf_all.append(conf[None, ...])
+
+ images_all = np.concatenate(images_all, axis=0)
+ pts_all = np.concatenate(pts_all, axis=0)
+ pts_gt_all = np.concatenate(pts_gt_all, axis=0)
+ masks_all = np.concatenate(masks_all, axis=0)
+
+ scene_id = view["label"][0].rsplit("/", 1)[0]
+
+ save_params = {}
+
+ save_params["images_all"] = images_all
+ save_params["pts_all"] = pts_all
+ save_params["pts_gt_all"] = pts_gt_all
+ save_params["masks_all"] = masks_all
+
+ np.save(
+ os.path.join(save_path, f"{scene_id.replace('/', '_')}.npy"),
+ save_params,
+ )
+
+ if "DTU" in name_data:
+ threshold = 100
+ else:
+ threshold = 0.1
+
+ pts_all_masked = pts_all[masks_all > 0]
+ pts_gt_all_masked = pts_gt_all[masks_all > 0]
+ images_all_masked = images_all[masks_all > 0]
+
+ pcd = o3d.geometry.PointCloud()
+ pcd.points = o3d.utility.Vector3dVector(
+ pts_all_masked.reshape(-1, 3)
+ )
+ pcd.colors = o3d.utility.Vector3dVector(
+ images_all_masked.reshape(-1, 3)
+ )
+ o3d.io.write_point_cloud(
+ os.path.join(
+ save_path, f"{scene_id.replace('/', '_')}-mask.ply"
+ ),
+ pcd,
+ )
+
+ pcd_gt = o3d.geometry.PointCloud()
+ pcd_gt.points = o3d.utility.Vector3dVector(
+ pts_gt_all_masked.reshape(-1, 3)
+ )
+ pcd_gt.colors = o3d.utility.Vector3dVector(
+ images_all_masked.reshape(-1, 3)
+ )
+ o3d.io.write_point_cloud(
+ os.path.join(save_path, f"{scene_id.replace('/', '_')}-gt.ply"),
+ pcd_gt,
+ )
+
+ trans_init = np.eye(4)
+
+ reg_p2p = o3d.pipelines.registration.registration_icp(
+ pcd,
+ pcd_gt,
+ threshold,
+ trans_init,
+ o3d.pipelines.registration.TransformationEstimationPointToPoint(),
+ )
+
+ transformation = reg_p2p.transformation
+
+ pcd = pcd.transform(transformation)
+ pcd.estimate_normals()
+ pcd_gt.estimate_normals()
+
+ gt_normal = np.asarray(pcd_gt.normals)
+ pred_normal = np.asarray(pcd.normals)
+
+ acc, acc_med, nc1, nc1_med = accuracy(
+ pcd_gt.points, pcd.points, gt_normal, pred_normal
+ )
+ comp, comp_med, nc2, nc2_med = completion(
+ pcd_gt.points, pcd.points, gt_normal, pred_normal
+ )
+ print(
+ f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}"
+ )
+ print(
+ f"Idx: {scene_id}, Acc: {acc}, Comp: {comp}, NC1: {nc1}, NC2: {nc2} - Acc_med: {acc_med}, Compc_med: {comp_med}, NC1c_med: {nc1_med}, NC2c_med: {nc2_med}",
+ file=open(log_file, "a"),
+ )
+
+ acc_all += acc
+ comp_all += comp
+ nc1_all += nc1
+ nc2_all += nc2
+
+ acc_all_med += acc_med
+ comp_all_med += comp_med
+ nc1_all_med += nc1_med
+ nc2_all_med += nc2_med
+
+ # release cuda memory
+ torch.cuda.empty_cache()
+
+ accelerator.wait_for_everyone()
+ # Get depth from pcd and run TSDFusion
+ if accelerator.is_main_process:
+ to_write = ""
+ # Copy the error log from each process to the main error log
+ for i in range(8):
+ if not os.path.exists(osp.join(save_path, f"logs_{i}.txt")):
+ break
+ with open(osp.join(save_path, f"logs_{i}.txt"), "r") as f_sub:
+ to_write += f_sub.read()
+
+ with open(osp.join(save_path, f"logs_all.txt"), "w") as f:
+ log_data = to_write
+ metrics = defaultdict(list)
+ for line in log_data.strip().split("\n"):
+ match = regex.match(line)
+ if match:
+ data = match.groupdict()
+ # Exclude 'scene_id' from metrics as it's an identifier
+ for key, value in data.items():
+ if key != "scene_id":
+ metrics[key].append(float(value))
+ metrics["nc"].append(
+ (float(data["nc1"]) + float(data["nc2"])) / 2
+ )
+ metrics["nc_med"].append(
+ (float(data["nc1_med"]) + float(data["nc2_med"])) / 2
+ )
+ mean_metrics = {
+ metric: sum(values) / len(values)
+ for metric, values in metrics.items()
+ }
+
+ c_name = "mean"
+ print_str = f"{c_name.ljust(20)}: "
+ for m_name in mean_metrics:
+ print_num = np.mean(mean_metrics[m_name])
+ print_str = print_str + f"{m_name}: {print_num:.3f} | "
+ print_str = print_str + "\n"
+ f.write(to_write + print_str)
+
+
+from collections import defaultdict
+import re
+
+pattern = r"""
+ Idx:\s*(?P[^,]+),\s*
+ Acc:\s*(?P[^,]+),\s*
+ Comp:\s*(?P[^,]+),\s*
+ NC1:\s*(?P[^,]+),\s*
+ NC2:\s*(?P[^,]+)\s*-\s*
+ Acc_med:\s*(?P[^,]+),\s*
+ Compc_med:\s*(?P[^,]+),\s*
+ NC1c_med:\s*(?P[^,]+),\s*
+ NC2c_med:\s*(?P[^,]+)
+"""
+
+regex = re.compile(pattern, re.VERBOSE)
+
+
+if __name__ == "__main__":
+ parser = get_args_parser()
+ args = parser.parse_args()
+
+ main(args)
diff --git a/extern/CUT3R/eval/mv_recon/run.sh b/extern/CUT3R/eval/mv_recon/run.sh
new file mode 100644
index 0000000000000000000000000000000000000000..77b9d3fedfeec1592edbf6f24ad5b8dee569167f
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/run.sh
@@ -0,0 +1,15 @@
+#!/bin/bash
+
+set -e
+
+workdir='.'
+model_name='ours'
+ckpt_name='cut3r_512_dpt_4_64'
+model_weights="${workdir}/src/${ckpt_name}.pth"
+
+output_dir="${workdir}/eval_results/mv_recon/${model_name}_${ckpt_name}"
+echo "$output_dir"
+accelerate launch --num_processes 8 --main_process_port 29501 eval/mv_recon/launch.py \
+ --weights "$model_weights" \
+ --output_dir "$output_dir" \
+ --model_name "$model_name"
\ No newline at end of file
diff --git a/extern/CUT3R/eval/mv_recon/utils.py b/extern/CUT3R/eval/mv_recon/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..546f8535e9d2f9ea25efec4d12b7b655bf940568
--- /dev/null
+++ b/extern/CUT3R/eval/mv_recon/utils.py
@@ -0,0 +1,59 @@
+import numpy as np
+from scipy.spatial import cKDTree as KDTree
+import torch
+
+
+def completion_ratio(gt_points, rec_points, dist_th=0.05):
+ gen_points_kd_tree = KDTree(rec_points)
+ distances, _ = gen_points_kd_tree.query(gt_points)
+ comp_ratio = np.mean((distances < dist_th).astype(np.float32))
+ return comp_ratio
+
+
+def accuracy(gt_points, rec_points, gt_normals=None, rec_normals=None):
+ gt_points_kd_tree = KDTree(gt_points)
+ distances, idx = gt_points_kd_tree.query(rec_points, workers=-1)
+ acc = np.mean(distances)
+
+ acc_median = np.median(distances)
+
+ if gt_normals is not None and rec_normals is not None:
+ normal_dot = np.sum(gt_normals[idx] * rec_normals, axis=-1)
+ normal_dot = np.abs(normal_dot)
+
+ return acc, acc_median, np.mean(normal_dot), np.median(normal_dot)
+
+ return acc, acc_median
+
+
+def completion(gt_points, rec_points, gt_normals=None, rec_normals=None):
+ gt_points_kd_tree = KDTree(rec_points)
+ distances, idx = gt_points_kd_tree.query(gt_points, workers=-1)
+ comp = np.mean(distances)
+ comp_median = np.median(distances)
+
+ if gt_normals is not None and rec_normals is not None:
+ normal_dot = np.sum(gt_normals * rec_normals[idx], axis=-1)
+ normal_dot = np.abs(normal_dot)
+
+ return comp, comp_median, np.mean(normal_dot), np.median(normal_dot)
+
+ return comp, comp_median
+
+
+def compute_iou(pred_vox, target_vox):
+ # Get voxel indices
+ v_pred_indices = [voxel.grid_index for voxel in pred_vox.get_voxels()]
+ v_target_indices = [voxel.grid_index for voxel in target_vox.get_voxels()]
+
+ # Convert to sets for set operations
+ v_pred_filled = set(tuple(np.round(x, 4)) for x in v_pred_indices)
+ v_target_filled = set(tuple(np.round(x, 4)) for x in v_target_indices)
+
+ # Compute intersection and union
+ intersection = v_pred_filled & v_target_filled
+ union = v_pred_filled | v_target_filled
+
+ # Compute IoU
+ iou = len(intersection) / len(union)
+ return iou
diff --git a/extern/CUT3R/eval/relpose/evo_utils.py b/extern/CUT3R/eval/relpose/evo_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..513c6d05b6ed6fe47289297aa3fb668097d4a193
--- /dev/null
+++ b/extern/CUT3R/eval/relpose/evo_utils.py
@@ -0,0 +1,427 @@
+import os
+import re
+from copy import deepcopy
+from pathlib import Path
+
+import evo.main_ape as main_ape
+import evo.main_rpe as main_rpe
+import matplotlib.pyplot as plt
+import numpy as np
+from evo.core import sync
+from evo.core.metrics import PoseRelation, Unit
+from evo.core.trajectory import PosePath3D, PoseTrajectory3D
+from evo.tools import file_interface, plot
+from scipy.spatial.transform import Rotation
+from evo.core import metrics
+
+
+def sintel_cam_read(filename):
+ """Read camera data, return (M,N) tuple.
+
+ M is the intrinsic matrix, N is the extrinsic matrix, so that
+
+ x = M*N*X,
+ with x being a point in homogeneous image pixel coordinates, X being a
+ point in homogeneous world coordinates.
+ """
+ TAG_FLOAT = 202021.25
+
+ f = open(filename, "rb")
+ check = np.fromfile(f, dtype=np.float32, count=1)[0]
+ assert (
+ check == TAG_FLOAT
+ ), " cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
+ TAG_FLOAT, check
+ )
+ M = np.fromfile(f, dtype="float64", count=9).reshape((3, 3))
+ N = np.fromfile(f, dtype="float64", count=12).reshape((3, 4))
+ return M, N
+
+
+def load_replica_traj(gt_file):
+ traj_w_c = np.loadtxt(gt_file)
+ assert traj_w_c.shape[1] == 12 or traj_w_c.shape[1] == 16
+ poses = [
+ np.array(
+ [
+ [r[0], r[1], r[2], r[3]],
+ [r[4], r[5], r[6], r[7]],
+ [r[8], r[9], r[10], r[11]],
+ [0, 0, 0, 1],
+ ]
+ )
+ for r in traj_w_c
+ ]
+
+ pose_path = PosePath3D(poses_se3=poses)
+ timestamps_mat = np.arange(traj_w_c.shape[0]).astype(float)
+
+ traj = PoseTrajectory3D(poses_se3=pose_path.poses_se3, timestamps=timestamps_mat)
+ xyz = traj.positions_xyz
+ # shift -1 column -> w in back column
+ # quat = np.roll(traj.orientations_quat_wxyz, -1, axis=1)
+ # uncomment this line if the quaternion is in scalar-first format
+ quat = traj.orientations_quat_wxyz
+
+ traj_tum = np.column_stack((xyz, quat))
+ return (traj_tum, timestamps_mat)
+
+
+def load_sintel_traj(gt_file): # './data/sintel/training/camdata_left/alley_2'
+ # Refer to ParticleSfM
+ gt_pose_lists = sorted(os.listdir(gt_file))
+ gt_pose_lists = [
+ os.path.join(gt_file, x) for x in gt_pose_lists if x.endswith(".cam")
+ ]
+ tstamps = [float(x.split("/")[-1][:-4].split("_")[-1]) for x in gt_pose_lists]
+ gt_poses = [
+ sintel_cam_read(f)[1] for f in gt_pose_lists
+ ] # [1] means get the extrinsic
+ xyzs, wxyzs = [], []
+ tum_gt_poses = []
+ for gt_pose in gt_poses:
+ gt_pose = np.concatenate([gt_pose, np.array([[0, 0, 0, 1]])], 0)
+ gt_pose_inv = np.linalg.inv(gt_pose) # world2cam -> cam2world
+ xyz = gt_pose_inv[:3, -1]
+ xyzs.append(xyz)
+ R = Rotation.from_matrix(gt_pose_inv[:3, :3])
+ xyzw = R.as_quat() # scalar-last for scipy
+ wxyz = np.array([xyzw[-1], xyzw[0], xyzw[1], xyzw[2]])
+ wxyzs.append(wxyz)
+ tum_gt_pose = np.concatenate([xyz, wxyz], 0) # TODO: check if this is correct
+ tum_gt_poses.append(tum_gt_pose)
+
+ tum_gt_poses = np.stack(tum_gt_poses, 0)
+ tum_gt_poses[:, :3] = tum_gt_poses[:, :3] - np.mean(
+ tum_gt_poses[:, :3], 0, keepdims=True
+ )
+ tt = np.expand_dims(np.stack(tstamps, 0), -1)
+ return tum_gt_poses, tt
+
+
+def load_traj(gt_traj_file, traj_format="sintel", skip=0, stride=1, num_frames=None):
+ """Read trajectory format. Return in TUM-RGBD format.
+ Returns:
+ traj_tum (N, 7): camera to world poses in (x,y,z,qx,qy,qz,qw)
+ timestamps_mat (N, 1): timestamps
+ """
+ if traj_format == "replica":
+ traj_tum, timestamps_mat = load_replica_traj(gt_traj_file)
+ elif traj_format == "sintel":
+ traj_tum, timestamps_mat = load_sintel_traj(gt_traj_file)
+ elif traj_format in ["tum", "tartanair"]:
+ traj = file_interface.read_tum_trajectory_file(gt_traj_file)
+ xyz = traj.positions_xyz
+ quat = traj.orientations_quat_wxyz
+ timestamps_mat = traj.timestamps
+ traj_tum = np.column_stack((xyz, quat))
+ else:
+ raise NotImplementedError
+
+ traj_tum = traj_tum[skip::stride]
+ timestamps_mat = timestamps_mat[skip::stride]
+ if num_frames is not None:
+ traj_tum = traj_tum[:num_frames]
+ timestamps_mat = timestamps_mat[:num_frames]
+ return traj_tum, timestamps_mat
+
+
+def update_timestamps(gt_file, traj_format, skip=0, stride=1):
+ """Update timestamps given a"""
+ if traj_format == "tum":
+ traj_t_map_file = gt_file.replace("groundtruth.txt", "rgb.txt")
+ timestamps = load_timestamps(traj_t_map_file, traj_format)
+ return timestamps[skip::stride]
+ elif traj_format == "tartanair":
+ traj_t_map_file = gt_file.replace("gt_pose.txt", "times.txt")
+ timestamps = load_timestamps(traj_t_map_file, traj_format)
+ return timestamps[skip::stride]
+
+
+def load_timestamps(time_file, traj_format="replica"):
+ if traj_format in ["tum", "tartanair"]:
+ with open(time_file, "r+") as f:
+ lines = f.readlines()
+ timestamps_mat = [
+ float(x.split(" ")[0]) for x in lines if not x.startswith("#")
+ ]
+ return timestamps_mat
+
+
+def make_traj(args) -> PoseTrajectory3D:
+ if isinstance(args, tuple) or isinstance(args, list):
+ traj, tstamps = args
+ return PoseTrajectory3D(
+ positions_xyz=traj[:, :3],
+ orientations_quat_wxyz=traj[:, 3:],
+ timestamps=tstamps,
+ )
+ assert isinstance(args, PoseTrajectory3D), type(args)
+ return deepcopy(args)
+
+
+def eval_metrics(pred_traj, gt_traj=None, seq="", filename="", sample_stride=1):
+
+ if sample_stride > 1:
+ pred_traj[0] = pred_traj[0][::sample_stride]
+ pred_traj[1] = pred_traj[1][::sample_stride]
+ if gt_traj is not None:
+ updated_gt_traj = []
+ updated_gt_traj.append(gt_traj[0][::sample_stride])
+ updated_gt_traj.append(gt_traj[1][::sample_stride])
+ gt_traj = updated_gt_traj
+
+ pred_traj = make_traj(pred_traj)
+
+ if gt_traj is not None:
+ gt_traj = make_traj(gt_traj)
+
+ if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]:
+ pred_traj.timestamps = gt_traj.timestamps
+ else:
+ print(pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0])
+
+ gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj)
+
+ # ATE
+ traj_ref = gt_traj
+ traj_est = pred_traj
+
+ ate_result = main_ape.ape(
+ traj_ref,
+ traj_est,
+ est_name="traj",
+ pose_relation=PoseRelation.translation_part,
+ align=True,
+ correct_scale=True,
+ )
+
+ ate = ate_result.stats["rmse"]
+ # print(ate_result.np_arrays['error_array'])
+ # exit()
+
+ # RPE rotation and translation
+ delta_list = [1]
+ rpe_rots, rpe_transs = [], []
+ for delta in delta_list:
+ rpe_rots_result = main_rpe.rpe(
+ traj_ref,
+ traj_est,
+ est_name="traj",
+ pose_relation=PoseRelation.rotation_angle_deg,
+ align=True,
+ correct_scale=True,
+ delta=delta,
+ delta_unit=Unit.frames,
+ rel_delta_tol=0.01,
+ all_pairs=True,
+ )
+
+ rot = rpe_rots_result.stats["rmse"]
+ rpe_rots.append(rot)
+
+ for delta in delta_list:
+ rpe_transs_result = main_rpe.rpe(
+ traj_ref,
+ traj_est,
+ est_name="traj",
+ pose_relation=PoseRelation.translation_part,
+ align=True,
+ correct_scale=True,
+ delta=delta,
+ delta_unit=Unit.frames,
+ rel_delta_tol=0.01,
+ all_pairs=True,
+ )
+
+ trans = rpe_transs_result.stats["rmse"]
+ rpe_transs.append(trans)
+
+ rpe_trans, rpe_rot = np.mean(rpe_transs), np.mean(rpe_rots)
+ with open(filename, "w+") as f:
+ f.write(f"Seq: {seq} \n\n")
+ f.write(f"{ate_result}")
+ f.write(f"{rpe_rots_result}")
+ f.write(f"{rpe_transs_result}")
+
+ print(f"Save results to {filename}")
+ return ate, rpe_trans, rpe_rot
+
+
+def eval_metrics_first_pose_align_last_pose(
+ pred_traj, gt_traj=None, seq="", filename="", figpath="", sample_stride=1
+):
+ if sample_stride > 1:
+ pred_traj[0] = pred_traj[0][::sample_stride]
+ pred_traj[1] = pred_traj[1][::sample_stride]
+ if gt_traj is not None:
+ gt_traj = [gt_traj[0][::sample_stride], gt_traj[1][::sample_stride]]
+ pred_traj = make_traj(pred_traj)
+ if gt_traj is not None:
+ gt_traj = make_traj(gt_traj)
+
+ if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]:
+ pred_traj.timestamps = gt_traj.timestamps
+ else:
+ print(
+ "Different number of poses:",
+ pred_traj.timestamps.shape[0],
+ gt_traj.timestamps.shape[0],
+ )
+
+ gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj)
+
+ if gt_traj is not None and pred_traj is not None:
+ if len(gt_traj.poses_se3) > 0 and len(pred_traj.poses_se3) > 0:
+ first_gt_pose = gt_traj.poses_se3[0]
+ first_pred_pose = pred_traj.poses_se3[0]
+ # T = (first_gt_pose) * inv(first_pred_pose)
+ T = first_gt_pose @ np.linalg.inv(first_pred_pose)
+
+ # Apply T to every predicted pose
+ aligned_pred_poses = []
+ for pose in pred_traj.poses_se3:
+ aligned_pred_poses.append(T @ pose)
+ aligned_pred_traj = PoseTrajectory3D(
+ poses_se3=aligned_pred_poses,
+ timestamps=np.array(pred_traj.timestamps),
+ # optionally copy other fields if your make_traj object has them
+ )
+ pred_traj = aligned_pred_traj # .poses_se3 = aligned_pred_poses
+ plot_trajectory(
+ pred_traj,
+ gt_traj,
+ title=seq,
+ filename=figpath,
+ align=False,
+ correct_scale=False,
+ )
+
+ if gt_traj is not None and len(gt_traj.poses_se3) > 0:
+ gt_traj = PoseTrajectory3D(
+ poses_se3=[gt_traj.poses_se3[-1]], timestamps=[gt_traj.timestamps[-1]]
+ )
+ if pred_traj is not None and len(pred_traj.poses_se3) > 0:
+ pred_traj = PoseTrajectory3D(
+ poses_se3=[pred_traj.poses_se3[-1]], timestamps=[pred_traj.timestamps[-1]]
+ )
+
+ ate_result = main_ape.ape(
+ gt_traj,
+ pred_traj,
+ est_name="traj",
+ pose_relation=PoseRelation.translation_part,
+ align=False, # <-- important
+ correct_scale=False, # <-- important
+ )
+ ate = ate_result.stats["rmse"]
+ with open(filename, "w+") as f:
+ f.write(f"Seq: {seq}\n\n")
+ f.write(f"{ate_result}")
+
+ print(f"Save results to {filename}")
+
+ return ate
+
+
+def best_plotmode(traj):
+ _, i1, i2 = np.argsort(np.var(traj.positions_xyz, axis=0))
+ plot_axes = "xyz"[i2] + "xyz"[i1]
+ return getattr(plot.PlotMode, plot_axes)
+
+
+def plot_trajectory(
+ pred_traj, gt_traj=None, title="", filename="", align=True, correct_scale=True
+):
+ pred_traj = make_traj(pred_traj)
+
+ if gt_traj is not None:
+ gt_traj = make_traj(gt_traj)
+ if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]:
+ pred_traj.timestamps = gt_traj.timestamps
+ else:
+ print("WARNING", pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0])
+
+ gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj)
+
+ if align:
+ pred_traj.align(gt_traj, correct_scale=correct_scale)
+
+ plot_collection = plot.PlotCollection("PlotCol")
+ fig = plt.figure(figsize=(8, 8))
+ plot_mode = best_plotmode(gt_traj if (gt_traj is not None) else pred_traj)
+ ax = plot.prepare_axis(fig, plot_mode)
+ ax.set_title(title)
+ if gt_traj is not None:
+ plot.traj(ax, plot_mode, gt_traj, "--", "gray", "Ground Truth")
+ plot.traj(ax, plot_mode, pred_traj, "-", "blue", "Predicted")
+ plot_collection.add_figure("traj_error", fig)
+ plot_collection.export(filename, confirm_overwrite=False)
+ plt.close(fig=fig)
+ print(f"Saved trajectory to {filename.replace('.png','')}_traj_error.png")
+
+
+def save_trajectory_tum_format(traj, filename):
+ traj = make_traj(traj)
+ tostr = lambda a: " ".join(map(str, a))
+ with Path(filename).open("w") as f:
+ for i in range(traj.num_poses):
+ f.write(
+ f"{traj.timestamps[i]} {tostr(traj.positions_xyz[i])} {tostr(traj.orientations_quat_wxyz[i][[0,1,2,3]])}\n"
+ )
+ print(f"Saved trajectory to {filename}")
+
+
+def extract_metrics(file_path):
+ with open(file_path, "r") as file:
+ content = file.read()
+
+ # Extract metrics using regex
+ ate_match = re.search(
+ r"APE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)", content, re.DOTALL
+ )
+ rpe_trans_match = re.search(
+ r"RPE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)", content, re.DOTALL
+ )
+ rpe_rot_match = re.search(
+ r"RPE w.r.t. rotation angle in degrees \(deg\).*?rmse\s+([0-9.]+)",
+ content,
+ re.DOTALL,
+ )
+
+ ate = float(ate_match.group(1)) if ate_match else 0.0
+ rpe_trans = float(rpe_trans_match.group(1)) if rpe_trans_match else 0.0
+ rpe_rot = float(rpe_rot_match.group(1)) if rpe_rot_match else 0.0
+
+ return ate, rpe_trans, rpe_rot
+
+
+def process_directory(directory):
+ results = []
+ for root, _, files in os.walk(directory):
+ if files is not None:
+ files = sorted(files)
+ for file in files:
+ if file.endswith("_metric.txt"):
+ file_path = os.path.join(root, file)
+ seq_name = file.replace("_eval_metric.txt", "")
+ ate, rpe_trans, rpe_rot = extract_metrics(file_path)
+ results.append((seq_name, ate, rpe_trans, rpe_rot))
+
+ return results
+
+
+def calculate_averages(results):
+ total_ate = sum(r[1] for r in results)
+ total_rpe_trans = sum(r[2] for r in results)
+ total_rpe_rot = sum(r[3] for r in results)
+ count = len(results)
+
+ if count == 0:
+ return 0.0, 0.0, 0.0
+
+ avg_ate = total_ate / count
+ avg_rpe_trans = total_rpe_trans / count
+ avg_rpe_rot = total_rpe_rot / count
+
+ return avg_ate, avg_rpe_trans, avg_rpe_rot
diff --git a/extern/CUT3R/eval/relpose/launch.py b/extern/CUT3R/eval/relpose/launch.py
new file mode 100644
index 0000000000000000000000000000000000000000..d405029ead9ad63f701fb2dd95bdba6c6673efd5
--- /dev/null
+++ b/extern/CUT3R/eval/relpose/launch.py
@@ -0,0 +1,449 @@
+import os
+import sys
+
+sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
+import math
+import cv2
+import numpy as np
+import torch
+import argparse
+
+from copy import deepcopy
+from eval.relpose.metadata import dataset_metadata
+from eval.relpose.utils import *
+
+from accelerate import PartialState
+from add_ckpt_path import add_path_to_dust3r
+
+from tqdm import tqdm
+
+
+def get_args_parser():
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--weights",
+ type=str,
+ help="path to the model weights",
+ default="",
+ )
+
+ parser.add_argument("--device", type=str, default="cuda", help="pytorch device")
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ default="",
+ help="value for outdir",
+ )
+ parser.add_argument(
+ "--no_crop", type=bool, default=True, help="whether to crop input data"
+ )
+
+ parser.add_argument(
+ "--eval_dataset",
+ type=str,
+ default="sintel",
+ choices=list(dataset_metadata.keys()),
+ )
+ parser.add_argument("--size", type=int, default="224")
+
+ parser.add_argument(
+ "--pose_eval_stride", default=1, type=int, help="stride for pose evaluation"
+ )
+ parser.add_argument("--shuffle", action="store_true", default=False)
+ parser.add_argument(
+ "--full_seq",
+ action="store_true",
+ default=False,
+ help="use full sequence for pose evaluation",
+ )
+ parser.add_argument(
+ "--seq_list",
+ nargs="+",
+ default=None,
+ help="list of sequences for pose evaluation",
+ )
+
+ parser.add_argument("--revisit", type=int, default=1)
+ parser.add_argument("--freeze_state", action="store_true", default=False)
+ parser.add_argument("--solve_pose", action="store_true", default=False)
+ return parser
+
+
+def eval_pose_estimation(args, model, save_dir=None):
+ metadata = dataset_metadata.get(args.eval_dataset)
+ img_path = metadata["img_path"]
+ mask_path = metadata["mask_path"]
+
+ ate_mean, rpe_trans_mean, rpe_rot_mean = eval_pose_estimation_dist(
+ args, model, save_dir=save_dir, img_path=img_path, mask_path=mask_path
+ )
+ return ate_mean, rpe_trans_mean, rpe_rot_mean
+
+
+def eval_pose_estimation_dist(args, model, img_path, save_dir=None, mask_path=None):
+ from dust3r.inference import inference
+
+ metadata = dataset_metadata.get(args.eval_dataset)
+ anno_path = metadata.get("anno_path", None)
+
+ seq_list = args.seq_list
+ if seq_list is None:
+ if metadata.get("full_seq", False):
+ args.full_seq = True
+ else:
+ seq_list = metadata.get("seq_list", [])
+ if args.full_seq:
+ seq_list = os.listdir(img_path)
+ seq_list = [
+ seq for seq in seq_list if os.path.isdir(os.path.join(img_path, seq))
+ ]
+ seq_list = sorted(seq_list)
+
+ if save_dir is None:
+ save_dir = args.output_dir
+
+ distributed_state = PartialState()
+ model.to(distributed_state.device)
+ device = distributed_state.device
+
+ with distributed_state.split_between_processes(seq_list) as seqs:
+ ate_list = []
+ rpe_trans_list = []
+ rpe_rot_list = []
+ load_img_size = args.size
+ error_log_path = f"{save_dir}/_error_log_{distributed_state.process_index}.txt" # Unique log file per process
+ bug = False
+ for seq in tqdm(seqs):
+ try:
+ dir_path = metadata["dir_path_func"](img_path, seq)
+
+ # Handle skip_condition
+ skip_condition = metadata.get("skip_condition", None)
+ if skip_condition is not None and skip_condition(save_dir, seq):
+ continue
+
+ mask_path_seq_func = metadata.get(
+ "mask_path_seq_func", lambda mask_path, seq: None
+ )
+ mask_path_seq = mask_path_seq_func(mask_path, seq)
+
+ filelist = [
+ os.path.join(dir_path, name) for name in os.listdir(dir_path)
+ ]
+ filelist.sort()
+ filelist = filelist[:: args.pose_eval_stride]
+
+ views = prepare_input(
+ filelist,
+ [True for _ in filelist],
+ size=load_img_size,
+ crop=not args.no_crop,
+ revisit=args.revisit,
+ update=not args.freeze_state,
+ )
+ outputs, _ = inference(views, model, device)
+
+ (
+ colors,
+ pts3ds_self,
+ pts3ds_other,
+ conf_self,
+ conf_other,
+ cam_dict,
+ pr_poses,
+ ) = prepare_output(
+ outputs, revisit=args.revisit, solve_pose=args.solve_pose
+ )
+
+ pred_traj = get_tum_poses(pr_poses)
+ os.makedirs(f"{save_dir}/{seq}", exist_ok=True)
+ save_tum_poses(pr_poses, f"{save_dir}/{seq}/pred_traj.txt")
+ save_focals(cam_dict, f"{save_dir}/{seq}/pred_focal.txt")
+ save_intrinsics(cam_dict, f"{save_dir}/{seq}/pred_intrinsics.txt")
+ # save_depth_maps(pts3ds_self,f'{save_dir}/{seq}', conf_self=conf_self)
+ # save_conf_maps(conf_self,f'{save_dir}/{seq}')
+ # save_rgb_imgs(colors,f'{save_dir}/{seq}')
+
+ gt_traj_file = metadata["gt_traj_func"](img_path, anno_path, seq)
+ traj_format = metadata.get("traj_format", None)
+
+ if args.eval_dataset == "sintel":
+ gt_traj = load_traj(
+ gt_traj_file=gt_traj_file, stride=args.pose_eval_stride
+ )
+ elif traj_format is not None:
+ gt_traj = load_traj(
+ gt_traj_file=gt_traj_file,
+ traj_format=traj_format,
+ stride=args.pose_eval_stride,
+ )
+ else:
+ gt_traj = None
+
+ if gt_traj is not None:
+ ate, rpe_trans, rpe_rot = eval_metrics(
+ pred_traj,
+ gt_traj,
+ seq=seq,
+ filename=f"{save_dir}/{seq}_eval_metric.txt",
+ )
+ plot_trajectory(
+ pred_traj, gt_traj, title=seq, filename=f"{save_dir}/{seq}.png"
+ )
+ else:
+ ate, rpe_trans, rpe_rot = 0, 0, 0
+ bug = True
+
+ ate_list.append(ate)
+ rpe_trans_list.append(rpe_trans)
+ rpe_rot_list.append(rpe_rot)
+
+ # Write to error log after each sequence
+ with open(error_log_path, "a") as f:
+ f.write(
+ f"{args.eval_dataset}-{seq: <16} | ATE: {ate:.5f}, RPE trans: {rpe_trans:.5f}, RPE rot: {rpe_rot:.5f}\n"
+ )
+ f.write(f"{ate:.5f}\n")
+ f.write(f"{rpe_trans:.5f}\n")
+ f.write(f"{rpe_rot:.5f}\n")
+
+ except Exception as e:
+ if "out of memory" in str(e):
+ # Handle OOM
+ torch.cuda.empty_cache() # Clear the CUDA memory
+ with open(error_log_path, "a") as f:
+ f.write(
+ f"OOM error in sequence {seq}, skipping this sequence.\n"
+ )
+ print(f"OOM error in sequence {seq}, skipping...")
+ elif "Degenerate covariance rank" in str(
+ e
+ ) or "Eigenvalues did not converge" in str(e):
+ # Handle Degenerate covariance rank exception and Eigenvalues did not converge exception
+ with open(error_log_path, "a") as f:
+ f.write(f"Exception in sequence {seq}: {str(e)}\n")
+ print(f"Traj evaluation error in sequence {seq}, skipping.")
+ else:
+ raise e # Rethrow if it's not an expected exception
+
+ distributed_state.wait_for_everyone()
+
+ results = process_directory(save_dir)
+ avg_ate, avg_rpe_trans, avg_rpe_rot = calculate_averages(results)
+
+ # Write the averages to the error log (only on the main process)
+ if distributed_state.is_main_process:
+ with open(f"{save_dir}/_error_log.txt", "a") as f:
+ # Copy the error log from each process to the main error log
+ for i in range(distributed_state.num_processes):
+ if not os.path.exists(f"{save_dir}/_error_log_{i}.txt"):
+ break
+ with open(f"{save_dir}/_error_log_{i}.txt", "r") as f_sub:
+ f.write(f_sub.read())
+ f.write(
+ f"Average ATE: {avg_ate:.5f}, Average RPE trans: {avg_rpe_trans:.5f}, Average RPE rot: {avg_rpe_rot:.5f}\n"
+ )
+
+ return avg_ate, avg_rpe_trans, avg_rpe_rot
+
+
+if __name__ == "__main__":
+ args = get_args_parser()
+ args = args.parse_args()
+ add_path_to_dust3r(args.weights)
+ from dust3r.utils.image import load_images_for_eval as load_images
+ from dust3r.post_process import estimate_focal_knowing_depth
+ from dust3r.model import ARCroco3DStereo
+ from dust3r.utils.camera import pose_encoding_to_camera
+ from dust3r.utils.geometry import weighted_procrustes, geotrf
+
+ args.full_seq = False
+ args.no_crop = False
+
+ def recover_cam_params(pts3ds_self, pts3ds_other, conf_self, conf_other):
+ B, H, W, _ = pts3ds_self.shape
+ pp = (
+ torch.tensor([W // 2, H // 2], device=pts3ds_self.device)
+ .float()
+ .repeat(B, 1)
+ .reshape(B, 1, 2)
+ )
+ focal = estimate_focal_knowing_depth(pts3ds_self, pp, focal_mode="weiszfeld")
+
+ pts3ds_self = pts3ds_self.reshape(B, -1, 3)
+ pts3ds_other = pts3ds_other.reshape(B, -1, 3)
+ conf_self = conf_self.reshape(B, -1)
+ conf_other = conf_other.reshape(B, -1)
+ # weighted procrustes
+ c2w = weighted_procrustes(
+ pts3ds_self,
+ pts3ds_other,
+ torch.log(conf_self) * torch.log(conf_other),
+ use_weights=True,
+ return_T=True,
+ )
+ return c2w, focal, pp.reshape(B, 2)
+
+ def prepare_input(
+ img_paths,
+ img_mask,
+ size,
+ raymaps=None,
+ raymap_mask=None,
+ revisit=1,
+ update=True,
+ crop=True,
+ ):
+ images = load_images(img_paths, size=size, crop=crop)
+ views = []
+ if raymaps is None and raymap_mask is None:
+ num_views = len(images)
+
+ for i in range(num_views):
+ view = {
+ "img": images[i]["img"],
+ "ray_map": torch.full(
+ (
+ images[i]["img"].shape[0],
+ 6,
+ images[i]["img"].shape[-2],
+ images[i]["img"].shape[-1],
+ ),
+ torch.nan,
+ ),
+ "true_shape": torch.from_numpy(images[i]["true_shape"]),
+ "idx": i,
+ "instance": str(i),
+ "camera_pose": torch.from_numpy(
+ np.eye(4).astype(np.float32)
+ ).unsqueeze(0),
+ "img_mask": torch.tensor(True).unsqueeze(0),
+ "ray_mask": torch.tensor(False).unsqueeze(0),
+ "update": torch.tensor(True).unsqueeze(0),
+ "reset": torch.tensor(False).unsqueeze(0),
+ }
+ views.append(view)
+ else:
+
+ num_views = len(images) + len(raymaps)
+ assert len(img_mask) == len(raymap_mask) == num_views
+ assert sum(img_mask) == len(images) and sum(raymap_mask) == len(raymaps)
+
+ j = 0
+ k = 0
+ for i in range(num_views):
+ view = {
+ "img": (
+ images[j]["img"]
+ if img_mask[i]
+ else torch.full_like(images[0]["img"], torch.nan)
+ ),
+ "ray_map": (
+ raymaps[k]
+ if raymap_mask[i]
+ else torch.full_like(raymaps[0], torch.nan)
+ ),
+ "true_shape": (
+ torch.from_numpy(images[j]["true_shape"])
+ if img_mask[i]
+ else torch.from_numpy(np.int32([raymaps[k].shape[1:-1][::-1]]))
+ ),
+ "idx": i,
+ "instance": str(i),
+ "camera_pose": torch.from_numpy(
+ np.eye(4).astype(np.float32)
+ ).unsqueeze(0),
+ "img_mask": torch.tensor(img_mask[i]).unsqueeze(0),
+ "ray_mask": torch.tensor(raymap_mask[i]).unsqueeze(0),
+ "update": torch.tensor(img_mask[i]).unsqueeze(0),
+ "reset": torch.tensor(False).unsqueeze(0),
+ }
+ if img_mask[i]:
+ j += 1
+ if raymap_mask[i]:
+ k += 1
+ views.append(view)
+ assert j == len(images) and k == len(raymaps)
+
+ if revisit > 1:
+ # repeat input for 'revisit' times
+ new_views = []
+ for r in range(revisit):
+ for i in range(len(views)):
+ new_view = deepcopy(views[i])
+ new_view["idx"] = r * len(views) + i
+ new_view["instance"] = str(r * len(views) + i)
+ if r > 0:
+ if not update:
+ new_view["update"] = torch.tensor(False).unsqueeze(0)
+ new_views.append(new_view)
+ return new_views
+ return views
+
+ def prepare_output(outputs, revisit=1, solve_pose=False):
+ valid_length = len(outputs["pred"]) // revisit
+ outputs["pred"] = outputs["pred"][-valid_length:]
+ outputs["views"] = outputs["views"][-valid_length:]
+
+ if solve_pose:
+ pts3ds_self = [
+ output["pts3d_in_self_view"].cpu() for output in outputs["pred"]
+ ]
+ pts3ds_other = [
+ output["pts3d_in_other_view"].cpu() for output in outputs["pred"]
+ ]
+ conf_self = [output["conf_self"].cpu() for output in outputs["pred"]]
+ conf_other = [output["conf"].cpu() for output in outputs["pred"]]
+ pr_poses, focal, pp = recover_cam_params(
+ torch.cat(pts3ds_self, 0),
+ torch.cat(pts3ds_other, 0),
+ torch.cat(conf_self, 0),
+ torch.cat(conf_other, 0),
+ )
+ pts3ds_self = torch.cat(pts3ds_self, 0)
+ else:
+
+ pts3ds_self = [
+ output["pts3d_in_self_view"].cpu() for output in outputs["pred"]
+ ]
+ pts3ds_other = [
+ output["pts3d_in_other_view"].cpu() for output in outputs["pred"]
+ ]
+ conf_self = [output["conf_self"].cpu() for output in outputs["pred"]]
+ conf_other = [output["conf"].cpu() for output in outputs["pred"]]
+ pts3ds_self = torch.cat(pts3ds_self, 0)
+ pr_poses = [
+ pose_encoding_to_camera(pred["camera_pose"].clone()).cpu()
+ for pred in outputs["pred"]
+ ]
+ pr_poses = torch.cat(pr_poses, 0)
+
+ B, H, W, _ = pts3ds_self.shape
+ pp = (
+ torch.tensor([W // 2, H // 2], device=pts3ds_self.device)
+ .float()
+ .repeat(B, 1)
+ .reshape(B, 2)
+ )
+ focal = estimate_focal_knowing_depth(
+ pts3ds_self, pp, focal_mode="weiszfeld"
+ )
+
+ colors = [0.5 * (output["rgb"][0] + 1.0) for output in outputs["pred"]]
+ cam_dict = {
+ "focal": focal.cpu().numpy(),
+ "pp": pp.cpu().numpy(),
+ }
+ return (
+ colors,
+ pts3ds_self,
+ pts3ds_other,
+ conf_self,
+ conf_other,
+ cam_dict,
+ pr_poses,
+ )
+
+ model = ARCroco3DStereo.from_pretrained(args.weights)
+ eval_pose_estimation(args, model, save_dir=args.output_dir)
diff --git a/extern/CUT3R/eval/relpose/metadata.py b/extern/CUT3R/eval/relpose/metadata.py
new file mode 100644
index 0000000000000000000000000000000000000000..c5d97c5e21c4671a705e311ecf9bb2f2a8c1e516
--- /dev/null
+++ b/extern/CUT3R/eval/relpose/metadata.py
@@ -0,0 +1,233 @@
+import os
+import glob
+from tqdm import tqdm
+
+# Define the merged dataset metadata dictionary
+dataset_metadata = {
+ "davis": {
+ "img_path": "data/davis/DAVIS/JPEGImages/480p",
+ "mask_path": "data/davis/DAVIS/masked_images/480p",
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
+ "gt_traj_func": lambda img_path, anno_path, seq: None,
+ "traj_format": None,
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: os.path.join(mask_path, seq),
+ "skip_condition": None,
+ "process_func": None, # Not used in mono depth estimation
+ },
+ "kitti": {
+ "img_path": "data/kitti/depth_selection/val_selection_cropped/image_gathered", # Default path
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
+ "gt_traj_func": lambda img_path, anno_path, seq: None,
+ "traj_format": None,
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": lambda args, img_path: process_kitti(args, img_path),
+ },
+ "bonn": {
+ "img_path": "data/bonn/rgbd_bonn_dataset",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(
+ img_path, f"rgbd_bonn_{seq}", "rgb_110"
+ ),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, f"rgbd_bonn_{seq}", "groundtruth_110.txt"
+ ),
+ "traj_format": "tum",
+ "seq_list": ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"],
+ "full_seq": False,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": lambda args, img_path: process_bonn(args, img_path),
+ },
+ "nyu": {
+ "img_path": "data/nyu-v2/val/nyu_images",
+ "mask_path": None,
+ "process_func": lambda args, img_path: process_nyu(args, img_path),
+ },
+ "scannet": {
+ "img_path": "data/scannetv2",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "color_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "pose_90.txt"
+ ),
+ "traj_format": "replica",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None, # lambda save_dir, seq: os.path.exists(os.path.join(save_dir, seq)),
+ "process_func": lambda args, img_path: process_scannet(args, img_path),
+ },
+ "scannet-257": {
+ "img_path": "data/scannetv2_3_257",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "color_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "pose_90.txt"
+ ),
+ "traj_format": "replica",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None, # lambda save_dir, seq: os.path.exists(os.path.join(save_dir, seq)),
+ "process_func": lambda args, img_path: process_scannet(args, img_path),
+ },
+ "scannet-129": {
+ "img_path": "data/scannetv2_3_129",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "color_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "pose_90.txt"
+ ),
+ "traj_format": "replica",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None, # lambda save_dir, seq: os.path.exists(os.path.join(save_dir, seq)),
+ "process_func": lambda args, img_path: process_scannet(args, img_path),
+ },
+ "scannet-65": {
+ "img_path": "data/scannetv2_3_65",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "color_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "pose_90.txt"
+ ),
+ "traj_format": "replica",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None, # lambda save_dir, seq: os.path.exists(os.path.join(save_dir, seq)),
+ "process_func": lambda args, img_path: process_scannet(args, img_path),
+ },
+ "scannet-33": {
+ "img_path": "data/scannetv2_3_33",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "color_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "pose_90.txt"
+ ),
+ "traj_format": "replica",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None, # lambda save_dir, seq: os.path.exists(os.path.join(save_dir, seq)),
+ "process_func": lambda args, img_path: process_scannet(args, img_path),
+ },
+ "tum": {
+ "img_path": "data/tum",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "rgb_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "groundtruth_90.txt"
+ ),
+ "traj_format": "tum",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": None,
+ },
+ "sintel": {
+ "img_path": "data/sintel/training/final",
+ "anno_path": "data/sintel/training/camdata_left",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(anno_path, seq),
+ "traj_format": None,
+ "seq_list": [
+ "alley_2",
+ "ambush_4",
+ "ambush_5",
+ "ambush_6",
+ "cave_2",
+ "cave_4",
+ "market_2",
+ "market_5",
+ "market_6",
+ "shaman_3",
+ "sleeping_1",
+ "sleeping_2",
+ "temple_2",
+ "temple_3",
+ ],
+ "full_seq": False,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": lambda args, img_path: process_sintel(args, img_path),
+ },
+}
+
+
+# Define processing functions for each dataset
+def process_kitti(args, img_path):
+ for dir in tqdm(sorted(glob.glob(f"{img_path}/*"))):
+ filelist = sorted(glob.glob(f"{dir}/*.png"))
+ save_dir = f"{args.output_dir}/{os.path.basename(dir)}"
+ yield filelist, save_dir
+
+
+def process_bonn(args, img_path):
+ if args.full_seq:
+ for dir in tqdm(sorted(glob.glob(f"{img_path}/*/"))):
+ filelist = sorted(glob.glob(f"{dir}/rgb/*.png"))
+ save_dir = f"{args.output_dir}/{os.path.basename(os.path.dirname(dir))}"
+ yield filelist, save_dir
+ else:
+ seq_list = (
+ ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"]
+ if args.seq_list is None
+ else args.seq_list
+ )
+ for seq in tqdm(seq_list):
+ filelist = sorted(glob.glob(f"{img_path}/rgbd_bonn_{seq}/rgb_110/*.png"))
+ save_dir = f"{args.output_dir}/{seq}"
+ yield filelist, save_dir
+
+
+def process_nyu(args, img_path):
+ filelist = sorted(glob.glob(f"{img_path}/*.png"))
+ save_dir = f"{args.output_dir}"
+ yield filelist, save_dir
+
+
+def process_scannet(args, img_path):
+ seq_list = sorted(glob.glob(f"{img_path}/*"))
+ for seq in tqdm(seq_list):
+ filelist = sorted(glob.glob(f"{seq}/color_90/*.jpg"))
+ save_dir = f"{args.output_dir}/{os.path.basename(seq)}"
+ yield filelist, save_dir
+
+
+def process_sintel(args, img_path):
+ if args.full_seq:
+ for dir in tqdm(sorted(glob.glob(f"{img_path}/*/"))):
+ filelist = sorted(glob.glob(f"{dir}/*.png"))
+ save_dir = f"{args.output_dir}/{os.path.basename(os.path.dirname(dir))}"
+ yield filelist, save_dir
+ else:
+ seq_list = [
+ "alley_2",
+ "ambush_4",
+ "ambush_5",
+ "ambush_6",
+ "cave_2",
+ "cave_4",
+ "market_2",
+ "market_5",
+ "market_6",
+ "shaman_3",
+ "sleeping_1",
+ "sleeping_2",
+ "temple_2",
+ "temple_3",
+ ]
+ for seq in tqdm(seq_list):
+ filelist = sorted(glob.glob(f"{img_path}/{seq}/*.png"))
+ save_dir = f"{args.output_dir}/{seq}"
+ yield filelist, save_dir
diff --git a/extern/CUT3R/eval/relpose/run.sh b/extern/CUT3R/eval/relpose/run.sh
new file mode 100644
index 0000000000000000000000000000000000000000..be7673edc98b8ae1fcc4e58b6353caa8432b4687
--- /dev/null
+++ b/extern/CUT3R/eval/relpose/run.sh
@@ -0,0 +1,22 @@
+#!/bin/bash
+
+set -e
+
+workdir='.'
+model_name='ours'
+ckpt_name='cut3r_512_dpt_4_64'
+model_weights="${workdir}/src/${ckpt_name}.pth"
+datasets=('scannet' 'tum' 'sintel')
+
+
+for data in "${datasets[@]}"; do
+ output_dir="${workdir}/eval_results/relpose/${data}_${model_name}"
+ echo "$output_dir"
+ accelerate launch --num_processes 8 --main_process_port 29558 eval/relpose/launch.py \
+ --weights "$model_weights" \
+ --output_dir "$output_dir" \
+ --eval_dataset "$data" \
+ --size 512
+done
+
+
diff --git a/extern/CUT3R/eval/relpose/utils.py b/extern/CUT3R/eval/relpose/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..14861ddeb972062eaed66ddbb5de152052079d91
--- /dev/null
+++ b/extern/CUT3R/eval/relpose/utils.py
@@ -0,0 +1,311 @@
+from copy import deepcopy
+import cv2
+
+import numpy as np
+import torch
+import torch.nn as nn
+import roma
+from copy import deepcopy
+import tqdm
+import matplotlib as mpl
+import matplotlib.cm as cm
+import matplotlib.pyplot as plt
+from matplotlib.backends.backend_agg import FigureCanvasAgg
+from scipy.spatial.transform import Rotation
+from eval.relpose.evo_utils import *
+from PIL import Image
+import imageio.v2 as iio
+from matplotlib.figure import Figure
+
+# from checkpoints.dust3r.viz import colorize_np, colorize
+
+
+def todevice(batch, device, callback=None, non_blocking=False):
+ """Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy).
+
+ batch: list, tuple, dict of tensors or other things
+ device: pytorch device or 'numpy'
+ callback: function that would be called on every sub-elements.
+ """
+ if callback:
+ batch = callback(batch)
+
+ if isinstance(batch, dict):
+ return {k: todevice(v, device) for k, v in batch.items()}
+
+ if isinstance(batch, (tuple, list)):
+ return type(batch)(todevice(x, device) for x in batch)
+
+ x = batch
+ if device == "numpy":
+ if isinstance(x, torch.Tensor):
+ x = x.detach().cpu().numpy()
+ elif x is not None:
+ if isinstance(x, np.ndarray):
+ x = torch.from_numpy(x)
+ if torch.is_tensor(x):
+ x = x.to(device, non_blocking=non_blocking)
+ return x
+
+
+to_device = todevice # alias
+
+
+def to_numpy(x):
+ return todevice(x, "numpy")
+
+
+def c2w_to_tumpose(c2w):
+ """
+ Convert a camera-to-world matrix to a tuple of translation and rotation
+
+ input: c2w: 4x4 matrix
+ output: tuple of translation and rotation (x y z qw qx qy qz)
+ """
+ # convert input to numpy
+ c2w = to_numpy(c2w)
+ xyz = c2w[:3, -1]
+ rot = Rotation.from_matrix(c2w[:3, :3])
+ qx, qy, qz, qw = rot.as_quat()
+ tum_pose = np.concatenate([xyz, [qw, qx, qy, qz]])
+ return tum_pose
+
+
+def get_tum_poses(poses):
+ """
+ poses: list of 4x4 arrays
+ """
+ tt = np.arange(len(poses)).astype(float)
+ tum_poses = [c2w_to_tumpose(p) for p in poses]
+ tum_poses = np.stack(tum_poses, 0)
+ return [tum_poses, tt]
+
+
+def save_tum_poses(poses, path):
+ traj = get_tum_poses(poses)
+ save_trajectory_tum_format(traj, path)
+ return traj[0] # return the poses
+
+
+def save_focals(cam_dict, path):
+ # convert focal to txt
+ focals = cam_dict["focal"]
+ np.savetxt(path, focals, fmt="%.6f")
+ return focals
+
+
+def save_intrinsics(cam_dict, path):
+ K_raw = np.eye(3)[None].repeat(len(cam_dict["focal"]), axis=0)
+ K_raw[:, 0, 0] = cam_dict["focal"]
+ K_raw[:, 1, 1] = cam_dict["focal"]
+ K_raw[:, :2, 2] = cam_dict["pp"]
+ K = K_raw.reshape(-1, 9)
+ np.savetxt(path, K, fmt="%.6f")
+ return K_raw
+
+
+def save_conf_maps(conf, path):
+ for i, c in enumerate(conf):
+ np.save(f"{path}/conf_{i}.npy", c.detach().cpu().numpy())
+ return conf
+
+
+def save_rgb_imgs(colors, path):
+ imgs = colors
+ for i, img in enumerate(imgs):
+ # convert from rgb to bgr
+ iio.imwrite(
+ f"{path}/frame_{i:04d}.jpg", (img.cpu().numpy() * 255).astype(np.uint8)
+ )
+ return imgs
+
+
+def save_depth_maps(pts3ds_self, path, conf_self=None):
+ depth_maps = torch.stack([pts3d_self[..., -1] for pts3d_self in pts3ds_self], 0)
+ min_depth = depth_maps.min() # float(torch.quantile(out, 0.01))
+ max_depth = depth_maps.max() # float(torch.quantile(out, 0.99))
+ colored_depth = colorize(
+ depth_maps,
+ cmap_name="Spectral_r",
+ range=(min_depth, max_depth),
+ append_cbar=True,
+ )
+ images = []
+
+ if conf_self is not None:
+ conf_selfs = torch.concat(conf_self, 0)
+ min_conf = torch.log(conf_selfs.min()) # float(torch.quantile(out, 0.01))
+ max_conf = torch.log(conf_selfs.max()) # float(torch.quantile(out, 0.99))
+ colored_conf = colorize(
+ torch.log(conf_selfs),
+ cmap_name="jet",
+ range=(min_conf, max_conf),
+ append_cbar=True,
+ )
+
+ for i, depth_map in enumerate(colored_depth):
+ # Apply color map to depth map
+ img_path = f"{path}/frame_{(i):04d}.png"
+ if conf_self is None:
+ to_save = (depth_map * 255).detach().cpu().numpy().astype(np.uint8)
+ else:
+ to_save = torch.cat([depth_map, colored_conf[i]], dim=1)
+ to_save = (to_save * 255).detach().cpu().numpy().astype(np.uint8)
+ iio.imwrite(img_path, to_save)
+ images.append(Image.open(img_path))
+ np.save(f"{path}/frame_{(i):04d}.npy", depth_maps[i].detach().cpu().numpy())
+
+ images[0].save(
+ f"{path}/_depth_maps.gif",
+ save_all=True,
+ append_images=images[1:],
+ duration=100,
+ loop=0,
+ )
+
+ return depth_maps
+
+
+def get_vertical_colorbar(h, vmin, vmax, cmap_name="jet", label=None, cbar_precision=2):
+ """
+ :param w: pixels
+ :param h: pixels
+ :param vmin: min value
+ :param vmax: max value
+ :param cmap_name:
+ :param label
+ :return:
+ """
+ fig = Figure(figsize=(2, 8), dpi=100)
+ fig.subplots_adjust(right=1.5)
+ canvas = FigureCanvasAgg(fig)
+
+ # Do some plotting.
+ ax = fig.add_subplot(111)
+ cmap = cm.get_cmap(cmap_name)
+ norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
+
+ tick_cnt = 6
+ tick_loc = np.linspace(vmin, vmax, tick_cnt)
+ cb1 = mpl.colorbar.ColorbarBase(
+ ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation="vertical"
+ )
+
+ tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
+ if cbar_precision == 0:
+ tick_label = [x[:-2] for x in tick_label]
+
+ cb1.set_ticklabels(tick_label)
+
+ cb1.ax.tick_params(labelsize=18, rotation=0)
+ if label is not None:
+ cb1.set_label(label)
+
+ # fig.tight_layout()
+
+ canvas.draw()
+ s, (width, height) = canvas.print_to_buffer()
+
+ im = np.frombuffer(s, np.uint8).reshape((height, width, 4))
+
+ im = im[:, :, :3].astype(np.float32) / 255.0
+ if h != im.shape[0]:
+ w = int(im.shape[1] / im.shape[0] * h)
+ im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)
+
+ return im
+
+
+def colorize_np(
+ x,
+ cmap_name="jet",
+ mask=None,
+ range=None,
+ append_cbar=False,
+ cbar_in_image=False,
+ cbar_precision=2,
+):
+ """
+ turn a grayscale image into a color image
+ :param x: input grayscale, [H, W]
+ :param cmap_name: the colorization method
+ :param mask: the mask image, [H, W]
+ :param range: the range for scaling, automatic if None, [min, max]
+ :param append_cbar: if append the color bar
+ :param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
+ :return: colorized image, [H, W]
+ """
+ if range is not None:
+ vmin, vmax = range
+ elif mask is not None:
+ # vmin, vmax = np.percentile(x[mask], (2, 100))
+ vmin = np.min(x[mask][np.nonzero(x[mask])])
+ vmax = np.max(x[mask])
+ # vmin = vmin - np.abs(vmin) * 0.01
+ x[np.logical_not(mask)] = vmin
+ # print(vmin, vmax)
+ else:
+ vmin, vmax = np.percentile(x, (1, 100))
+ vmax += 1e-6
+
+ x = np.clip(x, vmin, vmax)
+ x = (x - vmin) / (vmax - vmin)
+ # x = np.clip(x, 0., 1.)
+
+ cmap = cm.get_cmap(cmap_name)
+ x_new = cmap(x)[:, :, :3]
+
+ if mask is not None:
+ mask = np.float32(mask[:, :, np.newaxis])
+ x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask)
+
+ cbar = get_vertical_colorbar(
+ h=x.shape[0],
+ vmin=vmin,
+ vmax=vmax,
+ cmap_name=cmap_name,
+ cbar_precision=cbar_precision,
+ )
+
+ if append_cbar:
+ if cbar_in_image:
+ x_new[:, -cbar.shape[1] :, :] = cbar
+ else:
+ x_new = np.concatenate(
+ (x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1
+ )
+ return x_new
+ else:
+ return x_new
+
+
+# tensor
+def colorize(
+ x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False
+):
+ """
+ turn a grayscale image into a color image
+ :param x: torch.Tensor, grayscale image, [H, W] or [B, H, W]
+ :param mask: torch.Tensor or None, mask image, [H, W] or [B, H, W] or None
+ """
+
+ device = x.device
+ x = x.cpu().numpy()
+ if mask is not None:
+ mask = mask.cpu().numpy() > 0.99
+ kernel = np.ones((3, 3), np.uint8)
+
+ if x.ndim == 2:
+ x = x[None]
+ if mask is not None:
+ mask = mask[None]
+
+ out = []
+ for x_ in x:
+ if mask is not None:
+ mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool)
+
+ x_ = colorize_np(x_, cmap_name, mask, range, append_cbar, cbar_in_image)
+ out.append(torch.from_numpy(x_).to(device).float())
+ out = torch.stack(out).squeeze(0)
+ return out
diff --git a/extern/CUT3R/eval/video_depth/eval_depth.py b/extern/CUT3R/eval/video_depth/eval_depth.py
new file mode 100644
index 0000000000000000000000000000000000000000..bb37e5795459491e5c3ffd404a665cbdf4313293
--- /dev/null
+++ b/extern/CUT3R/eval/video_depth/eval_depth.py
@@ -0,0 +1,385 @@
+import os
+import sys
+
+sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
+from eval.video_depth.tools import depth_evaluation, group_by_directory
+import numpy as np
+import cv2
+from tqdm import tqdm
+import glob
+from PIL import Image
+import argparse
+import json
+from eval.video_depth.metadata import dataset_metadata
+
+
+def get_args_parser():
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ default="",
+ help="value for outdir",
+ )
+ parser.add_argument(
+ "--eval_dataset", type=str, default="nyu", choices=list(dataset_metadata.keys())
+ )
+ parser.add_argument(
+ "--align",
+ type=str,
+ default="scale&shift",
+ choices=["scale&shift", "scale", "metric"],
+ )
+ return parser
+
+
+def main(args):
+ if args.eval_dataset == "sintel":
+ TAG_FLOAT = 202021.25
+
+ def depth_read(filename):
+ """Read depth data from file, return as numpy array."""
+ f = open(filename, "rb")
+ check = np.fromfile(f, dtype=np.float32, count=1)[0]
+ assert (
+ check == TAG_FLOAT
+ ), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
+ TAG_FLOAT, check
+ )
+ width = np.fromfile(f, dtype=np.int32, count=1)[0]
+ height = np.fromfile(f, dtype=np.int32, count=1)[0]
+ size = width * height
+ assert (
+ width > 0 and height > 0 and size > 1 and size < 100000000
+ ), " depth_read:: Wrong input size (width = {0}, height = {1}).".format(
+ width, height
+ )
+ depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width))
+ return depth
+
+ pred_pathes = glob.glob(
+ f"{args.output_dir}/*/frame_*.npy"
+ ) # TODO: update the path to your prediction
+ pred_pathes = sorted(pred_pathes)
+
+ if len(pred_pathes) > 643:
+ full = True
+ else:
+ full = False
+
+ if full:
+ depth_pathes = glob.glob(f"data/sintel/training/depth/*/*.dpt")
+ depth_pathes = sorted(depth_pathes)
+ else:
+ seq_list = [
+ "alley_2",
+ "ambush_4",
+ "ambush_5",
+ "ambush_6",
+ "cave_2",
+ "cave_4",
+ "market_2",
+ "market_5",
+ "market_6",
+ "shaman_3",
+ "sleeping_1",
+ "sleeping_2",
+ "temple_2",
+ "temple_3",
+ ]
+ depth_pathes_folder = [
+ f"data/sintel/training/depth/{seq}" for seq in seq_list
+ ]
+ depth_pathes = []
+ for depth_pathes_folder_i in depth_pathes_folder:
+ depth_pathes += glob.glob(depth_pathes_folder_i + "/*.dpt")
+ depth_pathes = sorted(depth_pathes)
+
+ def get_video_results():
+ grouped_pred_depth = group_by_directory(pred_pathes)
+
+ grouped_gt_depth = group_by_directory(depth_pathes)
+ gathered_depth_metrics = []
+
+ for key in tqdm(grouped_pred_depth.keys()):
+ pd_pathes = grouped_pred_depth[key]
+ gt_pathes = grouped_gt_depth[key.replace("_pred_depth", "")]
+
+ gt_depth = np.stack(
+ [depth_read(gt_path) for gt_path in gt_pathes], axis=0
+ )
+ pr_depth = np.stack(
+ [
+ cv2.resize(
+ np.load(pd_path),
+ (gt_depth.shape[2], gt_depth.shape[1]),
+ interpolation=cv2.INTER_CUBIC,
+ )
+ for pd_path in pd_pathes
+ ],
+ axis=0,
+ )
+ # for depth eval, set align_with_lad2=False to use median alignment; set align_with_lad2=True to use scale&shift alignment
+ if args.align == "scale&shift":
+ depth_results, error_map, depth_predict, depth_gt = (
+ depth_evaluation(
+ pr_depth,
+ gt_depth,
+ max_depth=70,
+ align_with_lad2=True,
+ use_gpu=True,
+ post_clip_max=70,
+ )
+ )
+ elif args.align == "scale":
+ depth_results, error_map, depth_predict, depth_gt = (
+ depth_evaluation(
+ pr_depth,
+ gt_depth,
+ max_depth=70,
+ align_with_scale=True,
+ use_gpu=True,
+ post_clip_max=70,
+ )
+ )
+ elif args.align == "metric":
+ depth_results, error_map, depth_predict, depth_gt = (
+ depth_evaluation(
+ pr_depth,
+ gt_depth,
+ max_depth=70,
+ metric_scale=True,
+ use_gpu=True,
+ post_clip_max=70,
+ )
+ )
+ gathered_depth_metrics.append(depth_results)
+
+ depth_log_path = f"{args.output_dir}/result_{args.align}.json"
+ average_metrics = {
+ key: np.average(
+ [metrics[key] for metrics in gathered_depth_metrics],
+ weights=[
+ metrics["valid_pixels"] for metrics in gathered_depth_metrics
+ ],
+ )
+ for key in gathered_depth_metrics[0].keys()
+ if key != "valid_pixels"
+ }
+ print("Average depth evaluation metrics:", average_metrics)
+ with open(depth_log_path, "w") as f:
+ f.write(json.dumps(average_metrics))
+
+ get_video_results()
+ elif args.eval_dataset == "bonn":
+
+ def depth_read(filename):
+ # loads depth map D from png file
+ # and returns it as a numpy array
+ depth_png = np.asarray(Image.open(filename))
+ # make sure we have a proper 16bit depth map here.. not 8bit!
+ assert np.max(depth_png) > 255
+ depth = depth_png.astype(np.float64) / 5000.0
+ depth[depth_png == 0] = -1.0
+ return depth
+
+ seq_list = ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"]
+
+ img_pathes_folder = [
+ f"data/bonn/rgbd_bonn_dataset/rgbd_bonn_{seq}/rgb_110/*.png"
+ for seq in seq_list
+ ]
+ img_pathes = []
+ for img_pathes_folder_i in img_pathes_folder:
+ img_pathes += glob.glob(img_pathes_folder_i)
+ img_pathes = sorted(img_pathes)
+ depth_pathes_folder = [
+ f"data/bonn/rgbd_bonn_dataset/rgbd_bonn_{seq}/depth_110/*.png"
+ for seq in seq_list
+ ]
+ depth_pathes = []
+ for depth_pathes_folder_i in depth_pathes_folder:
+ depth_pathes += glob.glob(depth_pathes_folder_i)
+ depth_pathes = sorted(depth_pathes)
+ pred_pathes = glob.glob(
+ f"{args.output_dir}/*/frame*.npy"
+ ) # TODO: update the path to your prediction
+ pred_pathes = sorted(pred_pathes)
+
+ def get_video_results():
+ grouped_pred_depth = group_by_directory(pred_pathes)
+ grouped_gt_depth = group_by_directory(depth_pathes, idx=-2)
+ gathered_depth_metrics = []
+ for key in tqdm(grouped_gt_depth.keys()):
+ pd_pathes = grouped_pred_depth[key[10:]]
+ gt_pathes = grouped_gt_depth[key]
+ gt_depth = np.stack(
+ [depth_read(gt_path) for gt_path in gt_pathes], axis=0
+ )
+ pr_depth = np.stack(
+ [
+ cv2.resize(
+ np.load(pd_path),
+ (gt_depth.shape[2], gt_depth.shape[1]),
+ interpolation=cv2.INTER_CUBIC,
+ )
+ for pd_path in pd_pathes
+ ],
+ axis=0,
+ )
+ # for depth eval, set align_with_lad2=False to use median alignment; set align_with_lad2=True to use scale&shift alignment
+ if args.align == "scale&shift":
+ depth_results, error_map, depth_predict, depth_gt = (
+ depth_evaluation(
+ pr_depth,
+ gt_depth,
+ max_depth=70,
+ align_with_lad2=True,
+ use_gpu=True,
+ )
+ )
+ elif args.align == "scale":
+ depth_results, error_map, depth_predict, depth_gt = (
+ depth_evaluation(
+ pr_depth,
+ gt_depth,
+ max_depth=70,
+ align_with_scale=True,
+ use_gpu=True,
+ )
+ )
+ elif args.align == "metric":
+ depth_results, error_map, depth_predict, depth_gt = (
+ depth_evaluation(
+ pr_depth,
+ gt_depth,
+ max_depth=70,
+ metric_scale=True,
+ use_gpu=True,
+ )
+ )
+ gathered_depth_metrics.append(depth_results)
+
+ # seq_len = gt_depth.shape[0]
+ # error_map = error_map.reshape(seq_len, -1, error_map.shape[-1]).cpu()
+ # error_map_colored = colorize(error_map, range=(error_map.min(), error_map.max()), append_cbar=True)
+ # ImageSequenceClip([x for x in (error_map_colored.numpy()*255).astype(np.uint8)], fps=10).write_videofile(f'{args.output_dir}/errormap_{key}_{args.align}.mp4', fps=10)
+
+ depth_log_path = f"{args.output_dir}/result_{args.align}.json"
+ average_metrics = {
+ key: np.average(
+ [metrics[key] for metrics in gathered_depth_metrics],
+ weights=[
+ metrics["valid_pixels"] for metrics in gathered_depth_metrics
+ ],
+ )
+ for key in gathered_depth_metrics[0].keys()
+ if key != "valid_pixels"
+ }
+ print("Average depth evaluation metrics:", average_metrics)
+ with open(depth_log_path, "w") as f:
+ f.write(json.dumps(average_metrics))
+
+ get_video_results()
+ elif args.eval_dataset == "kitti":
+
+ def depth_read(filename):
+ # loads depth map D from png file
+ # and returns it as a numpy array,
+ # for details see readme.txt
+ img_pil = Image.open(filename)
+ depth_png = np.array(img_pil, dtype=int)
+ # make sure we have a proper 16bit depth map here.. not 8bit!
+ assert np.max(depth_png) > 255
+
+ depth = depth_png.astype(float) / 256.0
+ depth[depth_png == 0] = -1.0
+ return depth
+
+ depth_pathes = glob.glob(
+ "data/kitti/depth_selection/val_selection_cropped/groundtruth_depth_gathered/*/*.png"
+ )
+ depth_pathes = sorted(depth_pathes)
+ pred_pathes = glob.glob(
+ f"{args.output_dir}/*/frame_*.npy"
+ ) # TODO: update the path to your prediction
+ pred_pathes = sorted(pred_pathes)
+
+ def get_video_results():
+ grouped_pred_depth = group_by_directory(pred_pathes)
+ grouped_gt_depth = group_by_directory(depth_pathes)
+ gathered_depth_metrics = []
+ for key in tqdm(grouped_pred_depth.keys()):
+ pd_pathes = grouped_pred_depth[key]
+ gt_pathes = grouped_gt_depth[key]
+ gt_depth = np.stack(
+ [depth_read(gt_path) for gt_path in gt_pathes], axis=0
+ )
+ pr_depth = np.stack(
+ [
+ cv2.resize(
+ np.load(pd_path),
+ (gt_depth.shape[2], gt_depth.shape[1]),
+ interpolation=cv2.INTER_CUBIC,
+ )
+ for pd_path in pd_pathes
+ ],
+ axis=0,
+ )
+
+ # for depth eval, set align_with_lad2=False to use median alignment; set align_with_lad2=True to use scale&shift alignment
+ if args.align == "scale&shift":
+ depth_results, error_map, depth_predict, depth_gt = (
+ depth_evaluation(
+ pr_depth,
+ gt_depth,
+ max_depth=None,
+ align_with_lad2=True,
+ use_gpu=True,
+ )
+ )
+ elif args.align == "scale":
+ depth_results, error_map, depth_predict, depth_gt = (
+ depth_evaluation(
+ pr_depth,
+ gt_depth,
+ max_depth=None,
+ align_with_scale=True,
+ use_gpu=True,
+ )
+ )
+ elif args.align == "metric":
+ depth_results, error_map, depth_predict, depth_gt = (
+ depth_evaluation(
+ pr_depth,
+ gt_depth,
+ max_depth=None,
+ metric_scale=True,
+ use_gpu=True,
+ )
+ )
+ gathered_depth_metrics.append(depth_results)
+
+ depth_log_path = f"{args.output_dir}/result_{args.align}.json"
+ average_metrics = {
+ key: np.average(
+ [metrics[key] for metrics in gathered_depth_metrics],
+ weights=[
+ metrics["valid_pixels"] for metrics in gathered_depth_metrics
+ ],
+ )
+ for key in gathered_depth_metrics[0].keys()
+ if key != "valid_pixels"
+ }
+ print("Average depth evaluation metrics:", average_metrics)
+ with open(depth_log_path, "w") as f:
+ f.write(json.dumps(average_metrics))
+
+ get_video_results()
+
+
+if __name__ == "__main__":
+ args = get_args_parser()
+ args = args.parse_args()
+ main(args)
diff --git a/extern/CUT3R/eval/video_depth/launch.py b/extern/CUT3R/eval/video_depth/launch.py
new file mode 100644
index 0000000000000000000000000000000000000000..93a3294c5cd976be5ae6d27d7bc68d79fa33f0d7
--- /dev/null
+++ b/extern/CUT3R/eval/video_depth/launch.py
@@ -0,0 +1,331 @@
+import os
+import sys
+
+sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
+import math
+import cv2
+import numpy as np
+import torch
+import argparse
+
+from copy import deepcopy
+from eval.video_depth.metadata import dataset_metadata
+from eval.video_depth.utils import save_depth_maps
+from accelerate import PartialState
+from add_ckpt_path import add_path_to_dust3r
+import time
+from tqdm import tqdm
+
+
+def get_args_parser():
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--weights",
+ type=str,
+ help="path to the model weights",
+ default="",
+ )
+
+ parser.add_argument("--device", type=str, default="cuda", help="pytorch device")
+ parser.add_argument(
+ "--output_dir",
+ type=str,
+ default="",
+ help="value for outdir",
+ )
+ parser.add_argument(
+ "--no_crop", type=bool, default=True, help="whether to crop input data"
+ )
+
+ parser.add_argument(
+ "--eval_dataset",
+ type=str,
+ default="sintel",
+ choices=list(dataset_metadata.keys()),
+ )
+ parser.add_argument("--size", type=int, default="224")
+
+ parser.add_argument(
+ "--pose_eval_stride", default=1, type=int, help="stride for pose evaluation"
+ )
+ parser.add_argument(
+ "--full_seq",
+ action="store_true",
+ default=False,
+ help="use full sequence for pose evaluation",
+ )
+ parser.add_argument(
+ "--seq_list",
+ nargs="+",
+ default=None,
+ help="list of sequences for pose evaluation",
+ )
+ return parser
+
+
+def eval_pose_estimation(args, model, save_dir=None):
+ metadata = dataset_metadata.get(args.eval_dataset)
+ img_path = metadata["img_path"]
+ mask_path = metadata["mask_path"]
+
+ ate_mean, rpe_trans_mean, rpe_rot_mean = eval_pose_estimation_dist(
+ args, model, save_dir=save_dir, img_path=img_path, mask_path=mask_path
+ )
+ return ate_mean, rpe_trans_mean, rpe_rot_mean
+
+
+def eval_pose_estimation_dist(args, model, img_path, save_dir=None, mask_path=None):
+ from dust3r.inference import inference
+
+ metadata = dataset_metadata.get(args.eval_dataset)
+ anno_path = metadata.get("anno_path", None)
+
+ seq_list = args.seq_list
+ if seq_list is None:
+ if metadata.get("full_seq", False):
+ args.full_seq = True
+ else:
+ seq_list = metadata.get("seq_list", [])
+ if args.full_seq:
+ seq_list = os.listdir(img_path)
+ seq_list = [
+ seq for seq in seq_list if os.path.isdir(os.path.join(img_path, seq))
+ ]
+ seq_list = sorted(seq_list)
+
+ if save_dir is None:
+ save_dir = args.output_dir
+
+ distributed_state = PartialState()
+ model.to(distributed_state.device)
+ device = distributed_state.device
+
+ with distributed_state.split_between_processes(seq_list) as seqs:
+ ate_list = []
+ rpe_trans_list = []
+ rpe_rot_list = []
+ load_img_size = args.size
+ assert load_img_size == 512
+ error_log_path = f"{save_dir}/_error_log_{distributed_state.process_index}.txt" # Unique log file per process
+ bug = False
+ for seq in tqdm(seqs):
+ try:
+ dir_path = metadata["dir_path_func"](img_path, seq)
+
+ # Handle skip_condition
+ skip_condition = metadata.get("skip_condition", None)
+ if skip_condition is not None and skip_condition(save_dir, seq):
+ continue
+
+ mask_path_seq_func = metadata.get(
+ "mask_path_seq_func", lambda mask_path, seq: None
+ )
+ mask_path_seq = mask_path_seq_func(mask_path, seq)
+
+ filelist = [
+ os.path.join(dir_path, name) for name in os.listdir(dir_path)
+ ]
+ filelist.sort()
+ filelist = filelist[:: args.pose_eval_stride]
+
+ views = prepare_input(
+ filelist,
+ [True for _ in filelist],
+ size=load_img_size,
+ crop=not args.no_crop,
+ )
+ start = time.time()
+ outputs, _ = inference(views, model, device)
+ end = time.time()
+ fps = len(filelist) / (end - start)
+
+ (
+ colors,
+ pts3ds_self,
+ pts3ds_other,
+ conf_self,
+ conf_other,
+ cam_dict,
+ pr_poses,
+ ) = prepare_output(outputs)
+
+ os.makedirs(f"{save_dir}/{seq}", exist_ok=True)
+ save_depth_maps(pts3ds_self, f"{save_dir}/{seq}", conf_self=conf_self)
+
+ except Exception as e:
+ if "out of memory" in str(e):
+ # Handle OOM
+ torch.cuda.empty_cache() # Clear the CUDA memory
+ with open(error_log_path, "a") as f:
+ f.write(
+ f"OOM error in sequence {seq}, skipping this sequence.\n"
+ )
+ print(f"OOM error in sequence {seq}, skipping...")
+ elif "Degenerate covariance rank" in str(
+ e
+ ) or "Eigenvalues did not converge" in str(e):
+ # Handle Degenerate covariance rank exception and Eigenvalues did not converge exception
+ with open(error_log_path, "a") as f:
+ f.write(f"Exception in sequence {seq}: {str(e)}\n")
+ print(f"Traj evaluation error in sequence {seq}, skipping.")
+ else:
+ raise e # Rethrow if it's not an expected exception
+ return None, None, None
+
+
+if __name__ == "__main__":
+ args = get_args_parser()
+ args = args.parse_args()
+ add_path_to_dust3r(args.weights)
+ from dust3r.utils.image import load_images_for_eval as load_images
+ from dust3r.post_process import estimate_focal_knowing_depth
+ from dust3r.model import ARCroco3DStereo
+ from dust3r.utils.camera import pose_encoding_to_camera
+
+ if args.eval_dataset == "sintel":
+ args.full_seq = True
+ else:
+ args.full_seq = False
+ args.no_crop = True
+
+ def prepare_input(
+ img_paths,
+ img_mask,
+ size,
+ raymaps=None,
+ raymap_mask=None,
+ revisit=1,
+ update=True,
+ crop=True,
+ ):
+ images = load_images(img_paths, size=size, crop=crop)
+ views = []
+ if raymaps is None and raymap_mask is None:
+ num_views = len(images)
+
+ for i in range(num_views):
+ view = {
+ "img": images[i]["img"],
+ "ray_map": torch.full(
+ (
+ images[i]["img"].shape[0],
+ 6,
+ images[i]["img"].shape[-2],
+ images[i]["img"].shape[-1],
+ ),
+ torch.nan,
+ ),
+ "true_shape": torch.from_numpy(images[i]["true_shape"]),
+ "idx": i,
+ "instance": str(i),
+ "camera_pose": torch.from_numpy(
+ np.eye(4).astype(np.float32)
+ ).unsqueeze(0),
+ "img_mask": torch.tensor(True).unsqueeze(0),
+ "ray_mask": torch.tensor(False).unsqueeze(0),
+ "update": torch.tensor(True).unsqueeze(0),
+ "reset": torch.tensor(False).unsqueeze(0),
+ }
+ views.append(view)
+ else:
+
+ num_views = len(images) + len(raymaps)
+ assert len(img_mask) == len(raymap_mask) == num_views
+ assert sum(img_mask) == len(images) and sum(raymap_mask) == len(raymaps)
+
+ j = 0
+ k = 0
+ for i in range(num_views):
+ view = {
+ "img": (
+ images[j]["img"]
+ if img_mask[i]
+ else torch.full_like(images[0]["img"], torch.nan)
+ ),
+ "ray_map": (
+ raymaps[k]
+ if raymap_mask[i]
+ else torch.full_like(raymaps[0], torch.nan)
+ ),
+ "true_shape": (
+ torch.from_numpy(images[j]["true_shape"])
+ if img_mask[i]
+ else torch.from_numpy(np.int32([raymaps[k].shape[1:-1][::-1]]))
+ ),
+ "idx": i,
+ "instance": str(i),
+ "camera_pose": torch.from_numpy(
+ np.eye(4).astype(np.float32)
+ ).unsqueeze(0),
+ "img_mask": torch.tensor(img_mask[i]).unsqueeze(0),
+ "ray_mask": torch.tensor(raymap_mask[i]).unsqueeze(0),
+ "update": torch.tensor(img_mask[i]).unsqueeze(0),
+ "reset": torch.tensor(False).unsqueeze(0),
+ }
+ if img_mask[i]:
+ j += 1
+ if raymap_mask[i]:
+ k += 1
+ views.append(view)
+ assert j == len(images) and k == len(raymaps)
+
+ if revisit > 1:
+ # repeat input for 'revisit' times
+ new_views = []
+ for r in range(revisit):
+ for i in range(len(views)):
+ new_view = deepcopy(views[i])
+ new_view["idx"] = r * len(views) + i
+ new_view["instance"] = str(r * len(views) + i)
+ if r > 0:
+ if not update:
+ new_view["update"] = torch.tensor(False).unsqueeze(0)
+ new_views.append(new_view)
+ return new_views
+ return views
+
+ def prepare_output(outputs, revisit=1):
+ valid_length = len(outputs["pred"]) // revisit
+ outputs["pred"] = outputs["pred"][-valid_length:]
+ outputs["views"] = outputs["views"][-valid_length:]
+
+ pts3ds_self = [output["pts3d_in_self_view"].cpu() for output in outputs["pred"]]
+ pts3ds_other = [
+ output["pts3d_in_other_view"].cpu() for output in outputs["pred"]
+ ]
+ conf_self = [output["conf_self"].cpu() for output in outputs["pred"]]
+ conf_other = [output["conf"].cpu() for output in outputs["pred"]]
+ pts3ds_self = torch.cat(pts3ds_self, 0)
+ pr_poses = [
+ pose_encoding_to_camera(pred["camera_pose"].clone()).cpu()
+ for pred in outputs["pred"]
+ ]
+ pr_poses = torch.cat(pr_poses, 0)
+
+ B, H, W, _ = pts3ds_self.shape
+ pp = (
+ torch.tensor([W // 2, H // 2], device=pts3ds_self.device)
+ .float()
+ .repeat(B, 1)
+ .reshape(B, 2)
+ )
+ focal = estimate_focal_knowing_depth(pts3ds_self, pp, focal_mode="weiszfeld")
+
+ colors = [0.5 * (output["rgb"][0] + 1.0) for output in outputs["pred"]]
+ cam_dict = {
+ "focal": focal.cpu().numpy(),
+ "pp": pp.cpu().numpy(),
+ }
+ return (
+ colors,
+ pts3ds_self,
+ pts3ds_other,
+ conf_self,
+ conf_other,
+ cam_dict,
+ pr_poses,
+ )
+
+ model = ARCroco3DStereo.from_pretrained(args.weights)
+ eval_pose_estimation(args, model, save_dir=args.output_dir)
diff --git a/extern/CUT3R/eval/video_depth/metadata.py b/extern/CUT3R/eval/video_depth/metadata.py
new file mode 100644
index 0000000000000000000000000000000000000000..48e30d9751af2aafd9c84b2dc059a9ee160a4475
--- /dev/null
+++ b/extern/CUT3R/eval/video_depth/metadata.py
@@ -0,0 +1,177 @@
+import os
+import glob
+from tqdm import tqdm
+
+# Define the merged dataset metadata dictionary
+dataset_metadata = {
+ "davis": {
+ "img_path": "data/davis/DAVIS/JPEGImages/480p",
+ "mask_path": "data/davis/DAVIS/masked_images/480p",
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
+ "gt_traj_func": lambda img_path, anno_path, seq: None,
+ "traj_format": None,
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: os.path.join(mask_path, seq),
+ "skip_condition": None,
+ "process_func": None, # Not used in mono depth estimation
+ },
+ "kitti": {
+ "img_path": "data/kitti/depth_selection/val_selection_cropped/image_gathered", # Default path
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
+ "gt_traj_func": lambda img_path, anno_path, seq: None,
+ "traj_format": None,
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": lambda args, img_path: process_kitti(args, img_path),
+ },
+ "bonn": {
+ "img_path": "data/bonn/rgbd_bonn_dataset",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(
+ img_path, f"rgbd_bonn_{seq}", "rgb_110"
+ ),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, f"rgbd_bonn_{seq}", "groundtruth_110.txt"
+ ),
+ "traj_format": "tum",
+ "seq_list": ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"],
+ "full_seq": False,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": lambda args, img_path: process_bonn(args, img_path),
+ },
+ "nyu": {
+ "img_path": "data/nyu-v2/val/nyu_images",
+ "mask_path": None,
+ "process_func": lambda args, img_path: process_nyu(args, img_path),
+ },
+ "scannet": {
+ "img_path": "data/scannetv2",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "color_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "pose_90.txt"
+ ),
+ "traj_format": "replica",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None, # lambda save_dir, seq: os.path.exists(os.path.join(save_dir, seq)),
+ "process_func": lambda args, img_path: process_scannet(args, img_path),
+ },
+ "tum": {
+ "img_path": "data/tum",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq, "rgb_90"),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(
+ img_path, seq, "groundtruth_90.txt"
+ ),
+ "traj_format": "tum",
+ "seq_list": None,
+ "full_seq": True,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": None,
+ },
+ "sintel": {
+ "img_path": "data/sintel/training/final",
+ "anno_path": "data/sintel/training/camdata_left",
+ "mask_path": None,
+ "dir_path_func": lambda img_path, seq: os.path.join(img_path, seq),
+ "gt_traj_func": lambda img_path, anno_path, seq: os.path.join(anno_path, seq),
+ "traj_format": None,
+ "seq_list": [
+ "alley_2",
+ "ambush_4",
+ "ambush_5",
+ "ambush_6",
+ "cave_2",
+ "cave_4",
+ "market_2",
+ "market_5",
+ "market_6",
+ "shaman_3",
+ "sleeping_1",
+ "sleeping_2",
+ "temple_2",
+ "temple_3",
+ ],
+ "full_seq": False,
+ "mask_path_seq_func": lambda mask_path, seq: None,
+ "skip_condition": None,
+ "process_func": lambda args, img_path: process_sintel(args, img_path),
+ },
+}
+
+
+# Define processing functions for each dataset
+def process_kitti(args, img_path):
+ for dir in tqdm(sorted(glob.glob(f"{img_path}/*"))):
+ filelist = sorted(glob.glob(f"{dir}/*.png"))
+ save_dir = f"{args.output_dir}/{os.path.basename(dir)}"
+ yield filelist, save_dir
+
+
+def process_bonn(args, img_path):
+ if args.full_seq:
+ for dir in tqdm(sorted(glob.glob(f"{img_path}/*/"))):
+ filelist = sorted(glob.glob(f"{dir}/rgb/*.png"))
+ save_dir = f"{args.output_dir}/{os.path.basename(os.path.dirname(dir))}"
+ yield filelist, save_dir
+ else:
+ seq_list = (
+ ["balloon2", "crowd2", "crowd3", "person_tracking2", "synchronous"]
+ if args.seq_list is None
+ else args.seq_list
+ )
+ for seq in tqdm(seq_list):
+ filelist = sorted(glob.glob(f"{img_path}/rgbd_bonn_{seq}/rgb_110/*.png"))
+ save_dir = f"{args.output_dir}/{seq}"
+ yield filelist, save_dir
+
+
+def process_nyu(args, img_path):
+ filelist = sorted(glob.glob(f"{img_path}/*.png"))
+ save_dir = f"{args.output_dir}"
+ yield filelist, save_dir
+
+
+def process_scannet(args, img_path):
+ seq_list = sorted(glob.glob(f"{img_path}/*"))
+ for seq in tqdm(seq_list):
+ filelist = sorted(glob.glob(f"{seq}/color_90/*.jpg"))
+ save_dir = f"{args.output_dir}/{os.path.basename(seq)}"
+ yield filelist, save_dir
+
+
+def process_sintel(args, img_path):
+ if args.full_seq:
+ for dir in tqdm(sorted(glob.glob(f"{img_path}/*/"))):
+ filelist = sorted(glob.glob(f"{dir}/*.png"))
+ save_dir = f"{args.output_dir}/{os.path.basename(os.path.dirname(dir))}"
+ yield filelist, save_dir
+ else:
+ seq_list = [
+ "alley_2",
+ "ambush_4",
+ "ambush_5",
+ "ambush_6",
+ "cave_2",
+ "cave_4",
+ "market_2",
+ "market_5",
+ "market_6",
+ "shaman_3",
+ "sleeping_1",
+ "sleeping_2",
+ "temple_2",
+ "temple_3",
+ ]
+ for seq in tqdm(seq_list):
+ filelist = sorted(glob.glob(f"{img_path}/{seq}/*.png"))
+ save_dir = f"{args.output_dir}/{seq}"
+ yield filelist, save_dir
diff --git a/extern/CUT3R/eval/video_depth/run.sh b/extern/CUT3R/eval/video_depth/run.sh
new file mode 100644
index 0000000000000000000000000000000000000000..2cd8a68cc58361a255f4716bea14e7293606b859
--- /dev/null
+++ b/extern/CUT3R/eval/video_depth/run.sh
@@ -0,0 +1,23 @@
+#!/bin/bash
+
+set -e
+
+workdir='.'
+model_name='ours'
+ckpt_name='cut3r_512_dpt_4_64'
+model_weights="${workdir}/src/${ckpt_name}.pth"
+datasets=('sintel' 'bonn' 'kitti')
+
+for data in "${datasets[@]}"; do
+ output_dir="${workdir}/eval_results/video_depth/${data}_${model_name}"
+ echo "$output_dir"
+ accelerate launch --num_processes 4 eval/video_depth/launch.py \
+ --weights "$model_weights" \
+ --output_dir "$output_dir" \
+ --eval_dataset "$data" \
+ --size 512
+ python eval/video_depth/eval_depth.py \
+ --output_dir "$output_dir" \
+ --eval_dataset "$data" \
+ --align "scale"
+done
diff --git a/extern/CUT3R/eval/video_depth/tools.py b/extern/CUT3R/eval/video_depth/tools.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6786fa6f25def0110ce22dbb7d44a7a08c952c8
--- /dev/null
+++ b/extern/CUT3R/eval/video_depth/tools.py
@@ -0,0 +1,399 @@
+import torch
+import numpy as np
+import cv2
+import glob
+import argparse
+from pathlib import Path
+from tqdm import tqdm
+from copy import deepcopy
+from scipy.optimize import minimize
+import os
+from collections import defaultdict
+
+
+def group_by_directory(pathes, idx=-1):
+ """
+ Groups the file paths based on the second-to-last directory in their paths.
+
+ Parameters:
+ - pathes (list): List of file paths.
+
+ Returns:
+ - dict: A dictionary where keys are the second-to-last directory names and values are lists of file paths.
+ """
+ grouped_pathes = defaultdict(list)
+
+ for path in pathes:
+ # Extract the second-to-last directory
+ dir_name = os.path.dirname(path).split("/")[idx]
+ grouped_pathes[dir_name].append(path)
+
+ return grouped_pathes
+
+
+def depth2disparity(depth, return_mask=False):
+ if isinstance(depth, torch.Tensor):
+ disparity = torch.zeros_like(depth)
+ elif isinstance(depth, np.ndarray):
+ disparity = np.zeros_like(depth)
+ non_negtive_mask = depth > 0
+ disparity[non_negtive_mask] = 1.0 / depth[non_negtive_mask]
+ if return_mask:
+ return disparity, non_negtive_mask
+ else:
+ return disparity
+
+
+def absolute_error_loss(params, predicted_depth, ground_truth_depth):
+ s, t = params
+
+ predicted_aligned = s * predicted_depth + t
+
+ abs_error = np.abs(predicted_aligned - ground_truth_depth)
+ return np.sum(abs_error)
+
+
+def absolute_value_scaling(predicted_depth, ground_truth_depth, s=1, t=0):
+ predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1)
+ ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1)
+
+ initial_params = [s, t] # s = 1, t = 0
+
+ result = minimize(
+ absolute_error_loss,
+ initial_params,
+ args=(predicted_depth_np, ground_truth_depth_np),
+ )
+
+ s, t = result.x
+ return s, t
+
+
+def absolute_value_scaling2(
+ predicted_depth,
+ ground_truth_depth,
+ s_init=1.0,
+ t_init=0.0,
+ lr=1e-4,
+ max_iters=1000,
+ tol=1e-6,
+):
+ # Initialize s and t as torch tensors with requires_grad=True
+ s = torch.tensor(
+ [s_init],
+ requires_grad=True,
+ device=predicted_depth.device,
+ dtype=predicted_depth.dtype,
+ )
+ t = torch.tensor(
+ [t_init],
+ requires_grad=True,
+ device=predicted_depth.device,
+ dtype=predicted_depth.dtype,
+ )
+
+ optimizer = torch.optim.Adam([s, t], lr=lr)
+
+ prev_loss = None
+
+ for i in range(max_iters):
+ optimizer.zero_grad()
+
+ # Compute predicted aligned depth
+ predicted_aligned = s * predicted_depth + t
+
+ # Compute absolute error
+ abs_error = torch.abs(predicted_aligned - ground_truth_depth)
+
+ # Compute loss
+ loss = torch.sum(abs_error)
+
+ # Backpropagate
+ loss.backward()
+
+ # Update parameters
+ optimizer.step()
+
+ # Check convergence
+ if prev_loss is not None and torch.abs(prev_loss - loss) < tol:
+ break
+
+ prev_loss = loss.item()
+
+ return s.detach().item(), t.detach().item()
+
+
+def depth_evaluation(
+ predicted_depth_original,
+ ground_truth_depth_original,
+ max_depth=80,
+ custom_mask=None,
+ post_clip_min=None,
+ post_clip_max=None,
+ pre_clip_min=None,
+ pre_clip_max=None,
+ align_with_lstsq=False,
+ align_with_lad=False,
+ align_with_lad2=False,
+ metric_scale=False,
+ lr=1e-4,
+ max_iters=1000,
+ use_gpu=False,
+ align_with_scale=False,
+ disp_input=False,
+):
+ """
+ Evaluate the depth map using various metrics and return a depth error parity map, with an option for least squares alignment.
+
+ Args:
+ predicted_depth (numpy.ndarray or torch.Tensor): The predicted depth map.
+ ground_truth_depth (numpy.ndarray or torch.Tensor): The ground truth depth map.
+ max_depth (float): The maximum depth value to consider. Default is 80 meters.
+ align_with_lstsq (bool): If True, perform least squares alignment of the predicted depth with ground truth.
+
+ Returns:
+ dict: A dictionary containing the evaluation metrics.
+ torch.Tensor: The depth error parity map.
+ """
+ if isinstance(predicted_depth_original, np.ndarray):
+ predicted_depth_original = torch.from_numpy(predicted_depth_original)
+ if isinstance(ground_truth_depth_original, np.ndarray):
+ ground_truth_depth_original = torch.from_numpy(ground_truth_depth_original)
+ if custom_mask is not None and isinstance(custom_mask, np.ndarray):
+ custom_mask = torch.from_numpy(custom_mask)
+
+ # if the dimension is 3, flatten to 2d along the batch dimension
+ if predicted_depth_original.dim() == 3:
+ _, h, w = predicted_depth_original.shape
+ predicted_depth_original = predicted_depth_original.view(-1, w)
+ ground_truth_depth_original = ground_truth_depth_original.view(-1, w)
+ if custom_mask is not None:
+ custom_mask = custom_mask.view(-1, w)
+
+ # put to device
+ if use_gpu:
+ predicted_depth_original = predicted_depth_original.cuda()
+ ground_truth_depth_original = ground_truth_depth_original.cuda()
+
+ # Filter out depths greater than max_depth
+ if max_depth is not None:
+ mask = (ground_truth_depth_original > 0) & (
+ ground_truth_depth_original < max_depth
+ )
+ else:
+ mask = ground_truth_depth_original > 0
+ predicted_depth = predicted_depth_original[mask]
+ ground_truth_depth = ground_truth_depth_original[mask]
+
+ # Clip the depth values
+ if pre_clip_min is not None:
+ predicted_depth = torch.clamp(predicted_depth, min=pre_clip_min)
+ if pre_clip_max is not None:
+ predicted_depth = torch.clamp(predicted_depth, max=pre_clip_max)
+
+ if disp_input: # align the pred to gt in the disparity space
+ real_gt = ground_truth_depth.clone()
+ ground_truth_depth = 1 / (ground_truth_depth + 1e-8)
+
+ # various alignment methods
+ if metric_scale:
+ predicted_depth = predicted_depth
+ elif align_with_lstsq:
+ # Convert to numpy for lstsq
+ predicted_depth_np = predicted_depth.cpu().numpy().reshape(-1, 1)
+ ground_truth_depth_np = ground_truth_depth.cpu().numpy().reshape(-1, 1)
+
+ # Add a column of ones for the shift term
+ A = np.hstack([predicted_depth_np, np.ones_like(predicted_depth_np)])
+
+ # Solve for scale (s) and shift (t) using least squares
+ result = np.linalg.lstsq(A, ground_truth_depth_np, rcond=None)
+ s, t = result[0][0], result[0][1]
+
+ # convert to torch tensor
+ s = torch.tensor(s, device=predicted_depth_original.device)
+ t = torch.tensor(t, device=predicted_depth_original.device)
+
+ # Apply scale and shift
+ predicted_depth = s * predicted_depth + t
+ elif align_with_lad:
+ s, t = absolute_value_scaling(
+ predicted_depth,
+ ground_truth_depth,
+ s=torch.median(ground_truth_depth) / torch.median(predicted_depth),
+ )
+ predicted_depth = s * predicted_depth + t
+ elif align_with_lad2:
+ s_init = (
+ torch.median(ground_truth_depth) / torch.median(predicted_depth)
+ ).item()
+ s, t = absolute_value_scaling2(
+ predicted_depth,
+ ground_truth_depth,
+ s_init=s_init,
+ lr=lr,
+ max_iters=max_iters,
+ )
+ predicted_depth = s * predicted_depth + t
+ elif align_with_scale:
+ # Compute initial scale factor 's' using the closed-form solution (L2 norm)
+ dot_pred_gt = torch.nanmean(ground_truth_depth)
+ dot_pred_pred = torch.nanmean(predicted_depth)
+ s = dot_pred_gt / dot_pred_pred
+
+ # Iterative reweighted least squares using the Weiszfeld method
+ for _ in range(10):
+ # Compute residuals between scaled predictions and ground truth
+ residuals = s * predicted_depth - ground_truth_depth
+ abs_residuals = (
+ residuals.abs() + 1e-8
+ ) # Add small constant to avoid division by zero
+
+ # Compute weights inversely proportional to the residuals
+ weights = 1.0 / abs_residuals
+
+ # Update 's' using weighted sums
+ weighted_dot_pred_gt = torch.sum(
+ weights * predicted_depth * ground_truth_depth
+ )
+ weighted_dot_pred_pred = torch.sum(weights * predicted_depth**2)
+ s = weighted_dot_pred_gt / weighted_dot_pred_pred
+
+ # Optionally clip 's' to prevent extreme scaling
+ s = s.clamp(min=1e-3)
+
+ # Detach 's' if you want to stop gradients from flowing through it
+ s = s.detach()
+
+ # Apply the scale factor to the predicted depth
+ predicted_depth = s * predicted_depth
+
+ else:
+ # Align the predicted depth with the ground truth using median scaling
+ scale_factor = torch.median(ground_truth_depth) / torch.median(predicted_depth)
+ predicted_depth *= scale_factor
+
+ if disp_input:
+ # convert back to depth
+ ground_truth_depth = real_gt
+ predicted_depth = depth2disparity(predicted_depth)
+
+ # Clip the predicted depth values
+ if post_clip_min is not None:
+ predicted_depth = torch.clamp(predicted_depth, min=post_clip_min)
+ if post_clip_max is not None:
+ predicted_depth = torch.clamp(predicted_depth, max=post_clip_max)
+
+ if custom_mask is not None:
+ assert custom_mask.shape == ground_truth_depth_original.shape
+ mask_within_mask = custom_mask.cpu()[mask]
+ predicted_depth = predicted_depth[mask_within_mask]
+ ground_truth_depth = ground_truth_depth[mask_within_mask]
+
+ # Calculate the metrics
+ abs_rel = torch.mean(
+ torch.abs(predicted_depth - ground_truth_depth) / ground_truth_depth
+ ).item()
+ sq_rel = torch.mean(
+ ((predicted_depth - ground_truth_depth) ** 2) / ground_truth_depth
+ ).item()
+
+ # Correct RMSE calculation
+ rmse = torch.sqrt(torch.mean((predicted_depth - ground_truth_depth) ** 2)).item()
+
+ # Clip the depth values to avoid log(0)
+ predicted_depth = torch.clamp(predicted_depth, min=1e-5)
+ log_rmse = torch.sqrt(
+ torch.mean((torch.log(predicted_depth) - torch.log(ground_truth_depth)) ** 2)
+ ).item()
+
+ # Calculate the accuracy thresholds
+ max_ratio = torch.maximum(
+ predicted_depth / ground_truth_depth, ground_truth_depth / predicted_depth
+ )
+ threshold_0 = torch.mean((max_ratio < 1.0).float()).item()
+ threshold_1 = torch.mean((max_ratio < 1.25).float()).item()
+ threshold_2 = torch.mean((max_ratio < 1.25**2).float()).item()
+ threshold_3 = torch.mean((max_ratio < 1.25**3).float()).item()
+
+ # Compute the depth error parity map
+ if metric_scale:
+ predicted_depth_original = predicted_depth_original
+ if disp_input:
+ predicted_depth_original = depth2disparity(predicted_depth_original)
+ depth_error_parity_map = (
+ torch.abs(predicted_depth_original - ground_truth_depth_original)
+ / ground_truth_depth_original
+ )
+ elif align_with_lstsq or align_with_lad or align_with_lad2:
+ predicted_depth_original = predicted_depth_original * s + t
+ if disp_input:
+ predicted_depth_original = depth2disparity(predicted_depth_original)
+ depth_error_parity_map = (
+ torch.abs(predicted_depth_original - ground_truth_depth_original)
+ / ground_truth_depth_original
+ )
+ elif align_with_scale:
+ predicted_depth_original = predicted_depth_original * s
+ if disp_input:
+ predicted_depth_original = depth2disparity(predicted_depth_original)
+ depth_error_parity_map = (
+ torch.abs(predicted_depth_original - ground_truth_depth_original)
+ / ground_truth_depth_original
+ )
+ else:
+ predicted_depth_original = predicted_depth_original * scale_factor
+ if disp_input:
+ predicted_depth_original = depth2disparity(predicted_depth_original)
+ depth_error_parity_map = (
+ torch.abs(predicted_depth_original - ground_truth_depth_original)
+ / ground_truth_depth_original
+ )
+
+ # Reshape the depth_error_parity_map back to the original image size
+ depth_error_parity_map_full = torch.zeros_like(ground_truth_depth_original)
+ depth_error_parity_map_full = torch.where(
+ mask, depth_error_parity_map, depth_error_parity_map_full
+ )
+
+ predict_depth_map_full = predicted_depth_original
+ gt_depth_map_full = torch.zeros_like(ground_truth_depth_original)
+ gt_depth_map_full = torch.where(
+ mask, ground_truth_depth_original, gt_depth_map_full
+ )
+
+ num_valid_pixels = (
+ torch.sum(mask).item()
+ if custom_mask is None
+ else torch.sum(mask_within_mask).item()
+ )
+ if num_valid_pixels == 0:
+ (
+ abs_rel,
+ sq_rel,
+ rmse,
+ log_rmse,
+ threshold_0,
+ threshold_1,
+ threshold_2,
+ threshold_3,
+ ) = (0, 0, 0, 0, 0, 0, 0, 0)
+
+ results = {
+ "Abs Rel": abs_rel,
+ "Sq Rel": sq_rel,
+ "RMSE": rmse,
+ "Log RMSE": log_rmse,
+ "δ < 1.": threshold_0,
+ "δ < 1.25": threshold_1,
+ "δ < 1.25^2": threshold_2,
+ "δ < 1.25^3": threshold_3,
+ "valid_pixels": num_valid_pixels,
+ }
+
+ return (
+ results,
+ depth_error_parity_map_full,
+ predict_depth_map_full,
+ gt_depth_map_full,
+ )
diff --git a/extern/CUT3R/eval/video_depth/utils.py b/extern/CUT3R/eval/video_depth/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..b34c421c2b2138ed62f8627f5f37c2eb6c63a771
--- /dev/null
+++ b/extern/CUT3R/eval/video_depth/utils.py
@@ -0,0 +1,236 @@
+from copy import deepcopy
+import cv2
+
+import numpy as np
+import torch
+import torch.nn as nn
+import roma
+from copy import deepcopy
+import tqdm
+import matplotlib as mpl
+import matplotlib.cm as cm
+import matplotlib.pyplot as plt
+from matplotlib.backends.backend_agg import FigureCanvasAgg
+from scipy.spatial.transform import Rotation
+from PIL import Image
+import imageio.v2 as iio
+from matplotlib.figure import Figure
+
+
+def save_focals(cam_dict, path):
+ # convert focal to txt
+ focals = cam_dict["focal"]
+ np.savetxt(path, focals, fmt="%.6f")
+ return focals
+
+
+def save_intrinsics(cam_dict, path):
+ K_raw = np.eye(3)[None].repeat(len(cam_dict["focal"]), axis=0)
+ K_raw[:, 0, 0] = cam_dict["focal"]
+ K_raw[:, 1, 1] = cam_dict["focal"]
+ K_raw[:, :2, 2] = cam_dict["pp"]
+ K = K_raw.reshape(-1, 9)
+ np.savetxt(path, K, fmt="%.6f")
+ return K_raw
+
+
+def save_conf_maps(conf, path):
+ for i, c in enumerate(conf):
+ np.save(f"{path}/conf_{i}.npy", c.detach().cpu().numpy())
+ return conf
+
+
+def save_rgb_imgs(colors, path):
+ imgs = colors
+ for i, img in enumerate(imgs):
+ # convert from rgb to bgr
+ iio.imwrite(
+ f"{path}/frame_{i:04d}.jpg", (img.cpu().numpy() * 255).astype(np.uint8)
+ )
+ return imgs
+
+
+def save_depth_maps(pts3ds_self, path, conf_self=None):
+ depth_maps = torch.stack([pts3d_self[..., -1] for pts3d_self in pts3ds_self], 0)
+ min_depth = depth_maps.min() # float(torch.quantile(out, 0.01))
+ max_depth = depth_maps.max() # float(torch.quantile(out, 0.99))
+ colored_depth = colorize(
+ depth_maps,
+ cmap_name="Spectral_r",
+ range=(min_depth, max_depth),
+ append_cbar=True,
+ )
+ images = []
+
+ if conf_self is not None:
+ conf_selfs = torch.concat(conf_self, 0)
+ min_conf = torch.log(conf_selfs.min()) # float(torch.quantile(out, 0.01))
+ max_conf = torch.log(conf_selfs.max()) # float(torch.quantile(out, 0.99))
+ colored_conf = colorize(
+ torch.log(conf_selfs),
+ cmap_name="jet",
+ range=(min_conf, max_conf),
+ append_cbar=True,
+ )
+
+ for i, depth_map in enumerate(colored_depth):
+ # Apply color map to depth map
+ img_path = f"{path}/frame_{(i):04d}.png"
+ if conf_self is None:
+ to_save = (depth_map * 255).detach().cpu().numpy().astype(np.uint8)
+ else:
+ to_save = torch.cat([depth_map, colored_conf[i]], dim=1)
+ to_save = (to_save * 255).detach().cpu().numpy().astype(np.uint8)
+ iio.imwrite(img_path, to_save)
+ images.append(Image.open(img_path))
+ np.save(f"{path}/frame_{(i):04d}.npy", depth_maps[i].detach().cpu().numpy())
+
+ # comment this as it may fail sometimes
+ # images[0].save(f'{path}/_depth_maps.gif', save_all=True, append_images=images[1:], duration=100, loop=0)
+
+ return depth_maps
+
+
+def get_vertical_colorbar(h, vmin, vmax, cmap_name="jet", label=None, cbar_precision=2):
+ """
+ :param w: pixels
+ :param h: pixels
+ :param vmin: min value
+ :param vmax: max value
+ :param cmap_name:
+ :param label
+ :return:
+ """
+ fig = Figure(figsize=(2, 8), dpi=100)
+ fig.subplots_adjust(right=1.5)
+ canvas = FigureCanvasAgg(fig)
+
+ # Do some plotting.
+ ax = fig.add_subplot(111)
+ cmap = cm.get_cmap(cmap_name)
+ norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
+
+ tick_cnt = 6
+ tick_loc = np.linspace(vmin, vmax, tick_cnt)
+ cb1 = mpl.colorbar.ColorbarBase(
+ ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation="vertical"
+ )
+
+ tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
+ if cbar_precision == 0:
+ tick_label = [x[:-2] for x in tick_label]
+
+ cb1.set_ticklabels(tick_label)
+
+ cb1.ax.tick_params(labelsize=18, rotation=0)
+ if label is not None:
+ cb1.set_label(label)
+
+ # fig.tight_layout()
+
+ canvas.draw()
+ s, (width, height) = canvas.print_to_buffer()
+
+ im = np.frombuffer(s, np.uint8).reshape((height, width, 4))
+
+ im = im[:, :, :3].astype(np.float32) / 255.0
+ if h != im.shape[0]:
+ w = int(im.shape[1] / im.shape[0] * h)
+ im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)
+
+ return im
+
+
+def colorize_np(
+ x,
+ cmap_name="jet",
+ mask=None,
+ range=None,
+ append_cbar=False,
+ cbar_in_image=False,
+ cbar_precision=2,
+):
+ """
+ turn a grayscale image into a color image
+ :param x: input grayscale, [H, W]
+ :param cmap_name: the colorization method
+ :param mask: the mask image, [H, W]
+ :param range: the range for scaling, automatic if None, [min, max]
+ :param append_cbar: if append the color bar
+ :param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
+ :return: colorized image, [H, W]
+ """
+ if range is not None:
+ vmin, vmax = range
+ elif mask is not None:
+ # vmin, vmax = np.percentile(x[mask], (2, 100))
+ vmin = np.min(x[mask][np.nonzero(x[mask])])
+ vmax = np.max(x[mask])
+ # vmin = vmin - np.abs(vmin) * 0.01
+ x[np.logical_not(mask)] = vmin
+ # print(vmin, vmax)
+ else:
+ vmin, vmax = np.percentile(x, (1, 100))
+ vmax += 1e-6
+
+ x = np.clip(x, vmin, vmax)
+ x = (x - vmin) / (vmax - vmin)
+ # x = np.clip(x, 0., 1.)
+
+ cmap = cm.get_cmap(cmap_name)
+ x_new = cmap(x)[:, :, :3]
+
+ if mask is not None:
+ mask = np.float32(mask[:, :, np.newaxis])
+ x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask)
+
+ cbar = get_vertical_colorbar(
+ h=x.shape[0],
+ vmin=vmin,
+ vmax=vmax,
+ cmap_name=cmap_name,
+ cbar_precision=cbar_precision,
+ )
+
+ if append_cbar:
+ if cbar_in_image:
+ x_new[:, -cbar.shape[1] :, :] = cbar
+ else:
+ x_new = np.concatenate(
+ (x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1
+ )
+ return x_new
+ else:
+ return x_new
+
+
+# tensor
+def colorize(
+ x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False
+):
+ """
+ turn a grayscale image into a color image
+ :param x: torch.Tensor, grayscale image, [H, W] or [B, H, W]
+ :param mask: torch.Tensor or None, mask image, [H, W] or [B, H, W] or None
+ """
+
+ device = x.device
+ x = x.cpu().numpy()
+ if mask is not None:
+ mask = mask.cpu().numpy() > 0.99
+ kernel = np.ones((3, 3), np.uint8)
+
+ if x.ndim == 2:
+ x = x[None]
+ if mask is not None:
+ mask = mask[None]
+
+ out = []
+ for x_ in x:
+ if mask is not None:
+ mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool)
+
+ x_ = colorize_np(x_, cmap_name, mask, range, append_cbar, cbar_in_image)
+ out.append(torch.from_numpy(x_).to(device).float())
+ out = torch.stack(out).squeeze(0)
+ return out
diff --git a/extern/CUT3R/requirements.txt b/extern/CUT3R/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c4ad28b0401fbdfe269baa90293554f4712d71ce
--- /dev/null
+++ b/extern/CUT3R/requirements.txt
@@ -0,0 +1,23 @@
+numpy==1.26.4
+torch
+torchvision
+roma
+gradio
+matplotlib
+tqdm
+opencv-python
+scipy
+einops
+trimesh
+tensorboard
+pyglet<2
+huggingface-hub[torch]>=0.22
+viser
+gradio
+lpips
+hydra-core
+pillow==10.3.0
+h5py
+accelerate
+transformers
+scikit-learn
\ No newline at end of file
diff --git a/extern/CUT3R/src/croco/croco-stereo-flow-demo.ipynb b/extern/CUT3R/src/croco/croco-stereo-flow-demo.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2b00a7607ab5f82d1857041969bfec977e56b3e0
--- /dev/null
+++ b/extern/CUT3R/src/croco/croco-stereo-flow-demo.ipynb
@@ -0,0 +1,191 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9bca0f41",
+ "metadata": {},
+ "source": [
+ "# Simple inference example with CroCo-Stereo or CroCo-Flow"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "80653ef7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n",
+ "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4f033862",
+ "metadata": {},
+ "source": [
+ "First download the model(s) of your choice by running\n",
+ "```\n",
+ "bash stereoflow/download_model.sh crocostereo.pth\n",
+ "bash stereoflow/download_model.sh crocoflow.pth\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1fb2e392",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n",
+ "device = torch.device('cuda:0' if use_gpu else 'cpu')\n",
+ "import matplotlib.pylab as plt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e0e25d77",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from stereoflow.test import _load_model_and_criterion\n",
+ "from stereoflow.engine import tiled_pred\n",
+ "from stereoflow.datasets_stereo import img_to_tensor, vis_disparity\n",
+ "from stereoflow.datasets_flow import flowToColor\n",
+ "tile_overlap=0.7 # recommended value, higher value can be slightly better but slower"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86a921f5",
+ "metadata": {},
+ "source": [
+ "### CroCo-Stereo example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "64e483cb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image1 = np.asarray(Image.open(''))\n",
+ "image2 = np.asarray(Image.open(''))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f0d04303",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocostereo.pth', None, device)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "47dc14b5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n",
+ "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n",
+ "with torch.inference_mode():\n",
+ " pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n",
+ "pred = pred.squeeze(0).squeeze(0).cpu().numpy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "583b9f16",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.imshow(vis_disparity(pred))\n",
+ "plt.axis('off')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d2df5d70",
+ "metadata": {},
+ "source": [
+ "### CroCo-Flow example"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9ee257a7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "image1 = np.asarray(Image.open(''))\n",
+ "image2 = np.asarray(Image.open(''))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d5edccf0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model, _, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion('stereoflow_models/crocoflow.pth', None, device)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b19692c3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "im1 = img_to_tensor(image1).to(device).unsqueeze(0)\n",
+ "im2 = img_to_tensor(image2).to(device).unsqueeze(0)\n",
+ "with torch.inference_mode():\n",
+ " pred, _, _ = tiled_pred(model, None, im1, im2, None, conf_mode=tile_conf_mode, overlap=tile_overlap, crop=cropsize, with_conf=with_conf, return_time=False)\n",
+ "pred = pred.squeeze(0).permute(1,2,0).cpu().numpy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "26f79db3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "plt.imshow(flowToColor(pred))\n",
+ "plt.axis('off')"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/extern/CUT3R/src/croco/datasets/__init__.py b/extern/CUT3R/src/croco/datasets/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/extern/CUT3R/src/croco/datasets/crops/README.MD b/extern/CUT3R/src/croco/datasets/crops/README.MD
new file mode 100644
index 0000000000000000000000000000000000000000..47ddabebb177644694ee247ae878173a3a16644f
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/crops/README.MD
@@ -0,0 +1,104 @@
+## Generation of crops from the real datasets
+
+The instructions below allow to generate the crops used for pre-training CroCo v2 from the following real-world datasets: ARKitScenes, MegaDepth, 3DStreetView and IndoorVL.
+
+### Download the metadata of the crops to generate
+
+First, download the metadata and put them in `./data/`:
+```
+mkdir -p data
+cd data/
+wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/crop_metadata.zip
+unzip crop_metadata.zip
+rm crop_metadata.zip
+cd ..
+```
+
+### Prepare the original datasets
+
+Second, download the original datasets in `./data/original_datasets/`.
+```
+mkdir -p data/original_datasets
+```
+
+##### ARKitScenes
+
+Download the `raw` dataset from https://github.com/apple/ARKitScenes/blob/main/DATA.md and put it in `./data/original_datasets/ARKitScenes/`.
+The resulting file structure should be like:
+```
+./data/original_datasets/ARKitScenes/
+└───Training
+ └───40753679
+ │ │ ultrawide
+ │ │ ...
+ └───40753686
+ │
+ ...
+```
+
+##### MegaDepth
+
+Download `MegaDepth v1 Dataset` from https://www.cs.cornell.edu/projects/megadepth/ and put it in `./data/original_datasets/MegaDepth/`.
+The resulting file structure should be like:
+
+```
+./data/original_datasets/MegaDepth/
+└───0000
+│ └───images
+│ │ │ 1000557903_87fa96b8a4_o.jpg
+│ │ └ ...
+│ └─── ...
+└───0001
+│ │
+│ └ ...
+└─── ...
+```
+
+##### 3DStreetView
+
+Download `3D_Street_View` dataset from https://github.com/amir32002/3D_Street_View and put it in `./data/original_datasets/3DStreetView/`.
+The resulting file structure should be like:
+
+```
+./data/original_datasets/3DStreetView/
+└───dataset_aligned
+│ └───0002
+│ │ │ 0000002_0000001_0000002_0000001.jpg
+│ │ └ ...
+│ └─── ...
+└───dataset_unaligned
+│ └───0003
+│ │ │ 0000003_0000001_0000002_0000001.jpg
+│ │ └ ...
+│ └─── ...
+```
+
+##### IndoorVL
+
+Download the `IndoorVL` datasets using [Kapture](https://github.com/naver/kapture).
+
+```
+pip install kapture
+mkdir -p ./data/original_datasets/IndoorVL
+cd ./data/original_datasets/IndoorVL
+kapture_download_dataset.py update
+kapture_download_dataset.py install "HyundaiDepartmentStore_*"
+kapture_download_dataset.py install "GangnamStation_*"
+cd -
+```
+
+### Extract the crops
+
+Now, extract the crops for each of the dataset:
+```
+for dataset in ARKitScenes MegaDepth 3DStreetView IndoorVL;
+do
+ python3 datasets/crops/extract_crops_from_images.py --crops ./data/crop_metadata/${dataset}/crops_release.txt --root-dir ./data/original_datasets/${dataset}/ --output-dir ./data/${dataset}_crops/ --imsize 256 --nthread 8 --max-subdir-levels 5 --ideal-number-pairs-in-dir 500;
+done
+```
+
+##### Note for IndoorVL
+
+Due to some legal issues, we can only release 144,228 pairs out of the 1,593,689 pairs used in the paper.
+To account for it in terms of number of pre-training iterations, the pre-training command in this repository uses 125 training epochs including 12 warm-up epochs and learning rate cosine schedule of 250, instead of 100, 10 and 200 respectively.
+The impact on the performance is negligible.
diff --git a/extern/CUT3R/src/croco/datasets/crops/extract_crops_from_images.py b/extern/CUT3R/src/croco/datasets/crops/extract_crops_from_images.py
new file mode 100644
index 0000000000000000000000000000000000000000..870cf9f9690bfc53f10a59293aabc16da127b02e
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/crops/extract_crops_from_images.py
@@ -0,0 +1,183 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Extracting crops for pre-training
+# --------------------------------------------------------
+
+import os
+import argparse
+from tqdm import tqdm
+from PIL import Image
+import functools
+from multiprocessing import Pool
+import math
+
+
+def arg_parser():
+ parser = argparse.ArgumentParser(
+ "Generate cropped image pairs from image crop list"
+ )
+
+ parser.add_argument("--crops", type=str, required=True, help="crop file")
+ parser.add_argument("--root-dir", type=str, required=True, help="root directory")
+ parser.add_argument(
+ "--output-dir", type=str, required=True, help="output directory"
+ )
+ parser.add_argument("--imsize", type=int, default=256, help="size of the crops")
+ parser.add_argument(
+ "--nthread", type=int, required=True, help="number of simultaneous threads"
+ )
+ parser.add_argument(
+ "--max-subdir-levels",
+ type=int,
+ default=5,
+ help="maximum number of subdirectories",
+ )
+ parser.add_argument(
+ "--ideal-number-pairs-in-dir",
+ type=int,
+ default=500,
+ help="number of pairs stored in a dir",
+ )
+ return parser
+
+
+def main(args):
+ listing_path = os.path.join(args.output_dir, "listing.txt")
+
+ print(f"Loading list of crops ... ({args.nthread} threads)")
+ crops, num_crops_to_generate = load_crop_file(args.crops)
+
+ print(f"Preparing jobs ({len(crops)} candidate image pairs)...")
+ num_levels = min(
+ math.ceil(math.log(num_crops_to_generate, args.ideal_number_pairs_in_dir)),
+ args.max_subdir_levels,
+ )
+ num_pairs_in_dir = math.ceil(num_crops_to_generate ** (1 / num_levels))
+
+ jobs = prepare_jobs(crops, num_levels, num_pairs_in_dir)
+ del crops
+
+ os.makedirs(args.output_dir, exist_ok=True)
+ mmap = Pool(args.nthread).imap_unordered if args.nthread > 1 else map
+ call = functools.partial(save_image_crops, args)
+
+ print(f"Generating cropped images to {args.output_dir} ...")
+ with open(listing_path, "w") as listing:
+ listing.write("# pair_path\n")
+ for results in tqdm(mmap(call, jobs), total=len(jobs)):
+ for path in results:
+ listing.write(f"{path}\n")
+ print("Finished writing listing to", listing_path)
+
+
+def load_crop_file(path):
+ data = open(path).read().splitlines()
+ pairs = []
+ num_crops_to_generate = 0
+ for line in tqdm(data):
+ if line.startswith("#"):
+ continue
+ line = line.split(", ")
+ if len(line) < 8:
+ img1, img2, rotation = line
+ pairs.append((img1, img2, int(rotation), []))
+ else:
+ l1, r1, t1, b1, l2, r2, t2, b2 = map(int, line)
+ rect1, rect2 = (l1, t1, r1, b1), (l2, t2, r2, b2)
+ pairs[-1][-1].append((rect1, rect2))
+ num_crops_to_generate += 1
+ return pairs, num_crops_to_generate
+
+
+def prepare_jobs(pairs, num_levels, num_pairs_in_dir):
+ jobs = []
+ powers = [num_pairs_in_dir**level for level in reversed(range(num_levels))]
+
+ def get_path(idx):
+ idx_array = []
+ d = idx
+ for level in range(num_levels - 1):
+ idx_array.append(idx // powers[level])
+ idx = idx % powers[level]
+ idx_array.append(d)
+ return "/".join(map(lambda x: hex(x)[2:], idx_array))
+
+ idx = 0
+ for pair_data in tqdm(pairs):
+ img1, img2, rotation, crops = pair_data
+ if -60 <= rotation and rotation <= 60:
+ rotation = 0 # most likely not a true rotation
+ paths = [get_path(idx + k) for k in range(len(crops))]
+ idx += len(crops)
+ jobs.append(((img1, img2), rotation, crops, paths))
+ return jobs
+
+
+def load_image(path):
+ try:
+ return Image.open(path).convert("RGB")
+ except Exception as e:
+ print("skipping", path, e)
+ raise OSError()
+
+
+def save_image_crops(args, data):
+ # load images
+ img_pair, rot, crops, paths = data
+ try:
+ img1, img2 = [
+ load_image(os.path.join(args.root_dir, impath)) for impath in img_pair
+ ]
+ except OSError as e:
+ return []
+
+ def area(sz):
+ return sz[0] * sz[1]
+
+ tgt_size = (args.imsize, args.imsize)
+
+ def prepare_crop(img, rect, rot=0):
+ # actual crop
+ img = img.crop(rect)
+
+ # resize to desired size
+ interp = (
+ Image.Resampling.LANCZOS
+ if area(img.size) > 4 * area(tgt_size)
+ else Image.Resampling.BICUBIC
+ )
+ img = img.resize(tgt_size, resample=interp)
+
+ # rotate the image
+ rot90 = (round(rot / 90) % 4) * 90
+ if rot90 == 90:
+ img = img.transpose(Image.Transpose.ROTATE_90)
+ elif rot90 == 180:
+ img = img.transpose(Image.Transpose.ROTATE_180)
+ elif rot90 == 270:
+ img = img.transpose(Image.Transpose.ROTATE_270)
+ return img
+
+ results = []
+ for (rect1, rect2), path in zip(crops, paths):
+ crop1 = prepare_crop(img1, rect1)
+ crop2 = prepare_crop(img2, rect2, rot)
+
+ fullpath1 = os.path.join(args.output_dir, path + "_1.jpg")
+ fullpath2 = os.path.join(args.output_dir, path + "_2.jpg")
+ os.makedirs(os.path.dirname(fullpath1), exist_ok=True)
+
+ assert not os.path.isfile(fullpath1), fullpath1
+ assert not os.path.isfile(fullpath2), fullpath2
+ crop1.save(fullpath1)
+ crop2.save(fullpath2)
+ results.append(path)
+
+ return results
+
+
+if __name__ == "__main__":
+ args = arg_parser().parse_args()
+ main(args)
diff --git a/extern/CUT3R/src/croco/datasets/habitat_sim/README.MD b/extern/CUT3R/src/croco/datasets/habitat_sim/README.MD
new file mode 100644
index 0000000000000000000000000000000000000000..a505781ff9eb91bce7f1d189e848f8ba1c560940
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/habitat_sim/README.MD
@@ -0,0 +1,76 @@
+## Generation of synthetic image pairs using Habitat-Sim
+
+These instructions allow to generate pre-training pairs from the Habitat simulator.
+As we did not save metadata of the pairs used in the original paper, they are not strictly the same, but these data use the same setting and are equivalent.
+
+### Download Habitat-Sim scenes
+Download Habitat-Sim scenes:
+- Download links can be found here: https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md
+- We used scenes from the HM3D, habitat-test-scenes, Replica, ReplicaCad and ScanNet datasets.
+- Please put the scenes under `./data/habitat-sim-data/scene_datasets/` following the structure below, or update manually paths in `paths.py`.
+```
+./data/
+└──habitat-sim-data/
+ └──scene_datasets/
+ ├──hm3d/
+ ├──gibson/
+ ├──habitat-test-scenes/
+ ├──replica_cad_baked_lighting/
+ ├──replica_cad/
+ ├──ReplicaDataset/
+ └──scannet/
+```
+
+### Image pairs generation
+We provide metadata to generate reproducible images pairs for pretraining and validation.
+Experiments described in the paper used similar data, but whose generation was not reproducible at the time.
+
+Specifications:
+- 256x256 resolution images, with 60 degrees field of view .
+- Up to 1000 image pairs per scene.
+- Number of scenes considered/number of images pairs per dataset:
+ - Scannet: 1097 scenes / 985 209 pairs
+ - HM3D:
+ - hm3d/train: 800 / 800k pairs
+ - hm3d/val: 100 scenes / 100k pairs
+ - hm3d/minival: 10 scenes / 10k pairs
+ - habitat-test-scenes: 3 scenes / 3k pairs
+ - replica_cad_baked_lighting: 13 scenes / 13k pairs
+
+- Scenes from hm3d/val and hm3d/minival pairs were not used for the pre-training but kept for validation purposes.
+
+Download metadata and extract it:
+```bash
+mkdir -p data/habitat_release_metadata/
+cd data/habitat_release_metadata/
+wget https://download.europe.naverlabs.com/ComputerVision/CroCo/data/habitat_release_metadata/multiview_habitat_metadata.tar.gz
+tar -xvf multiview_habitat_metadata.tar.gz
+cd ../..
+# Location of the metadata
+METADATA_DIR="./data/habitat_release_metadata/multiview_habitat_metadata"
+```
+
+Generate image pairs from metadata:
+- The following command will print a list of commandlines to generate image pairs for each scene:
+```bash
+# Target output directory
+PAIRS_DATASET_DIR="./data/habitat_release/"
+python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR
+```
+- One can launch multiple of such commands in parallel e.g. using GNU Parallel:
+```bash
+python datasets/habitat_sim/generate_from_metadata_files.py --input_dir=$METADATA_DIR --output_dir=$PAIRS_DATASET_DIR | parallel -j 16
+```
+
+## Metadata generation
+
+Image pairs were randomly sampled using the following commands, whose outputs contain randomness and are thus not exactly reproducible:
+```bash
+# Print commandlines to generate image pairs from the different scenes available.
+PAIRS_DATASET_DIR=MY_CUSTOM_PATH
+python datasets/habitat_sim/generate_multiview_images.py --list_commands --output_dir=$PAIRS_DATASET_DIR
+
+# Once a dataset is generated, pack metadata files for reproducibility.
+METADATA_DIR=MY_CUSTON_PATH
+python datasets/habitat_sim/pack_metadata_files.py $PAIRS_DATASET_DIR $METADATA_DIR
+```
diff --git a/extern/CUT3R/src/croco/datasets/habitat_sim/__init__.py b/extern/CUT3R/src/croco/datasets/habitat_sim/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/extern/CUT3R/src/croco/datasets/habitat_sim/generate_from_metadata.py b/extern/CUT3R/src/croco/datasets/habitat_sim/generate_from_metadata.py
new file mode 100644
index 0000000000000000000000000000000000000000..6bbfbc6bec23e182baed2c4eedf0535fbc6aaa97
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/habitat_sim/generate_from_metadata.py
@@ -0,0 +1,125 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+"""
+Script to generate image pairs for a given scene reproducing poses provided in a metadata file.
+"""
+import os
+from datasets.habitat_sim.multiview_habitat_sim_generator import (
+ MultiviewHabitatSimGenerator,
+)
+from datasets.habitat_sim.paths import SCENES_DATASET
+import argparse
+import quaternion
+import PIL.Image
+import cv2
+import json
+from tqdm import tqdm
+
+
+def generate_multiview_images_from_metadata(
+ metadata_filename,
+ output_dir,
+ overload_params=dict(),
+ scene_datasets_paths=None,
+ exist_ok=False,
+):
+ """
+ Generate images from a metadata file for reproducibility purposes.
+ """
+ # Reorder paths by decreasing label length, to avoid collisions when testing if a string by such label
+ if scene_datasets_paths is not None:
+ scene_datasets_paths = dict(
+ sorted(scene_datasets_paths.items(), key=lambda x: len(x[0]), reverse=True)
+ )
+
+ with open(metadata_filename, "r") as f:
+ input_metadata = json.load(f)
+ metadata = dict()
+ for key, value in input_metadata.items():
+ # Optionally replace some paths
+ if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "":
+ if scene_datasets_paths is not None:
+ for dataset_label, dataset_path in scene_datasets_paths.items():
+ if value.startswith(dataset_label):
+ value = os.path.normpath(
+ os.path.join(
+ dataset_path, os.path.relpath(value, dataset_label)
+ )
+ )
+ break
+ metadata[key] = value
+
+ # Overload some parameters
+ for key, value in overload_params.items():
+ metadata[key] = value
+
+ generation_entries = dict(
+ [
+ (key, value)
+ for key, value in metadata.items()
+ if not (key in ("multiviews", "output_dir", "generate_depth"))
+ ]
+ )
+ generate_depth = metadata["generate_depth"]
+
+ os.makedirs(output_dir, exist_ok=exist_ok)
+
+ generator = MultiviewHabitatSimGenerator(**generation_entries)
+
+ # Generate views
+ for idx_label, data in tqdm(metadata["multiviews"].items()):
+ positions = data["positions"]
+ orientations = data["orientations"]
+ n = len(positions)
+ for oidx in range(n):
+ observation = generator.render_viewpoint(
+ positions[oidx], quaternion.from_float_array(orientations[oidx])
+ )
+ observation_label = f"{oidx + 1}" # Leonid is indexing starting from 1
+ # Color image saved using PIL
+ img = PIL.Image.fromarray(observation["color"][:, :, :3])
+ filename = os.path.join(output_dir, f"{idx_label}_{observation_label}.jpeg")
+ img.save(filename)
+ if generate_depth:
+ # Depth image as EXR file
+ filename = os.path.join(
+ output_dir, f"{idx_label}_{observation_label}_depth.exr"
+ )
+ cv2.imwrite(
+ filename,
+ observation["depth"],
+ [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF],
+ )
+ # Camera parameters
+ camera_params = dict(
+ [
+ (key, observation[key].tolist())
+ for key in ("camera_intrinsics", "R_cam2world", "t_cam2world")
+ ]
+ )
+ filename = os.path.join(
+ output_dir, f"{idx_label}_{observation_label}_camera_params.json"
+ )
+ with open(filename, "w") as f:
+ json.dump(camera_params, f)
+ # Save metadata
+ with open(os.path.join(output_dir, "metadata.json"), "w") as f:
+ json.dump(metadata, f)
+
+ generator.close()
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--metadata_filename", required=True)
+ parser.add_argument("--output_dir", required=True)
+ args = parser.parse_args()
+
+ generate_multiview_images_from_metadata(
+ metadata_filename=args.metadata_filename,
+ output_dir=args.output_dir,
+ scene_datasets_paths=SCENES_DATASET,
+ overload_params=dict(),
+ exist_ok=True,
+ )
diff --git a/extern/CUT3R/src/croco/datasets/habitat_sim/generate_from_metadata_files.py b/extern/CUT3R/src/croco/datasets/habitat_sim/generate_from_metadata_files.py
new file mode 100644
index 0000000000000000000000000000000000000000..2376957e0578726a98515220167e86fbecc2d72d
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/habitat_sim/generate_from_metadata_files.py
@@ -0,0 +1,36 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+"""
+Script generating commandlines to generate image pairs from metadata files.
+"""
+import os
+import glob
+from tqdm import tqdm
+import argparse
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--input_dir", required=True)
+ parser.add_argument("--output_dir", required=True)
+ parser.add_argument(
+ "--prefix",
+ default="",
+ help="Commanline prefix, useful e.g. to setup environment.",
+ )
+ args = parser.parse_args()
+
+ input_metadata_filenames = glob.iglob(
+ f"{args.input_dir}/**/metadata.json", recursive=True
+ )
+
+ for metadata_filename in tqdm(input_metadata_filenames):
+ output_dir = os.path.join(
+ args.output_dir,
+ os.path.relpath(os.path.dirname(metadata_filename), args.input_dir),
+ )
+ # Do not process the scene if the metadata file already exists
+ if os.path.exists(os.path.join(output_dir, "metadata.json")):
+ continue
+ commandline = f"{args.prefix}python datasets/habitat_sim/generate_from_metadata.py --metadata_filename={metadata_filename} --output_dir={output_dir}"
+ print(commandline)
diff --git a/extern/CUT3R/src/croco/datasets/habitat_sim/generate_multiview_images.py b/extern/CUT3R/src/croco/datasets/habitat_sim/generate_multiview_images.py
new file mode 100644
index 0000000000000000000000000000000000000000..cf16062135dfbaeb38ff2ad91c33bcab50cb98aa
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/habitat_sim/generate_multiview_images.py
@@ -0,0 +1,231 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+import os
+from tqdm import tqdm
+import argparse
+import PIL.Image
+import numpy as np
+import json
+from datasets.habitat_sim.multiview_habitat_sim_generator import (
+ MultiviewHabitatSimGenerator,
+ NoNaviguableSpaceError,
+)
+from datasets.habitat_sim.paths import list_scenes_available
+import cv2
+import quaternion
+import shutil
+
+
+def generate_multiview_images_for_scene(
+ scene_dataset_config_file,
+ scene,
+ navmesh,
+ output_dir,
+ views_count,
+ size,
+ exist_ok=False,
+ generate_depth=False,
+ **kwargs,
+):
+ """
+ Generate tuples of overlapping views for a given scene.
+ generate_depth: generate depth images and camera parameters.
+ """
+ if os.path.exists(output_dir) and not exist_ok:
+ print(f"Scene {scene}: data already generated. Ignoring generation.")
+ return
+ try:
+ print(f"Scene {scene}: {size} multiview acquisitions to generate...")
+ os.makedirs(output_dir, exist_ok=exist_ok)
+
+ metadata_filename = os.path.join(output_dir, "metadata.json")
+
+ metadata_template = dict(
+ scene_dataset_config_file=scene_dataset_config_file,
+ scene=scene,
+ navmesh=navmesh,
+ views_count=views_count,
+ size=size,
+ generate_depth=generate_depth,
+ **kwargs,
+ )
+ metadata_template["multiviews"] = dict()
+
+ if os.path.exists(metadata_filename):
+ print("Metadata file already exists:", metadata_filename)
+ print("Loading already generated metadata file...")
+ with open(metadata_filename, "r") as f:
+ metadata = json.load(f)
+
+ for key in metadata_template.keys():
+ if key != "multiviews":
+ assert (
+ metadata_template[key] == metadata[key]
+ ), f"existing file is inconsistent with the input parameters:\nKey: {key}\nmetadata: {metadata[key]}\ntemplate: {metadata_template[key]}."
+ else:
+ print("No temporary file found. Starting generation from scratch...")
+ metadata = metadata_template
+
+ starting_id = len(metadata["multiviews"])
+ print(f"Starting generation from index {starting_id}/{size}...")
+ if starting_id >= size:
+ print("Generation already done.")
+ return
+
+ generator = MultiviewHabitatSimGenerator(
+ scene_dataset_config_file=scene_dataset_config_file,
+ scene=scene,
+ navmesh=navmesh,
+ views_count=views_count,
+ size=size,
+ **kwargs,
+ )
+
+ for idx in tqdm(range(starting_id, size)):
+ # Generate / re-generate the observations
+ try:
+ data = generator[idx]
+ observations = data["observations"]
+ positions = data["positions"]
+ orientations = data["orientations"]
+
+ idx_label = f"{idx:08}"
+ for oidx, observation in enumerate(observations):
+ observation_label = (
+ f"{oidx + 1}" # Leonid is indexing starting from 1
+ )
+ # Color image saved using PIL
+ img = PIL.Image.fromarray(observation["color"][:, :, :3])
+ filename = os.path.join(
+ output_dir, f"{idx_label}_{observation_label}.jpeg"
+ )
+ img.save(filename)
+ if generate_depth:
+ # Depth image as EXR file
+ filename = os.path.join(
+ output_dir, f"{idx_label}_{observation_label}_depth.exr"
+ )
+ cv2.imwrite(
+ filename,
+ observation["depth"],
+ [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF],
+ )
+ # Camera parameters
+ camera_params = dict(
+ [
+ (key, observation[key].tolist())
+ for key in (
+ "camera_intrinsics",
+ "R_cam2world",
+ "t_cam2world",
+ )
+ ]
+ )
+ filename = os.path.join(
+ output_dir,
+ f"{idx_label}_{observation_label}_camera_params.json",
+ )
+ with open(filename, "w") as f:
+ json.dump(camera_params, f)
+ metadata["multiviews"][idx_label] = {
+ "positions": positions.tolist(),
+ "orientations": orientations.tolist(),
+ "covisibility_ratios": data["covisibility_ratios"].tolist(),
+ "valid_fractions": data["valid_fractions"].tolist(),
+ "pairwise_visibility_ratios": data[
+ "pairwise_visibility_ratios"
+ ].tolist(),
+ }
+ except RecursionError:
+ print(
+ "Recursion error: unable to sample observations for this scene. We will stop there."
+ )
+ break
+
+ # Regularly save a temporary metadata file, in case we need to restart the generation
+ if idx % 10 == 0:
+ with open(metadata_filename, "w") as f:
+ json.dump(metadata, f)
+
+ # Save metadata
+ with open(metadata_filename, "w") as f:
+ json.dump(metadata, f)
+
+ generator.close()
+ except NoNaviguableSpaceError:
+ pass
+
+
+def create_commandline(scene_data, generate_depth, exist_ok=False):
+ """
+ Create a commandline string to generate a scene.
+ """
+
+ def my_formatting(val):
+ if val is None or val == "":
+ return '""'
+ else:
+ return val
+
+ commandline = f"""python {__file__} --scene {my_formatting(scene_data.scene)}
+ --scene_dataset_config_file {my_formatting(scene_data.scene_dataset_config_file)}
+ --navmesh {my_formatting(scene_data.navmesh)}
+ --output_dir {my_formatting(scene_data.output_dir)}
+ --generate_depth {int(generate_depth)}
+ --exist_ok {int(exist_ok)}
+ """
+ commandline = " ".join(commandline.split())
+ return commandline
+
+
+if __name__ == "__main__":
+ os.umask(2)
+
+ parser = argparse.ArgumentParser(
+ description="""Example of use -- listing commands to generate data for scenes available:
+ > python datasets/habitat_sim/generate_multiview_habitat_images.py --list_commands
+ """
+ )
+
+ parser.add_argument("--output_dir", type=str, required=True)
+ parser.add_argument(
+ "--list_commands", action="store_true", help="list commandlines to run if true"
+ )
+ parser.add_argument("--scene", type=str, default="")
+ parser.add_argument("--scene_dataset_config_file", type=str, default="")
+ parser.add_argument("--navmesh", type=str, default="")
+
+ parser.add_argument("--generate_depth", type=int, default=1)
+ parser.add_argument("--exist_ok", type=int, default=0)
+
+ kwargs = dict(resolution=(256, 256), hfov=60, views_count=2, size=1000)
+
+ args = parser.parse_args()
+ generate_depth = bool(args.generate_depth)
+ exist_ok = bool(args.exist_ok)
+
+ if args.list_commands:
+ # Listing scenes available...
+ scenes_data = list_scenes_available(base_output_dir=args.output_dir)
+
+ for scene_data in scenes_data:
+ print(
+ create_commandline(
+ scene_data, generate_depth=generate_depth, exist_ok=exist_ok
+ )
+ )
+ else:
+ if args.scene == "" or args.output_dir == "":
+ print("Missing scene or output dir argument!")
+ print(parser.format_help())
+ else:
+ generate_multiview_images_for_scene(
+ scene=args.scene,
+ scene_dataset_config_file=args.scene_dataset_config_file,
+ navmesh=args.navmesh,
+ output_dir=args.output_dir,
+ exist_ok=exist_ok,
+ generate_depth=generate_depth,
+ **kwargs,
+ )
diff --git a/extern/CUT3R/src/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py b/extern/CUT3R/src/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..b073407ec169be0674cbd33a1197731ec0dd3be3
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/habitat_sim/multiview_habitat_sim_generator.py
@@ -0,0 +1,501 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+import os
+import numpy as np
+import quaternion
+import habitat_sim
+import json
+from sklearn.neighbors import NearestNeighbors
+import cv2
+
+# OpenCV to habitat camera convention transformation
+R_OPENCV2HABITAT = np.stack(
+ (habitat_sim.geo.RIGHT, -habitat_sim.geo.UP, habitat_sim.geo.FRONT), axis=0
+)
+R_HABITAT2OPENCV = R_OPENCV2HABITAT.T
+DEG2RAD = np.pi / 180
+
+
+def compute_camera_intrinsics(height, width, hfov):
+ f = width / 2 / np.tan(hfov / 2 * np.pi / 180)
+ cu, cv = width / 2, height / 2
+ return f, cu, cv
+
+
+def compute_camera_pose_opencv_convention(camera_position, camera_orientation):
+ R_cam2world = quaternion.as_rotation_matrix(camera_orientation) @ R_OPENCV2HABITAT
+ t_cam2world = np.asarray(camera_position)
+ return R_cam2world, t_cam2world
+
+
+def compute_pointmap(depthmap, hfov):
+ """Compute a HxWx3 pointmap in camera frame from a HxW depth map."""
+ height, width = depthmap.shape
+ f, cu, cv = compute_camera_intrinsics(height, width, hfov)
+ # Cast depth map to point
+ z_cam = depthmap
+ u, v = np.meshgrid(range(width), range(height))
+ x_cam = (u - cu) / f * z_cam
+ y_cam = (v - cv) / f * z_cam
+ X_cam = np.stack((x_cam, y_cam, z_cam), axis=-1)
+ return X_cam
+
+
+def compute_pointcloud(depthmap, hfov, camera_position, camera_rotation):
+ """Return a 3D point cloud corresponding to valid pixels of the depth map"""
+ R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(
+ camera_position, camera_rotation
+ )
+
+ X_cam = compute_pointmap(depthmap=depthmap, hfov=hfov)
+ valid_mask = X_cam[:, :, 2] != 0.0
+
+ X_cam = X_cam.reshape(-1, 3)[valid_mask.flatten()]
+ X_world = X_cam @ R_cam2world.T + t_cam2world.reshape(1, 3)
+ return X_world
+
+
+def compute_pointcloud_overlaps_scikit(
+ pointcloud1, pointcloud2, distance_threshold, compute_symmetric=False
+):
+ """
+ Compute 'overlapping' metrics based on a distance threshold between two point clouds.
+ """
+ nbrs = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(pointcloud2)
+ distances, indices = nbrs.kneighbors(pointcloud1)
+ intersection1 = np.count_nonzero(distances.flatten() < distance_threshold)
+
+ data = {"intersection1": intersection1, "size1": len(pointcloud1)}
+ if compute_symmetric:
+ nbrs = NearestNeighbors(n_neighbors=1, algorithm="kd_tree").fit(pointcloud1)
+ distances, indices = nbrs.kneighbors(pointcloud2)
+ intersection2 = np.count_nonzero(distances.flatten() < distance_threshold)
+ data["intersection2"] = intersection2
+ data["size2"] = len(pointcloud2)
+
+ return data
+
+
+def _append_camera_parameters(observation, hfov, camera_location, camera_rotation):
+ """
+ Add camera parameters to the observation dictionnary produced by Habitat-Sim
+ In-place modifications.
+ """
+ R_cam2world, t_cam2world = compute_camera_pose_opencv_convention(
+ camera_location, camera_rotation
+ )
+ height, width = observation["depth"].shape
+ f, cu, cv = compute_camera_intrinsics(height, width, hfov)
+ K = np.asarray([[f, 0, cu], [0, f, cv], [0, 0, 1.0]])
+ observation["camera_intrinsics"] = K
+ observation["t_cam2world"] = t_cam2world
+ observation["R_cam2world"] = R_cam2world
+
+
+def look_at(eye, center, up, return_cam2world=True):
+ """
+ Return camera pose looking at a given center point.
+ Analogous of gluLookAt function, using OpenCV camera convention.
+ """
+ z = center - eye
+ z /= np.linalg.norm(z, axis=-1, keepdims=True)
+ y = -up
+ y = y - np.sum(y * z, axis=-1, keepdims=True) * z
+ y /= np.linalg.norm(y, axis=-1, keepdims=True)
+ x = np.cross(y, z, axis=-1)
+
+ if return_cam2world:
+ R = np.stack((x, y, z), axis=-1)
+ t = eye
+ else:
+ # World to camera transformation
+ # Transposed matrix
+ R = np.stack((x, y, z), axis=-2)
+ t = -np.einsum("...ij, ...j", R, eye)
+ return R, t
+
+
+def look_at_for_habitat(eye, center, up, return_cam2world=True):
+ R, t = look_at(eye, center, up)
+ orientation = quaternion.from_rotation_matrix(R @ R_OPENCV2HABITAT.T)
+ return orientation, t
+
+
+def generate_orientation_noise(pan_range, tilt_range, roll_range):
+ return (
+ quaternion.from_rotation_vector(
+ np.random.uniform(*pan_range) * DEG2RAD * habitat_sim.geo.UP
+ )
+ * quaternion.from_rotation_vector(
+ np.random.uniform(*tilt_range) * DEG2RAD * habitat_sim.geo.RIGHT
+ )
+ * quaternion.from_rotation_vector(
+ np.random.uniform(*roll_range) * DEG2RAD * habitat_sim.geo.FRONT
+ )
+ )
+
+
+class NoNaviguableSpaceError(RuntimeError):
+ def __init__(self, *args):
+ super().__init__(*args)
+
+
+class MultiviewHabitatSimGenerator:
+ def __init__(
+ self,
+ scene,
+ navmesh,
+ scene_dataset_config_file,
+ resolution=(240, 320),
+ views_count=2,
+ hfov=60,
+ gpu_id=0,
+ size=10000,
+ minimum_covisibility=0.5,
+ transform=None,
+ ):
+ self.scene = scene
+ self.navmesh = navmesh
+ self.scene_dataset_config_file = scene_dataset_config_file
+ self.resolution = resolution
+ self.views_count = views_count
+ assert self.views_count >= 1
+ self.hfov = hfov
+ self.gpu_id = gpu_id
+ self.size = size
+ self.transform = transform
+
+ # Noise added to camera orientation
+ self.pan_range = (-3, 3)
+ self.tilt_range = (-10, 10)
+ self.roll_range = (-5, 5)
+
+ # Height range to sample cameras
+ self.height_range = (1.2, 1.8)
+
+ # Random steps between the camera views
+ self.random_steps_count = 5
+ self.random_step_variance = 2.0
+
+ # Minimum fraction of the scene which should be valid (well defined depth)
+ self.minimum_valid_fraction = 0.7
+
+ # Distance threshold to see to select pairs
+ self.distance_threshold = 0.05
+ # Minimum IoU of a view point cloud with respect to the reference view to be kept.
+ self.minimum_covisibility = minimum_covisibility
+
+ # Maximum number of retries.
+ self.max_attempts_count = 100
+
+ self.seed = None
+ self._lazy_initialization()
+
+ def _lazy_initialization(self):
+ # Lazy random seeding and instantiation of the simulator to deal with multiprocessing properly
+ if self.seed == None:
+ # Re-seed numpy generator
+ np.random.seed()
+ self.seed = np.random.randint(2**32 - 1)
+ sim_cfg = habitat_sim.SimulatorConfiguration()
+ sim_cfg.scene_id = self.scene
+ if (
+ self.scene_dataset_config_file is not None
+ and self.scene_dataset_config_file != ""
+ ):
+ sim_cfg.scene_dataset_config_file = self.scene_dataset_config_file
+ sim_cfg.random_seed = self.seed
+ sim_cfg.load_semantic_mesh = False
+ sim_cfg.gpu_device_id = self.gpu_id
+
+ depth_sensor_spec = habitat_sim.CameraSensorSpec()
+ depth_sensor_spec.uuid = "depth"
+ depth_sensor_spec.sensor_type = habitat_sim.SensorType.DEPTH
+ depth_sensor_spec.resolution = self.resolution
+ depth_sensor_spec.hfov = self.hfov
+ depth_sensor_spec.position = [0.0, 0.0, 0]
+ depth_sensor_spec.orientation
+
+ rgb_sensor_spec = habitat_sim.CameraSensorSpec()
+ rgb_sensor_spec.uuid = "color"
+ rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR
+ rgb_sensor_spec.resolution = self.resolution
+ rgb_sensor_spec.hfov = self.hfov
+ rgb_sensor_spec.position = [0.0, 0.0, 0]
+ agent_cfg = habitat_sim.agent.AgentConfiguration(
+ sensor_specifications=[rgb_sensor_spec, depth_sensor_spec]
+ )
+
+ cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])
+ self.sim = habitat_sim.Simulator(cfg)
+ if self.navmesh is not None and self.navmesh != "":
+ # Use pre-computed navmesh when available (usually better than those generated automatically)
+ self.sim.pathfinder.load_nav_mesh(self.navmesh)
+
+ if not self.sim.pathfinder.is_loaded:
+ # Try to compute a navmesh
+ navmesh_settings = habitat_sim.NavMeshSettings()
+ navmesh_settings.set_defaults()
+ self.sim.recompute_navmesh(self.sim.pathfinder, navmesh_settings, True)
+
+ # Ensure that the navmesh is not empty
+ if not self.sim.pathfinder.is_loaded:
+ raise NoNaviguableSpaceError(
+ f"No naviguable location (scene: {self.scene} -- navmesh: {self.navmesh})"
+ )
+
+ self.agent = self.sim.initialize_agent(agent_id=0)
+
+ def close(self):
+ self.sim.close()
+
+ def __del__(self):
+ self.sim.close()
+
+ def __len__(self):
+ return self.size
+
+ def sample_random_viewpoint(self):
+ """Sample a random viewpoint using the navmesh"""
+ nav_point = self.sim.pathfinder.get_random_navigable_point()
+
+ # Sample a random viewpoint height
+ viewpoint_height = np.random.uniform(*self.height_range)
+ viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP
+ viewpoint_orientation = quaternion.from_rotation_vector(
+ np.random.uniform(0, 2 * np.pi) * habitat_sim.geo.UP
+ ) * generate_orientation_noise(self.pan_range, self.tilt_range, self.roll_range)
+ return viewpoint_position, viewpoint_orientation, nav_point
+
+ def sample_other_random_viewpoint(self, observed_point, nav_point):
+ """Sample a random viewpoint close to an existing one, using the navmesh and a reference observed point."""
+ other_nav_point = nav_point
+
+ walk_directions = self.random_step_variance * np.asarray([1, 0, 1])
+ for i in range(self.random_steps_count):
+ temp = self.sim.pathfinder.snap_point(
+ other_nav_point + walk_directions * np.random.normal(size=3)
+ )
+ # Snapping may return nan when it fails
+ if not np.isnan(temp[0]):
+ other_nav_point = temp
+
+ other_viewpoint_height = np.random.uniform(*self.height_range)
+ other_viewpoint_position = (
+ other_nav_point + other_viewpoint_height * habitat_sim.geo.UP
+ )
+
+ # Set viewing direction towards the central point
+ rotation, position = look_at_for_habitat(
+ eye=other_viewpoint_position,
+ center=observed_point,
+ up=habitat_sim.geo.UP,
+ return_cam2world=True,
+ )
+ rotation = rotation * generate_orientation_noise(
+ self.pan_range, self.tilt_range, self.roll_range
+ )
+ return position, rotation, other_nav_point
+
+ def is_other_pointcloud_overlapping(self, ref_pointcloud, other_pointcloud):
+ """Check if a viewpoint is valid and overlaps significantly with a reference one."""
+ # Observation
+ pixels_count = self.resolution[0] * self.resolution[1]
+ valid_fraction = len(other_pointcloud) / pixels_count
+ assert valid_fraction <= 1.0 and valid_fraction >= 0.0
+ overlap = compute_pointcloud_overlaps_scikit(
+ ref_pointcloud,
+ other_pointcloud,
+ self.distance_threshold,
+ compute_symmetric=True,
+ )
+ covisibility = min(
+ overlap["intersection1"] / pixels_count,
+ overlap["intersection2"] / pixels_count,
+ )
+ is_valid = (valid_fraction >= self.minimum_valid_fraction) and (
+ covisibility >= self.minimum_covisibility
+ )
+ return is_valid, valid_fraction, covisibility
+
+ def is_other_viewpoint_overlapping(
+ self, ref_pointcloud, observation, position, rotation
+ ):
+ """Check if a viewpoint is valid and overlaps significantly with a reference one."""
+ # Observation
+ other_pointcloud = compute_pointcloud(
+ observation["depth"], self.hfov, position, rotation
+ )
+ return self.is_other_pointcloud_overlapping(ref_pointcloud, other_pointcloud)
+
+ def render_viewpoint(self, viewpoint_position, viewpoint_orientation):
+ agent_state = habitat_sim.AgentState()
+ agent_state.position = viewpoint_position
+ agent_state.rotation = viewpoint_orientation
+ self.agent.set_state(agent_state)
+ viewpoint_observations = self.sim.get_sensor_observations(agent_ids=0)
+ _append_camera_parameters(
+ viewpoint_observations, self.hfov, viewpoint_position, viewpoint_orientation
+ )
+ return viewpoint_observations
+
+ def __getitem__(self, useless_idx):
+ ref_position, ref_orientation, nav_point = self.sample_random_viewpoint()
+ ref_observations = self.render_viewpoint(ref_position, ref_orientation)
+ # Extract point cloud
+ ref_pointcloud = compute_pointcloud(
+ depthmap=ref_observations["depth"],
+ hfov=self.hfov,
+ camera_position=ref_position,
+ camera_rotation=ref_orientation,
+ )
+
+ pixels_count = self.resolution[0] * self.resolution[1]
+ ref_valid_fraction = len(ref_pointcloud) / pixels_count
+ assert ref_valid_fraction <= 1.0 and ref_valid_fraction >= 0.0
+ if ref_valid_fraction < self.minimum_valid_fraction:
+ # This should produce a recursion error at some point when something is very wrong.
+ return self[0]
+ # Pick an reference observed point in the point cloud
+ observed_point = np.mean(ref_pointcloud, axis=0)
+
+ # Add the first image as reference
+ viewpoints_observations = [ref_observations]
+ viewpoints_covisibility = [ref_valid_fraction]
+ viewpoints_positions = [ref_position]
+ viewpoints_orientations = [quaternion.as_float_array(ref_orientation)]
+ viewpoints_clouds = [ref_pointcloud]
+ viewpoints_valid_fractions = [ref_valid_fraction]
+
+ for _ in range(self.views_count - 1):
+ # Generate an other viewpoint using some dummy random walk
+ successful_sampling = False
+ for sampling_attempt in range(self.max_attempts_count):
+ position, rotation, _ = self.sample_other_random_viewpoint(
+ observed_point, nav_point
+ )
+ # Observation
+ other_viewpoint_observations = self.render_viewpoint(position, rotation)
+ other_pointcloud = compute_pointcloud(
+ other_viewpoint_observations["depth"], self.hfov, position, rotation
+ )
+
+ is_valid, valid_fraction, covisibility = (
+ self.is_other_pointcloud_overlapping(
+ ref_pointcloud, other_pointcloud
+ )
+ )
+ if is_valid:
+ successful_sampling = True
+ break
+ if not successful_sampling:
+ print("WARNING: Maximum number of attempts reached.")
+ # Dirty hack, try using a novel original viewpoint
+ return self[0]
+ viewpoints_observations.append(other_viewpoint_observations)
+ viewpoints_covisibility.append(covisibility)
+ viewpoints_positions.append(position)
+ viewpoints_orientations.append(
+ quaternion.as_float_array(rotation)
+ ) # WXYZ convention for the quaternion encoding.
+ viewpoints_clouds.append(other_pointcloud)
+ viewpoints_valid_fractions.append(valid_fraction)
+
+ # Estimate relations between all pairs of images
+ pairwise_visibility_ratios = np.ones(
+ (len(viewpoints_observations), len(viewpoints_observations))
+ )
+ for i in range(len(viewpoints_observations)):
+ pairwise_visibility_ratios[i, i] = viewpoints_valid_fractions[i]
+ for j in range(i + 1, len(viewpoints_observations)):
+ overlap = compute_pointcloud_overlaps_scikit(
+ viewpoints_clouds[i],
+ viewpoints_clouds[j],
+ self.distance_threshold,
+ compute_symmetric=True,
+ )
+ pairwise_visibility_ratios[i, j] = (
+ overlap["intersection1"] / pixels_count
+ )
+ pairwise_visibility_ratios[j, i] = (
+ overlap["intersection2"] / pixels_count
+ )
+
+ # IoU is relative to the image 0
+ data = {
+ "observations": viewpoints_observations,
+ "positions": np.asarray(viewpoints_positions),
+ "orientations": np.asarray(viewpoints_orientations),
+ "covisibility_ratios": np.asarray(viewpoints_covisibility),
+ "valid_fractions": np.asarray(viewpoints_valid_fractions, dtype=float),
+ "pairwise_visibility_ratios": np.asarray(
+ pairwise_visibility_ratios, dtype=float
+ ),
+ }
+
+ if self.transform is not None:
+ data = self.transform(data)
+ return data
+
+ def generate_random_spiral_trajectory(
+ self,
+ images_count=100,
+ max_radius=0.5,
+ half_turns=5,
+ use_constant_orientation=False,
+ ):
+ """
+ Return a list of images corresponding to a spiral trajectory from a random starting point.
+ Useful to generate nice visualisations.
+ Use an even number of half turns to get a nice "C1-continuous" loop effect
+ """
+ ref_position, ref_orientation, navpoint = self.sample_random_viewpoint()
+ ref_observations = self.render_viewpoint(ref_position, ref_orientation)
+ ref_pointcloud = compute_pointcloud(
+ depthmap=ref_observations["depth"],
+ hfov=self.hfov,
+ camera_position=ref_position,
+ camera_rotation=ref_orientation,
+ )
+ pixels_count = self.resolution[0] * self.resolution[1]
+ if len(ref_pointcloud) / pixels_count < self.minimum_valid_fraction:
+ # Dirty hack: ensure that the valid part of the image is significant
+ return self.generate_random_spiral_trajectory(
+ images_count, max_radius, half_turns, use_constant_orientation
+ )
+
+ # Pick an observed point in the point cloud
+ observed_point = np.mean(ref_pointcloud, axis=0)
+ ref_R, ref_t = compute_camera_pose_opencv_convention(
+ ref_position, ref_orientation
+ )
+
+ images = []
+ is_valid = []
+ # Spiral trajectory, use_constant orientation
+ for i, alpha in enumerate(np.linspace(0, 1, images_count)):
+ r = max_radius * np.abs(
+ np.sin(alpha * np.pi)
+ ) # Increase then decrease the radius
+ theta = alpha * half_turns * np.pi
+ x = r * np.cos(theta)
+ y = r * np.sin(theta)
+ z = 0.0
+ position = (
+ ref_position + (ref_R @ np.asarray([x, y, z]).reshape(3, 1)).flatten()
+ )
+ if use_constant_orientation:
+ orientation = ref_orientation
+ else:
+ # trajectory looking at a mean point in front of the ref observation
+ orientation, position = look_at_for_habitat(
+ eye=position, center=observed_point, up=habitat_sim.geo.UP
+ )
+ observations = self.render_viewpoint(position, orientation)
+ images.append(observations["color"][..., :3])
+ _is_valid, valid_fraction, iou = self.is_other_viewpoint_overlapping(
+ ref_pointcloud, observations, position, orientation
+ )
+ is_valid.append(_is_valid)
+ return images, np.all(is_valid)
diff --git a/extern/CUT3R/src/croco/datasets/habitat_sim/pack_metadata_files.py b/extern/CUT3R/src/croco/datasets/habitat_sim/pack_metadata_files.py
new file mode 100644
index 0000000000000000000000000000000000000000..9bd8234dfaa491d5f25f7c778406255116a8b392
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/habitat_sim/pack_metadata_files.py
@@ -0,0 +1,80 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+"""
+Utility script to pack metadata files of the dataset in order to be able to re-generate it elsewhere.
+"""
+import os
+import glob
+from tqdm import tqdm
+import shutil
+import json
+from datasets.habitat_sim.paths import *
+import argparse
+import collections
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ parser.add_argument("input_dir")
+ parser.add_argument("output_dir")
+ args = parser.parse_args()
+
+ input_dirname = args.input_dir
+ output_dirname = args.output_dir
+
+ input_metadata_filenames = glob.iglob(
+ f"{input_dirname}/**/metadata.json", recursive=True
+ )
+
+ images_count = collections.defaultdict(lambda: 0)
+
+ os.makedirs(output_dirname)
+ for input_filename in tqdm(input_metadata_filenames):
+ # Ignore empty files
+ with open(input_filename, "r") as f:
+ original_metadata = json.load(f)
+ if (
+ "multiviews" not in original_metadata
+ or len(original_metadata["multiviews"]) == 0
+ ):
+ print("No views in", input_filename)
+ continue
+
+ relpath = os.path.relpath(input_filename, input_dirname)
+ print(relpath)
+
+ # Copy metadata, while replacing scene paths by generic keys depending on the dataset, for portability.
+ # Data paths are sorted by decreasing length to avoid potential bugs due to paths starting by the same string pattern.
+ scenes_dataset_paths = dict(
+ sorted(SCENES_DATASET.items(), key=lambda x: len(x[1]), reverse=True)
+ )
+ metadata = dict()
+ for key, value in original_metadata.items():
+ if key in ("scene_dataset_config_file", "scene", "navmesh") and value != "":
+ known_path = False
+ for dataset, dataset_path in scenes_dataset_paths.items():
+ if value.startswith(dataset_path):
+ value = os.path.join(
+ dataset, os.path.relpath(value, dataset_path)
+ )
+ known_path = True
+ break
+ if not known_path:
+ raise KeyError("Unknown path:" + value)
+ metadata[key] = value
+
+ # Compile some general statistics while packing data
+ scene_split = metadata["scene"].split("/")
+ upper_level = (
+ "/".join(scene_split[:2]) if scene_split[0] == "hm3d" else scene_split[0]
+ )
+ images_count[upper_level] += len(metadata["multiviews"])
+
+ output_filename = os.path.join(output_dirname, relpath)
+ os.makedirs(os.path.dirname(output_filename), exist_ok=True)
+ with open(output_filename, "w") as f:
+ json.dump(metadata, f)
+
+ # Print statistics
+ print("Images count:")
+ for upper_level, count in images_count.items():
+ print(f"- {upper_level}: {count}")
diff --git a/extern/CUT3R/src/croco/datasets/habitat_sim/paths.py b/extern/CUT3R/src/croco/datasets/habitat_sim/paths.py
new file mode 100644
index 0000000000000000000000000000000000000000..87389fcff93d220d6f205dc21119da3c56c3abb9
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/habitat_sim/paths.py
@@ -0,0 +1,179 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+"""
+Paths to Habitat-Sim scenes
+"""
+
+import os
+import json
+import collections
+from tqdm import tqdm
+
+
+# Hardcoded path to the different scene datasets
+SCENES_DATASET = {
+ "hm3d": "./data/habitat-sim-data/scene_datasets/hm3d/",
+ "gibson": "./data/habitat-sim-data/scene_datasets/gibson/",
+ "habitat-test-scenes": "./data/habitat-sim/scene_datasets/habitat-test-scenes/",
+ "replica_cad_baked_lighting": "./data/habitat-sim/scene_datasets/replica_cad_baked_lighting/",
+ "replica_cad": "./data/habitat-sim/scene_datasets/replica_cad/",
+ "replica": "./data/habitat-sim/scene_datasets/ReplicaDataset/",
+ "scannet": "./data/habitat-sim/scene_datasets/scannet/",
+}
+
+SceneData = collections.namedtuple(
+ "SceneData", ["scene_dataset_config_file", "scene", "navmesh", "output_dir"]
+)
+
+
+def list_replicacad_scenes(base_output_dir, base_path=SCENES_DATASET["replica_cad"]):
+ scene_dataset_config_file = os.path.join(
+ base_path, "replicaCAD.scene_dataset_config.json"
+ )
+ scenes = [f"apt_{i}" for i in range(6)] + ["empty_stage"]
+ navmeshes = [f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + [
+ "empty_stage.navmesh"
+ ]
+ scenes_data = []
+ for idx in range(len(scenes)):
+ output_dir = os.path.join(base_output_dir, "ReplicaCAD", scenes[idx])
+ # Add scene
+ data = SceneData(
+ scene_dataset_config_file=scene_dataset_config_file,
+ scene=scenes[idx] + ".scene_instance.json",
+ navmesh=os.path.join(base_path, navmeshes[idx]),
+ output_dir=output_dir,
+ )
+ scenes_data.append(data)
+ return scenes_data
+
+
+def list_replica_cad_baked_lighting_scenes(
+ base_output_dir, base_path=SCENES_DATASET["replica_cad_baked_lighting"]
+):
+ scene_dataset_config_file = os.path.join(
+ base_path, "replicaCAD_baked.scene_dataset_config.json"
+ )
+ scenes = sum(
+ [[f"Baked_sc{i}_staging_{j:02}" for i in range(5)] for j in range(21)], []
+ )
+ navmeshes = "" # [f"navmeshes/apt_{i}_static_furniture.navmesh" for i in range(6)] + ["empty_stage.navmesh"]
+ scenes_data = []
+ for idx in range(len(scenes)):
+ output_dir = os.path.join(
+ base_output_dir, "replica_cad_baked_lighting", scenes[idx]
+ )
+ data = SceneData(
+ scene_dataset_config_file=scene_dataset_config_file,
+ scene=scenes[idx],
+ navmesh="",
+ output_dir=output_dir,
+ )
+ scenes_data.append(data)
+ return scenes_data
+
+
+def list_replica_scenes(base_output_dir, base_path):
+ scenes_data = []
+ for scene_id in os.listdir(base_path):
+ scene = os.path.join(base_path, scene_id, "mesh.ply")
+ navmesh = os.path.join(
+ base_path, scene_id, "habitat/mesh_preseg_semantic.navmesh"
+ ) # Not sure if I should use it
+ scene_dataset_config_file = ""
+ output_dir = os.path.join(base_output_dir, scene_id)
+ # Add scene only if it does not exist already, or if exist_ok
+ data = SceneData(
+ scene_dataset_config_file=scene_dataset_config_file,
+ scene=scene,
+ navmesh=navmesh,
+ output_dir=output_dir,
+ )
+ scenes_data.append(data)
+ return scenes_data
+
+
+def list_scenes(base_output_dir, base_path):
+ """
+ Generic method iterating through a base_path folder to find scenes.
+ """
+ scenes_data = []
+ for root, dirs, files in os.walk(base_path, followlinks=True):
+ folder_scenes_data = []
+ for file in files:
+ name, ext = os.path.splitext(file)
+ if ext == ".glb":
+ scene = os.path.join(root, name + ".glb")
+ navmesh = os.path.join(root, name + ".navmesh")
+ if not os.path.exists(navmesh):
+ navmesh = ""
+ relpath = os.path.relpath(root, base_path)
+ output_dir = os.path.abspath(
+ os.path.join(base_output_dir, relpath, name)
+ )
+ data = SceneData(
+ scene_dataset_config_file="",
+ scene=scene,
+ navmesh=navmesh,
+ output_dir=output_dir,
+ )
+ folder_scenes_data.append(data)
+
+ # Specific check for HM3D:
+ # When two meshesxxxx.basis.glb and xxxx.glb are present, use the 'basis' version.
+ basis_scenes = [
+ data.scene[: -len(".basis.glb")]
+ for data in folder_scenes_data
+ if data.scene.endswith(".basis.glb")
+ ]
+ if len(basis_scenes) != 0:
+ folder_scenes_data = [
+ data
+ for data in folder_scenes_data
+ if not (data.scene[: -len(".glb")] in basis_scenes)
+ ]
+
+ scenes_data.extend(folder_scenes_data)
+ return scenes_data
+
+
+def list_scenes_available(base_output_dir, scenes_dataset_paths=SCENES_DATASET):
+ scenes_data = []
+
+ # HM3D
+ for split in ("minival", "train", "val", "examples"):
+ scenes_data += list_scenes(
+ base_output_dir=os.path.join(base_output_dir, f"hm3d/{split}/"),
+ base_path=f"{scenes_dataset_paths['hm3d']}/{split}",
+ )
+
+ # Gibson
+ scenes_data += list_scenes(
+ base_output_dir=os.path.join(base_output_dir, "gibson"),
+ base_path=scenes_dataset_paths["gibson"],
+ )
+
+ # Habitat test scenes (just a few)
+ scenes_data += list_scenes(
+ base_output_dir=os.path.join(base_output_dir, "habitat-test-scenes"),
+ base_path=scenes_dataset_paths["habitat-test-scenes"],
+ )
+
+ # ReplicaCAD (baked lightning)
+ scenes_data += list_replica_cad_baked_lighting_scenes(
+ base_output_dir=base_output_dir
+ )
+
+ # ScanNet
+ scenes_data += list_scenes(
+ base_output_dir=os.path.join(base_output_dir, "scannet"),
+ base_path=scenes_dataset_paths["scannet"],
+ )
+
+ # Replica
+ list_replica_scenes(
+ base_output_dir=os.path.join(base_output_dir, "replica"),
+ base_path=scenes_dataset_paths["replica"],
+ )
+ return scenes_data
diff --git a/extern/CUT3R/src/croco/datasets/pairs_dataset.py b/extern/CUT3R/src/croco/datasets/pairs_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..066bb9510332255edd211f98f2beb6670abff4f9
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/pairs_dataset.py
@@ -0,0 +1,162 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+import os
+from torch.utils.data import Dataset
+from PIL import Image
+
+from datasets.transforms import get_pair_transforms
+
+
+def load_image(impath):
+ return Image.open(impath)
+
+
+def load_pairs_from_cache_file(fname, root=""):
+ assert os.path.isfile(
+ fname
+ ), "cannot parse pairs from {:s}, file does not exist".format(fname)
+ with open(fname, "r") as fid:
+ lines = fid.read().strip().splitlines()
+ pairs = [
+ (os.path.join(root, l.split()[0]), os.path.join(root, l.split()[1]))
+ for l in lines
+ ]
+ return pairs
+
+
+def load_pairs_from_list_file(fname, root=""):
+ assert os.path.isfile(
+ fname
+ ), "cannot parse pairs from {:s}, file does not exist".format(fname)
+ with open(fname, "r") as fid:
+ lines = fid.read().strip().splitlines()
+ pairs = [
+ (os.path.join(root, l + "_1.jpg"), os.path.join(root, l + "_2.jpg"))
+ for l in lines
+ if not l.startswith("#")
+ ]
+ return pairs
+
+
+def write_cache_file(fname, pairs, root=""):
+ if len(root) > 0:
+ if not root.endswith("/"):
+ root += "/"
+ assert os.path.isdir(root)
+ s = ""
+ for im1, im2 in pairs:
+ if len(root) > 0:
+ assert im1.startswith(root), im1
+ assert im2.startswith(root), im2
+ s += "{:s} {:s}\n".format(im1[len(root) :], im2[len(root) :])
+ with open(fname, "w") as fid:
+ fid.write(s[:-1])
+
+
+def parse_and_cache_all_pairs(dname, data_dir="./data/"):
+ if dname == "habitat_release":
+ dirname = os.path.join(data_dir, "habitat_release")
+ assert os.path.isdir(dirname), (
+ "cannot find folder for habitat_release pairs: " + dirname
+ )
+ cache_file = os.path.join(dirname, "pairs.txt")
+ assert not os.path.isfile(cache_file), (
+ "cache file already exists: " + cache_file
+ )
+
+ print("Parsing pairs for dataset: " + dname)
+ pairs = []
+ for root, dirs, files in os.walk(dirname):
+ if "val" in root:
+ continue
+ dirs.sort()
+ pairs += [
+ (
+ os.path.join(root, f),
+ os.path.join(root, f[: -len("_1.jpeg")] + "_2.jpeg"),
+ )
+ for f in sorted(files)
+ if f.endswith("_1.jpeg")
+ ]
+ print("Found {:,} pairs".format(len(pairs)))
+ print("Writing cache to: " + cache_file)
+ write_cache_file(cache_file, pairs, root=dirname)
+
+ else:
+ raise NotImplementedError("Unknown dataset: " + dname)
+
+
+def dnames_to_image_pairs(dnames, data_dir="./data/"):
+ """
+ dnames: list of datasets with image pairs, separated by +
+ """
+ all_pairs = []
+ for dname in dnames.split("+"):
+ if dname == "habitat_release":
+ dirname = os.path.join(data_dir, "habitat_release")
+ assert os.path.isdir(dirname), (
+ "cannot find folder for habitat_release pairs: " + dirname
+ )
+ cache_file = os.path.join(dirname, "pairs.txt")
+ assert os.path.isfile(cache_file), (
+ "cannot find cache file for habitat_release pairs, please first create the cache file, see instructions. "
+ + cache_file
+ )
+ pairs = load_pairs_from_cache_file(cache_file, root=dirname)
+ elif dname in ["ARKitScenes", "MegaDepth", "3DStreetView", "IndoorVL"]:
+ dirname = os.path.join(data_dir, dname + "_crops")
+ assert os.path.isdir(
+ dirname
+ ), "cannot find folder for {:s} pairs: {:s}".format(dname, dirname)
+ list_file = os.path.join(dirname, "listing.txt")
+ assert os.path.isfile(
+ list_file
+ ), "cannot find list file for {:s} pairs, see instructions. {:s}".format(
+ dname, list_file
+ )
+ pairs = load_pairs_from_list_file(list_file, root=dirname)
+ print(" {:s}: {:,} pairs".format(dname, len(pairs)))
+ all_pairs += pairs
+ if "+" in dnames:
+ print(" Total: {:,} pairs".format(len(all_pairs)))
+ return all_pairs
+
+
+class PairsDataset(Dataset):
+
+ def __init__(
+ self, dnames, trfs="", totensor=True, normalize=True, data_dir="./data/"
+ ):
+ super().__init__()
+ self.image_pairs = dnames_to_image_pairs(dnames, data_dir=data_dir)
+ self.transforms = get_pair_transforms(
+ transform_str=trfs, totensor=totensor, normalize=normalize
+ )
+
+ def __len__(self):
+ return len(self.image_pairs)
+
+ def __getitem__(self, index):
+ im1path, im2path = self.image_pairs[index]
+ im1 = load_image(im1path)
+ im2 = load_image(im2path)
+ if self.transforms is not None:
+ im1, im2 = self.transforms(im1, im2)
+ return im1, im2
+
+
+if __name__ == "__main__":
+ import argparse
+
+ parser = argparse.ArgumentParser(
+ prog="Computing and caching list of pairs for a given dataset"
+ )
+ parser.add_argument(
+ "--data_dir", default="./data/", type=str, help="path where data are stored"
+ )
+ parser.add_argument(
+ "--dataset", default="habitat_release", type=str, help="name of the dataset"
+ )
+ args = parser.parse_args()
+ parse_and_cache_all_pairs(dname=args.dataset, data_dir=args.data_dir)
diff --git a/extern/CUT3R/src/croco/datasets/transforms.py b/extern/CUT3R/src/croco/datasets/transforms.py
new file mode 100644
index 0000000000000000000000000000000000000000..5dc89dd1092293f63035afd70e9ef9f907696f44
--- /dev/null
+++ b/extern/CUT3R/src/croco/datasets/transforms.py
@@ -0,0 +1,135 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+import torch
+import torchvision.transforms
+import torchvision.transforms.functional as F
+
+# "Pair": apply a transform on a pair
+# "Both": apply the exact same transform to both images
+
+
+class ComposePair(torchvision.transforms.Compose):
+ def __call__(self, img1, img2):
+ for t in self.transforms:
+ img1, img2 = t(img1, img2)
+ return img1, img2
+
+
+class NormalizeBoth(torchvision.transforms.Normalize):
+ def forward(self, img1, img2):
+ img1 = super().forward(img1)
+ img2 = super().forward(img2)
+ return img1, img2
+
+
+class ToTensorBoth(torchvision.transforms.ToTensor):
+ def __call__(self, img1, img2):
+ img1 = super().__call__(img1)
+ img2 = super().__call__(img2)
+ return img1, img2
+
+
+class RandomCropPair(torchvision.transforms.RandomCrop):
+ # the crop will be intentionally different for the two images with this class
+ def forward(self, img1, img2):
+ img1 = super().forward(img1)
+ img2 = super().forward(img2)
+ return img1, img2
+
+
+class ColorJitterPair(torchvision.transforms.ColorJitter):
+ # can be symmetric (same for both images) or assymetric (different jitter params for each image) depending on assymetric_prob
+ def __init__(self, assymetric_prob, **kwargs):
+ super().__init__(**kwargs)
+ self.assymetric_prob = assymetric_prob
+
+ def jitter_one(
+ self,
+ img,
+ fn_idx,
+ brightness_factor,
+ contrast_factor,
+ saturation_factor,
+ hue_factor,
+ ):
+ for fn_id in fn_idx:
+ if fn_id == 0 and brightness_factor is not None:
+ img = F.adjust_brightness(img, brightness_factor)
+ elif fn_id == 1 and contrast_factor is not None:
+ img = F.adjust_contrast(img, contrast_factor)
+ elif fn_id == 2 and saturation_factor is not None:
+ img = F.adjust_saturation(img, saturation_factor)
+ elif fn_id == 3 and hue_factor is not None:
+ img = F.adjust_hue(img, hue_factor)
+ return img
+
+ def forward(self, img1, img2):
+
+ fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = (
+ self.get_params(self.brightness, self.contrast, self.saturation, self.hue)
+ )
+ img1 = self.jitter_one(
+ img1,
+ fn_idx,
+ brightness_factor,
+ contrast_factor,
+ saturation_factor,
+ hue_factor,
+ )
+ if torch.rand(1) < self.assymetric_prob: # assymetric:
+ (
+ fn_idx,
+ brightness_factor,
+ contrast_factor,
+ saturation_factor,
+ hue_factor,
+ ) = self.get_params(
+ self.brightness, self.contrast, self.saturation, self.hue
+ )
+ img2 = self.jitter_one(
+ img2,
+ fn_idx,
+ brightness_factor,
+ contrast_factor,
+ saturation_factor,
+ hue_factor,
+ )
+ return img1, img2
+
+
+def get_pair_transforms(transform_str, totensor=True, normalize=True):
+ # transform_str is eg crop224+color
+ trfs = []
+ for s in transform_str.split("+"):
+ if s.startswith("crop"):
+ size = int(s[len("crop") :])
+ trfs.append(RandomCropPair(size))
+ elif s == "acolor":
+ trfs.append(
+ ColorJitterPair(
+ assymetric_prob=1.0,
+ brightness=(0.6, 1.4),
+ contrast=(0.6, 1.4),
+ saturation=(0.6, 1.4),
+ hue=0.0,
+ )
+ )
+ elif s == "": # if transform_str was ""
+ pass
+ else:
+ raise NotImplementedError("Unknown augmentation: " + s)
+
+ if totensor:
+ trfs.append(ToTensorBoth())
+ if normalize:
+ trfs.append(
+ NormalizeBoth(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
+ )
+
+ if len(trfs) == 0:
+ return None
+ elif len(trfs) == 1:
+ return trfs
+ else:
+ return ComposePair(trfs)
diff --git a/extern/CUT3R/src/croco/interactive_demo.ipynb b/extern/CUT3R/src/croco/interactive_demo.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..6cfc960af5baac9a69029c29a16eea4e24123a71
--- /dev/null
+++ b/extern/CUT3R/src/croco/interactive_demo.ipynb
@@ -0,0 +1,271 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Interactive demo of Cross-view Completion."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Copyright (C) 2022-present Naver Corporation. All rights reserved.\n",
+ "# Licensed under CC BY-NC-SA 4.0 (non-commercial use only)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import torch\n",
+ "import numpy as np\n",
+ "from models.croco import CroCoNet\n",
+ "from ipywidgets import interact, interactive, fixed, interact_manual\n",
+ "import ipywidgets as widgets\n",
+ "import matplotlib.pyplot as plt\n",
+ "import quaternion\n",
+ "import models.masking"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Load CroCo model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ckpt = torch.load('pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth', 'cpu')\n",
+ "model = CroCoNet( **ckpt.get('croco_kwargs',{}))\n",
+ "msg = model.load_state_dict(ckpt['model'], strict=True)\n",
+ "use_gpu = torch.cuda.is_available() and torch.cuda.device_count()>0\n",
+ "device = torch.device('cuda:0' if use_gpu else 'cpu')\n",
+ "model = model.eval()\n",
+ "model = model.to(device=device)\n",
+ "print(msg)\n",
+ "\n",
+ "def process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches=False):\n",
+ " \"\"\"\n",
+ " Perform Cross-View completion using two input images, specified using Numpy arrays.\n",
+ " \"\"\"\n",
+ " # Replace the mask generator\n",
+ " model.mask_generator = models.masking.RandomMask(model.patch_embed.num_patches, masking_ratio)\n",
+ "\n",
+ " # ImageNet-1k color normalization\n",
+ " imagenet_mean = torch.as_tensor([0.485, 0.456, 0.406]).reshape(1,3,1,1).to(device)\n",
+ " imagenet_std = torch.as_tensor([0.229, 0.224, 0.225]).reshape(1,3,1,1).to(device)\n",
+ "\n",
+ " normalize_input_colors = True\n",
+ " is_output_normalized = True\n",
+ " with torch.no_grad():\n",
+ " # Cast data to torch\n",
+ " target_image = (torch.as_tensor(target_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n",
+ " ref_image = (torch.as_tensor(ref_image, dtype=torch.float, device=device).permute(2,0,1) / 255)[None]\n",
+ "\n",
+ " if normalize_input_colors:\n",
+ " ref_image = (ref_image - imagenet_mean) / imagenet_std\n",
+ " target_image = (target_image - imagenet_mean) / imagenet_std\n",
+ "\n",
+ " out, mask, _ = model(target_image, ref_image)\n",
+ " # # get target\n",
+ " if not is_output_normalized:\n",
+ " predicted_image = model.unpatchify(out)\n",
+ " else:\n",
+ " # The output only contains higher order information,\n",
+ " # we retrieve mean and standard deviation from the actual target image\n",
+ " patchified = model.patchify(target_image)\n",
+ " mean = patchified.mean(dim=-1, keepdim=True)\n",
+ " var = patchified.var(dim=-1, keepdim=True)\n",
+ " pred_renorm = out * (var + 1.e-6)**.5 + mean\n",
+ " predicted_image = model.unpatchify(pred_renorm)\n",
+ "\n",
+ " image_masks = model.unpatchify(model.patchify(torch.ones_like(ref_image)) * mask[:,:,None])\n",
+ " masked_target_image = (1 - image_masks) * target_image\n",
+ " \n",
+ " if not reconstruct_unmasked_patches:\n",
+ " # Replace unmasked patches by their actual values\n",
+ " predicted_image = predicted_image * image_masks + masked_target_image\n",
+ "\n",
+ " # Unapply color normalization\n",
+ " if normalize_input_colors:\n",
+ " predicted_image = predicted_image * imagenet_std + imagenet_mean\n",
+ " masked_target_image = masked_target_image * imagenet_std + imagenet_mean\n",
+ " \n",
+ " # Cast to Numpy\n",
+ " masked_target_image = np.asarray(torch.clamp(masked_target_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n",
+ " predicted_image = np.asarray(torch.clamp(predicted_image.squeeze(0).permute(1,2,0) * 255, 0, 255).cpu().numpy(), dtype=np.uint8)\n",
+ " return masked_target_image, predicted_image"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Use the Habitat simulator to render images from arbitrary viewpoints (requires habitat_sim to be installed)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "os.environ[\"MAGNUM_LOG\"]=\"quiet\"\n",
+ "os.environ[\"HABITAT_SIM_LOG\"]=\"quiet\"\n",
+ "import habitat_sim\n",
+ "\n",
+ "scene = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.glb\"\n",
+ "navmesh = \"habitat-sim-data/scene_datasets/habitat-test-scenes/skokloster-castle.navmesh\"\n",
+ "\n",
+ "sim_cfg = habitat_sim.SimulatorConfiguration()\n",
+ "if use_gpu: sim_cfg.gpu_device_id = 0\n",
+ "sim_cfg.scene_id = scene\n",
+ "sim_cfg.load_semantic_mesh = False\n",
+ "rgb_sensor_spec = habitat_sim.CameraSensorSpec()\n",
+ "rgb_sensor_spec.uuid = \"color\"\n",
+ "rgb_sensor_spec.sensor_type = habitat_sim.SensorType.COLOR\n",
+ "rgb_sensor_spec.resolution = (224,224)\n",
+ "rgb_sensor_spec.hfov = 56.56\n",
+ "rgb_sensor_spec.position = [0.0, 0.0, 0.0]\n",
+ "rgb_sensor_spec.orientation = [0, 0, 0]\n",
+ "agent_cfg = habitat_sim.agent.AgentConfiguration(sensor_specifications=[rgb_sensor_spec])\n",
+ "\n",
+ "\n",
+ "cfg = habitat_sim.Configuration(sim_cfg, [agent_cfg])\n",
+ "sim = habitat_sim.Simulator(cfg)\n",
+ "if navmesh is not None:\n",
+ " sim.pathfinder.load_nav_mesh(navmesh)\n",
+ "agent = sim.initialize_agent(agent_id=0)\n",
+ "\n",
+ "def sample_random_viewpoint():\n",
+ " \"\"\" Sample a random viewpoint using the navmesh \"\"\"\n",
+ " nav_point = sim.pathfinder.get_random_navigable_point()\n",
+ " # Sample a random viewpoint height\n",
+ " viewpoint_height = np.random.uniform(1.0, 1.6)\n",
+ " viewpoint_position = nav_point + viewpoint_height * habitat_sim.geo.UP\n",
+ " viewpoint_orientation = quaternion.from_rotation_vector(np.random.uniform(-np.pi, np.pi) * habitat_sim.geo.UP)\n",
+ " return viewpoint_position, viewpoint_orientation\n",
+ "\n",
+ "def render_viewpoint(position, orientation):\n",
+ " agent_state = habitat_sim.AgentState()\n",
+ " agent_state.position = position\n",
+ " agent_state.rotation = orientation\n",
+ " agent.set_state(agent_state)\n",
+ " viewpoint_observations = sim.get_sensor_observations(agent_ids=0)\n",
+ " image = viewpoint_observations['color'][:,:,:3]\n",
+ " image = np.asarray(np.clip(1.5 * np.asarray(image, dtype=float), 0, 255), dtype=np.uint8)\n",
+ " return image"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Sample a random reference view"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ref_position, ref_orientation = sample_random_viewpoint()\n",
+ "ref_image = render_viewpoint(ref_position, ref_orientation)\n",
+ "plt.clf()\n",
+ "fig, axes = plt.subplots(1,1, squeeze=False, num=1)\n",
+ "axes[0,0].imshow(ref_image)\n",
+ "for ax in axes.flatten():\n",
+ " ax.set_xticks([])\n",
+ " ax.set_yticks([])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Interactive cross-view completion using CroCo"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "reconstruct_unmasked_patches = False\n",
+ "\n",
+ "def show_demo(masking_ratio, x, y, z, panorama, elevation):\n",
+ " R = quaternion.as_rotation_matrix(ref_orientation)\n",
+ " target_position = ref_position + x * R[:,0] + y * R[:,1] + z * R[:,2]\n",
+ " target_orientation = (ref_orientation\n",
+ " * quaternion.from_rotation_vector(-elevation * np.pi/180 * habitat_sim.geo.LEFT) \n",
+ " * quaternion.from_rotation_vector(-panorama * np.pi/180 * habitat_sim.geo.UP))\n",
+ " \n",
+ " ref_image = render_viewpoint(ref_position, ref_orientation)\n",
+ " target_image = render_viewpoint(target_position, target_orientation)\n",
+ "\n",
+ " masked_target_image, predicted_image = process_images(ref_image, target_image, masking_ratio, reconstruct_unmasked_patches)\n",
+ "\n",
+ " fig, axes = plt.subplots(1,4, squeeze=True, dpi=300)\n",
+ " axes[0].imshow(ref_image)\n",
+ " axes[0].set_xlabel(\"Reference\")\n",
+ " axes[1].imshow(masked_target_image)\n",
+ " axes[1].set_xlabel(\"Masked target\")\n",
+ " axes[2].imshow(predicted_image)\n",
+ " axes[2].set_xlabel(\"Reconstruction\") \n",
+ " axes[3].imshow(target_image)\n",
+ " axes[3].set_xlabel(\"Target\")\n",
+ " for ax in axes.flatten():\n",
+ " ax.set_xticks([])\n",
+ " ax.set_yticks([])\n",
+ "\n",
+ "interact(show_demo,\n",
+ " masking_ratio=widgets.FloatSlider(description='masking', value=0.9, min=0.0, max=1.0),\n",
+ " x=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n",
+ " y=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n",
+ " z=widgets.FloatSlider(value=0.0, min=-0.5, max=0.5, step=0.05),\n",
+ " panorama=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5),\n",
+ " elevation=widgets.FloatSlider(value=0.0, min=-20, max=20, step=0.5));"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "f9237820cd248d7e07cb4fb9f0e4508a85d642f19d831560c0a4b61f3e907e67"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/extern/CUT3R/src/croco/models/blocks.py b/extern/CUT3R/src/croco/models/blocks.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa85a431b44d276e3bba9a33fdfd7097f02bc330
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/blocks.py
@@ -0,0 +1,385 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+
+# --------------------------------------------------------
+# Main encoder/decoder blocks
+# --------------------------------------------------------
+# References:
+# timm
+# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
+# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/helpers.py
+# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
+# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/mlp.py
+# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/patch_embed.py
+
+
+import torch
+import torch.nn as nn
+
+from itertools import repeat
+import collections.abc
+from torch.nn.functional import scaled_dot_product_attention
+
+
+def _ntuple(n):
+ def parse(x):
+ if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
+ return x
+ return tuple(repeat(x, n))
+
+ return parse
+
+
+to_2tuple = _ntuple(2)
+
+
+def drop_path(
+ x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
+):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
+ if drop_prob == 0.0 or not training:
+ return x
+ keep_prob = 1 - drop_prob
+ shape = (x.shape[0],) + (1,) * (
+ x.ndim - 1
+ ) # work with diff dim tensors, not just 2D ConvNets
+ random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
+ if keep_prob > 0.0 and scale_by_keep:
+ random_tensor.div_(keep_prob)
+ return x * random_tensor
+
+
+class DropPath(nn.Module):
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
+
+ def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
+ super(DropPath, self).__init__()
+ self.drop_prob = drop_prob
+ self.scale_by_keep = scale_by_keep
+
+ def forward(self, x):
+ return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
+
+ def extra_repr(self):
+ return f"drop_prob={round(self.drop_prob,3):0.3f}"
+
+
+class Mlp(nn.Module):
+ """MLP as used in Vision Transformer, MLP-Mixer and related networks"""
+
+ def __init__(
+ self,
+ in_features,
+ hidden_features=None,
+ out_features=None,
+ act_layer=nn.GELU,
+ bias=True,
+ drop=0.0,
+ ):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ bias = to_2tuple(bias)
+ drop_probs = to_2tuple(drop)
+
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
+ self.act = act_layer()
+ self.drop1 = nn.Dropout(drop_probs[0])
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
+ self.drop2 = nn.Dropout(drop_probs[1])
+
+ def forward(self, x):
+ return self.drop2(self.fc2(self.drop1(self.act(self.fc1(x)))))
+
+
+class Attention(nn.Module):
+
+ def __init__(
+ self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0
+ ):
+ super().__init__()
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = head_dim**-0.5
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+ self.attn_drop = nn.Dropout(attn_drop)
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+ self.rope = rope.float() if rope is not None else None
+
+ def forward(self, x, xpos):
+ B, N, C = x.shape
+
+ qkv = (
+ self.qkv(x)
+ .reshape(B, N, 3, self.num_heads, C // self.num_heads)
+ .transpose(1, 3)
+ )
+ q, k, v = [qkv[:, :, i] for i in range(3)]
+ # q,k,v = qkv.unbind(2) # make torchscript happy (cannot use tensor as tuple)
+
+ q_type = q.dtype
+ k_type = k.dtype
+ if self.rope is not None:
+ q = q.to(torch.float16)
+ k = k.to(torch.float16)
+ with torch.autocast(device_type="cuda", enabled=False):
+ q = self.rope(q, xpos)
+ k = self.rope(k, xpos)
+ q = q.to(q_type)
+ k = k.to(k_type)
+
+ # attn = (q @ k.transpose(-2, -1)) * self.scale
+ # attn = attn.softmax(dim=-1)
+ # attn = self.attn_drop(attn)
+
+ # x = (attn @ v).transpose(1, 2).reshape(B, N, C)
+ # x = memory_efficient_attention(query=q.permute(0, 2, 1, 3), key=k.permute(0, 2, 1, 3), value=v.permute(0, 2, 1, 3), p=self.attn_drop.p, scale=self.scale).reshape(B, N, C)
+ x = (
+ scaled_dot_product_attention(
+ query=q, key=k, value=v, dropout_p=self.attn_drop.p, scale=self.scale
+ )
+ .transpose(1, 2)
+ .reshape(B, N, C)
+ )
+ x = self.proj(x)
+ x = self.proj_drop(x)
+ return x
+
+
+class Block(nn.Module):
+
+ def __init__(
+ self,
+ dim,
+ num_heads,
+ mlp_ratio=4.0,
+ qkv_bias=False,
+ drop=0.0,
+ attn_drop=0.0,
+ drop_path=0.0,
+ act_layer=nn.GELU,
+ norm_layer=nn.LayerNorm,
+ rope=None,
+ ):
+ super().__init__()
+ self.norm1 = norm_layer(dim)
+ self.attn = Attention(
+ dim,
+ rope=rope,
+ num_heads=num_heads,
+ qkv_bias=qkv_bias,
+ attn_drop=attn_drop,
+ proj_drop=drop,
+ )
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+ self.norm2 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = Mlp(
+ in_features=dim,
+ hidden_features=mlp_hidden_dim,
+ act_layer=act_layer,
+ drop=drop,
+ )
+
+ def forward(self, x, xpos):
+ x = x + self.drop_path(self.attn(self.norm1(x), xpos))
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
+ return x
+
+
+class CrossAttention(nn.Module):
+
+ def __init__(
+ self, dim, rope=None, num_heads=8, qkv_bias=False, attn_drop=0.0, proj_drop=0.0
+ ):
+ super().__init__()
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = head_dim**-0.5
+
+ self.projq = nn.Linear(dim, dim, bias=qkv_bias)
+ self.projk = nn.Linear(dim, dim, bias=qkv_bias)
+ self.projv = nn.Linear(dim, dim, bias=qkv_bias)
+ self.attn_drop = nn.Dropout(attn_drop)
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+
+ self.rope = rope.float() if rope is not None else None
+
+ def forward(self, query, key, value, qpos, kpos):
+ B, Nq, C = query.shape
+ Nk = key.shape[1]
+ Nv = value.shape[1]
+
+ q = (
+ self.projq(query)
+ .reshape(B, Nq, self.num_heads, C // self.num_heads)
+ .permute(0, 2, 1, 3)
+ )
+ k = (
+ self.projk(key)
+ .reshape(B, Nk, self.num_heads, C // self.num_heads)
+ .permute(0, 2, 1, 3)
+ )
+ v = (
+ self.projv(value)
+ .reshape(B, Nv, self.num_heads, C // self.num_heads)
+ .permute(0, 2, 1, 3)
+ )
+
+ q_type = q.dtype
+ k_type = k.dtype
+ if self.rope is not None:
+ if qpos is not None:
+ q = q.to(torch.float16)
+ with torch.autocast(device_type="cuda", enabled=False):
+ q = self.rope(q, qpos)
+ q = q.to(q_type)
+
+ if kpos is not None:
+ k = k.to(torch.float16)
+ with torch.autocast(device_type="cuda", enabled=False):
+ k = self.rope(k, kpos)
+ k = k.to(k_type)
+
+ # attn = (q @ k.transpose(-2, -1)) * self.scale
+ # attn = attn.softmax(dim=-1)
+ # attn = self.attn_drop(attn)
+
+ # x = (attn @ v).transpose(1, 2).reshape(B, Nq, C)
+
+ # x = memory_efficient_attention(query=q.permute(0, 2, 1, 3), key=k.permute(0, 2, 1, 3), value=v.permute(0, 2, 1, 3), p=self.attn_drop.p, scale=self.scale).reshape(B, Nq, C)
+ x = (
+ scaled_dot_product_attention(
+ query=q, key=k, value=v, dropout_p=self.attn_drop.p, scale=self.scale
+ )
+ .transpose(1, 2)
+ .reshape(B, Nq, C)
+ )
+
+ x = self.proj(x)
+ x = self.proj_drop(x)
+ return x
+
+
+class DecoderBlock(nn.Module):
+
+ def __init__(
+ self,
+ dim,
+ num_heads,
+ mlp_ratio=4.0,
+ qkv_bias=False,
+ drop=0.0,
+ attn_drop=0.0,
+ drop_path=0.0,
+ act_layer=nn.GELU,
+ norm_layer=nn.LayerNorm,
+ norm_mem=True,
+ rope=None,
+ ):
+ super().__init__()
+ self.norm1 = norm_layer(dim)
+ self.attn = Attention(
+ dim,
+ rope=rope,
+ num_heads=num_heads,
+ qkv_bias=qkv_bias,
+ attn_drop=attn_drop,
+ proj_drop=drop,
+ )
+ self.cross_attn = CrossAttention(
+ dim,
+ rope=rope,
+ num_heads=num_heads,
+ qkv_bias=qkv_bias,
+ attn_drop=attn_drop,
+ proj_drop=drop,
+ )
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+ self.norm2 = norm_layer(dim)
+ self.norm3 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = Mlp(
+ in_features=dim,
+ hidden_features=mlp_hidden_dim,
+ act_layer=act_layer,
+ drop=drop,
+ )
+ self.norm_y = norm_layer(dim) if norm_mem else nn.Identity()
+
+ def forward(self, x, y, xpos, ypos):
+ x = x + self.drop_path(self.attn(self.norm1(x), xpos))
+ y_ = self.norm_y(y)
+ x = x + self.drop_path(self.cross_attn(self.norm2(x), y_, y_, xpos, ypos))
+ x = x + self.drop_path(self.mlp(self.norm3(x)))
+ return x, y
+
+
+# patch embedding
+class PositionGetter(object):
+ """return positions of patches"""
+
+ def __init__(self):
+ self.cache_positions = {}
+
+ def __call__(self, b, h, w, device):
+ if not (h, w) in self.cache_positions:
+ x = torch.arange(w, device=device)
+ y = torch.arange(h, device=device)
+ self.cache_positions[h, w] = torch.cartesian_prod(y, x) # (h, w, 2)
+ pos = self.cache_positions[h, w].view(1, h * w, 2).expand(b, -1, 2).clone()
+ return pos
+
+
+class PatchEmbed(nn.Module):
+ """just adding _init_weights + position getter compared to timm.models.layers.patch_embed.PatchEmbed"""
+
+ def __init__(
+ self,
+ img_size=224,
+ patch_size=16,
+ in_chans=3,
+ embed_dim=768,
+ norm_layer=None,
+ flatten=True,
+ ):
+ super().__init__()
+ img_size = to_2tuple(img_size)
+ patch_size = to_2tuple(patch_size)
+ self.img_size = img_size
+ self.patch_size = patch_size
+ self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
+ self.flatten = flatten
+
+ self.proj = nn.Conv2d(
+ in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
+ )
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
+
+ self.position_getter = PositionGetter()
+
+ def forward(self, x):
+ B, C, H, W = x.shape
+ torch._assert(
+ H == self.img_size[0],
+ f"Input image height ({H}) doesn't match model ({self.img_size[0]}).",
+ )
+ torch._assert(
+ W == self.img_size[1],
+ f"Input image width ({W}) doesn't match model ({self.img_size[1]}).",
+ )
+ x = self.proj(x)
+ pos = self.position_getter(B, x.size(2), x.size(3), x.device)
+ if self.flatten:
+ x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
+ x = self.norm(x)
+ return x, pos
+
+ def _init_weights(self):
+ w = self.proj.weight.data
+ torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
diff --git a/extern/CUT3R/src/croco/models/criterion.py b/extern/CUT3R/src/croco/models/criterion.py
new file mode 100644
index 0000000000000000000000000000000000000000..af94f572499c976ad9cfd87d4728b8b517cdfd39
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/criterion.py
@@ -0,0 +1,38 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Criterion to train CroCo
+# --------------------------------------------------------
+# References:
+# MAE: https://github.com/facebookresearch/mae
+# --------------------------------------------------------
+
+import torch
+
+
+class MaskedMSE(torch.nn.Module):
+
+ def __init__(self, norm_pix_loss=False, masked=True):
+ """
+ norm_pix_loss: normalize each patch by their pixel mean and variance
+ masked: compute loss over the masked patches only
+ """
+ super().__init__()
+ self.norm_pix_loss = norm_pix_loss
+ self.masked = masked
+
+ def forward(self, pred, mask, target):
+
+ if self.norm_pix_loss:
+ mean = target.mean(dim=-1, keepdim=True)
+ var = target.var(dim=-1, keepdim=True)
+ target = (target - mean) / (var + 1.0e-6) ** 0.5
+
+ loss = (pred - target) ** 2
+ loss = loss.mean(dim=-1) # [N, L], mean loss per patch
+ if self.masked:
+ loss = (loss * mask).sum() / mask.sum() # mean loss on masked patches
+ else:
+ loss = loss.mean() # mean loss
+ return loss
diff --git a/extern/CUT3R/src/croco/models/croco.py b/extern/CUT3R/src/croco/models/croco.py
new file mode 100644
index 0000000000000000000000000000000000000000..64b2410e9b52ab34bc66f1d7d768d0e91c8cf30b
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/croco.py
@@ -0,0 +1,330 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+
+# --------------------------------------------------------
+# CroCo model during pretraining
+# --------------------------------------------------------
+
+
+import torch
+import torch.nn as nn
+
+torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
+from functools import partial
+
+from models.blocks import Block, DecoderBlock, PatchEmbed
+from models.pos_embed import get_2d_sincos_pos_embed, RoPE2D
+from models.masking import RandomMask
+
+from transformers import PretrainedConfig
+from transformers import PreTrainedModel
+
+
+class CrocoConfig(PretrainedConfig):
+ model_type = "croco"
+
+ def __init__(
+ self,
+ img_size=224, # input image size
+ patch_size=16, # patch_size
+ mask_ratio=0.9, # ratios of masked tokens
+ enc_embed_dim=768, # encoder feature dimension
+ enc_depth=12, # encoder depth
+ enc_num_heads=12, # encoder number of heads in the transformer block
+ dec_embed_dim=512, # decoder feature dimension
+ dec_depth=8, # decoder depth
+ dec_num_heads=16, # decoder number of heads in the transformer block
+ mlp_ratio=4,
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
+ norm_im2_in_dec=True, # whether to apply normalization of the 'memory' = (second image) in the decoder
+ pos_embed="cosine", # positional embedding (either cosine or RoPE100)
+ ):
+ super().__init__()
+ self.img_size = img_size
+ self.patch_size = patch_size
+ self.mask_ratio = mask_ratio
+ self.enc_embed_dim = enc_embed_dim
+ self.enc_depth = enc_depth
+ self.enc_num_heads = enc_num_heads
+ self.dec_embed_dim = dec_embed_dim
+ self.dec_depth = dec_depth
+ self.dec_num_heads = dec_num_heads
+ self.mlp_ratio = mlp_ratio
+ self.norm_layer = norm_layer
+ self.norm_im2_in_dec = norm_im2_in_dec
+ self.pos_embed = pos_embed
+
+
+class CroCoNet(PreTrainedModel):
+
+ config_class = CrocoConfig
+ base_model_prefix = "croco"
+
+ def __init__(self, config: CrocoConfig):
+
+ super().__init__(config)
+
+ # patch embeddings (with initialization done as in MAE)
+ self._set_patch_embed(config.img_size, config.patch_size, config.enc_embed_dim)
+
+ # mask generations
+ self._set_mask_generator(self.patch_embed.num_patches, config.mask_ratio)
+
+ self.pos_embed = config.pos_embed
+ if config.pos_embed == "cosine":
+ # positional embedding of the encoder
+ enc_pos_embed = get_2d_sincos_pos_embed(
+ config.enc_embed_dim,
+ int(self.patch_embed.num_patches**0.5),
+ n_cls_token=0,
+ )
+ self.register_buffer(
+ "enc_pos_embed", torch.from_numpy(enc_pos_embed).float()
+ )
+ # positional embedding of the decoder
+ dec_pos_embed = get_2d_sincos_pos_embed(
+ config.dec_embed_dim,
+ int(self.patch_embed.num_patches**0.5),
+ n_cls_token=0,
+ )
+ self.register_buffer(
+ "dec_pos_embed", torch.from_numpy(dec_pos_embed).float()
+ )
+ # pos embedding in each block
+ self.rope = None # nothing for cosine
+ elif config.pos_embed.startswith("RoPE"): # eg RoPE100
+ self.enc_pos_embed = None # nothing to add in the encoder with RoPE
+ self.dec_pos_embed = None # nothing to add in the decoder with RoPE
+ if RoPE2D is None:
+ raise ImportError(
+ "Cannot find cuRoPE2D, please install it following the README instructions"
+ )
+ freq = float(config.pos_embed[len("RoPE") :])
+ self.rope = RoPE2D(freq=freq)
+ else:
+ raise NotImplementedError("Unknown pos_embed " + config.pos_embed)
+
+ # transformer for the encoder
+ self.enc_depth = config.enc_depth
+ self.enc_embed_dim = config.enc_embed_dim
+ self.enc_blocks = nn.ModuleList(
+ [
+ Block(
+ config.enc_embed_dim,
+ config.enc_num_heads,
+ config.mlp_ratio,
+ qkv_bias=True,
+ norm_layer=config.norm_layer,
+ rope=self.rope,
+ )
+ for i in range(config.enc_depth)
+ ]
+ )
+ self.enc_norm = config.norm_layer(config.enc_embed_dim)
+
+ # masked tokens
+ # self._set_mask_token(config.dec_embed_dim)
+ self.mask_token = None
+
+ # decoder
+ self._set_decoder(
+ config.enc_embed_dim,
+ config.dec_embed_dim,
+ config.dec_num_heads,
+ config.dec_depth,
+ config.mlp_ratio,
+ config.norm_layer,
+ config.norm_im2_in_dec,
+ )
+
+ # prediction head
+ self._set_prediction_head(config.dec_embed_dim, config.patch_size)
+
+ # initializer weights
+ self.initialize_weights()
+
+ def _set_patch_embed(self, img_size=224, patch_size=16, enc_embed_dim=768):
+ self.patch_embed = PatchEmbed(img_size, patch_size, 3, enc_embed_dim)
+
+ def _set_mask_generator(self, num_patches, mask_ratio):
+ self.mask_generator = RandomMask(num_patches, mask_ratio)
+
+ def _set_mask_token(self, dec_embed_dim):
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, dec_embed_dim))
+
+ def _set_decoder(
+ self,
+ enc_embed_dim,
+ dec_embed_dim,
+ dec_num_heads,
+ dec_depth,
+ mlp_ratio,
+ norm_layer,
+ norm_im2_in_dec,
+ ):
+ self.dec_depth = dec_depth
+ self.dec_embed_dim = dec_embed_dim
+ # transfer from encoder to decoder
+ self.decoder_embed = nn.Linear(enc_embed_dim, dec_embed_dim, bias=True)
+ # transformer for the decoder
+ self.dec_blocks = nn.ModuleList(
+ [
+ DecoderBlock(
+ dec_embed_dim,
+ dec_num_heads,
+ mlp_ratio=mlp_ratio,
+ qkv_bias=True,
+ norm_layer=norm_layer,
+ norm_mem=norm_im2_in_dec,
+ rope=self.rope,
+ )
+ for i in range(dec_depth)
+ ]
+ )
+ # final norm layer
+ self.dec_norm = norm_layer(dec_embed_dim)
+
+ def _set_prediction_head(self, dec_embed_dim, patch_size):
+ self.prediction_head = nn.Linear(dec_embed_dim, patch_size**2 * 3, bias=True)
+
+ def initialize_weights(self):
+ # patch embed
+ self.patch_embed._init_weights()
+ # mask tokens
+ if self.mask_token is not None:
+ torch.nn.init.normal_(self.mask_token, std=0.02)
+ # linears and layer norms
+ self.apply(self._init_weights)
+
+ def _init_weights(self, m):
+ if isinstance(m, nn.Linear):
+ # we use xavier_uniform following official JAX ViT:
+ torch.nn.init.xavier_uniform_(m.weight)
+ if isinstance(m, nn.Linear) and m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+ elif isinstance(m, nn.LayerNorm):
+ nn.init.constant_(m.bias, 0)
+ nn.init.constant_(m.weight, 1.0)
+
+ def _encode_image(self, image, do_mask=False, return_all_blocks=False):
+ """
+ image has B x 3 x img_size x img_size
+ do_mask: whether to perform masking or not
+ return_all_blocks: if True, return the features at the end of every block
+ instead of just the features from the last block (eg for some prediction heads)
+ """
+ # embed the image into patches (x has size B x Npatches x C)
+ # and get position if each return patch (pos has size B x Npatches x 2)
+ x, pos = self.patch_embed(image)
+ # add positional embedding without cls token
+ if self.enc_pos_embed is not None:
+ x = x + self.enc_pos_embed[None, ...]
+ # apply masking
+ B, N, C = x.size()
+ if do_mask:
+ masks = self.mask_generator(x)
+ x = x[~masks].view(B, -1, C)
+ posvis = pos[~masks].view(B, -1, 2)
+ else:
+ B, N, C = x.size()
+ masks = torch.zeros((B, N), dtype=bool)
+ posvis = pos
+ # now apply the transformer encoder and normalization
+ if return_all_blocks:
+ out = []
+ for blk in self.enc_blocks:
+ x = blk(x, posvis)
+ out.append(x)
+ out[-1] = self.enc_norm(out[-1])
+ return out, pos, masks
+ else:
+ for blk in self.enc_blocks:
+ x = blk(x, posvis)
+ x = self.enc_norm(x)
+ return x, pos, masks
+
+ def _decoder(self, feat1, pos1, masks1, feat2, pos2, return_all_blocks=False):
+ """
+ return_all_blocks: if True, return the features at the end of every block
+ instead of just the features from the last block (eg for some prediction heads)
+
+ masks1 can be None => assume image1 fully visible
+ """
+ # encoder to decoder layer
+ visf1 = self.decoder_embed(feat1)
+ f2 = self.decoder_embed(feat2)
+ # append masked tokens to the sequence
+ B, Nenc, C = visf1.size()
+ if masks1 is None: # downstreams
+ f1_ = visf1
+ else: # pretraining
+ Ntotal = masks1.size(1)
+ f1_ = self.mask_token.repeat(B, Ntotal, 1).to(dtype=visf1.dtype)
+ f1_[~masks1] = visf1.view(B * Nenc, C)
+ # add positional embedding
+ if self.dec_pos_embed is not None:
+ f1_ = f1_ + self.dec_pos_embed
+ f2 = f2 + self.dec_pos_embed
+ # apply Transformer blocks
+ out = f1_
+ out2 = f2
+ if return_all_blocks:
+ _out, out = out, []
+ for blk in self.dec_blocks:
+ _out, out2 = blk(_out, out2, pos1, pos2)
+ out.append(_out)
+ out[-1] = self.dec_norm(out[-1])
+ else:
+ for blk in self.dec_blocks:
+ out, out2 = blk(out, out2, pos1, pos2)
+ out = self.dec_norm(out)
+ return out
+
+ def patchify(self, imgs):
+ """
+ imgs: (B, 3, H, W)
+ x: (B, L, patch_size**2 *3)
+ """
+ p = self.patch_embed.patch_size[0]
+ assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
+
+ h = w = imgs.shape[2] // p
+ x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
+ x = torch.einsum("nchpwq->nhwpqc", x)
+ x = x.reshape(shape=(imgs.shape[0], h * w, p**2 * 3))
+
+ return x
+
+ def unpatchify(self, x, channels=3):
+ """
+ x: (N, L, patch_size**2 *channels)
+ imgs: (N, 3, H, W)
+ """
+ patch_size = self.patch_embed.patch_size[0]
+ h = w = int(x.shape[1] ** 0.5)
+ assert h * w == x.shape[1]
+ x = x.reshape(shape=(x.shape[0], h, w, patch_size, patch_size, channels))
+ x = torch.einsum("nhwpqc->nchpwq", x)
+ imgs = x.reshape(shape=(x.shape[0], channels, h * patch_size, h * patch_size))
+ return imgs
+
+ # def forward(self, img1, img2):
+ # """
+ # img1: tensor of size B x 3 x img_size x img_size
+ # img2: tensor of size B x 3 x img_size x img_size
+
+ # out will be B x N x (3*patch_size*patch_size)
+ # masks are also returned as B x N just in case
+ # """
+ # # encoder of the masked first image
+ # feat1, pos1, mask1 = self._encode_image(img1, do_mask=True)
+ # # encoder of the second image
+ # feat2, pos2, _ = self._encode_image(img2, do_mask=False)
+ # # decoder
+ # decfeat = self._decoder(feat1, pos1, mask1, feat2, pos2)
+ # # prediction head
+ # out = self.prediction_head(decfeat)
+ # # get target
+ # target = self.patchify(img1)
+ # return out, mask1, target
diff --git a/extern/CUT3R/src/croco/models/croco_downstream.py b/extern/CUT3R/src/croco/models/croco_downstream.py
new file mode 100644
index 0000000000000000000000000000000000000000..cd59dca45d403c16d60610640b4156b151f46c9b
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/croco_downstream.py
@@ -0,0 +1,141 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+# --------------------------------------------------------
+# CroCo model for downstream tasks
+# --------------------------------------------------------
+
+import torch
+
+from .croco import CroCoNet
+
+
+def croco_args_from_ckpt(ckpt):
+ if "croco_kwargs" in ckpt: # CroCo v2 released models
+ return ckpt["croco_kwargs"]
+ elif "args" in ckpt and hasattr(
+ ckpt["args"], "model"
+ ): # pretrained using the official code release
+ s = ckpt[
+ "args"
+ ].model # eg "CroCoNet(enc_embed_dim=1024, enc_num_heads=16, enc_depth=24)"
+ assert s.startswith("CroCoNet(")
+ return eval(
+ "dict" + s[len("CroCoNet") :]
+ ) # transform it into the string of a dictionary and evaluate it
+ else: # CroCo v1 released models
+ return dict()
+
+
+class CroCoDownstreamMonocularEncoder(CroCoNet):
+
+ def __init__(self, head, **kwargs):
+ """Build network for monocular downstream task, only using the encoder.
+ It takes an extra argument head, that is called with the features
+ and a dictionary img_info containing 'width' and 'height' keys
+ The head is setup with the croconet arguments in this init function
+ NOTE: It works by *calling super().__init__() but with redefined setters
+
+ """
+ super(CroCoDownstreamMonocularEncoder, self).__init__(**kwargs)
+ head.setup(self)
+ self.head = head
+
+ def _set_mask_generator(self, *args, **kwargs):
+ """No mask generator"""
+ return
+
+ def _set_mask_token(self, *args, **kwargs):
+ """No mask token"""
+ self.mask_token = None
+ return
+
+ def _set_decoder(self, *args, **kwargs):
+ """No decoder"""
+ return
+
+ def _set_prediction_head(self, *args, **kwargs):
+ """No 'prediction head' for downstream tasks."""
+ return
+
+ def forward(self, img):
+ """
+ img if of size batch_size x 3 x h x w
+ """
+ B, C, H, W = img.size()
+ img_info = {"height": H, "width": W}
+ need_all_layers = (
+ hasattr(self.head, "return_all_blocks") and self.head.return_all_blocks
+ )
+ out, _, _ = self._encode_image(
+ img, do_mask=False, return_all_blocks=need_all_layers
+ )
+ return self.head(out, img_info)
+
+
+class CroCoDownstreamBinocular(CroCoNet):
+
+ def __init__(self, head, **kwargs):
+ """Build network for binocular downstream task
+ It takes an extra argument head, that is called with the features
+ and a dictionary img_info containing 'width' and 'height' keys
+ The head is setup with the croconet arguments in this init function
+ """
+ super(CroCoDownstreamBinocular, self).__init__(**kwargs)
+ head.setup(self)
+ self.head = head
+
+ def _set_mask_generator(self, *args, **kwargs):
+ """No mask generator"""
+ return
+
+ def _set_mask_token(self, *args, **kwargs):
+ """No mask token"""
+ self.mask_token = None
+ return
+
+ def _set_prediction_head(self, *args, **kwargs):
+ """No prediction head for downstream tasks, define your own head"""
+ return
+
+ def encode_image_pairs(self, img1, img2, return_all_blocks=False):
+ """run encoder for a pair of images
+ it is actually ~5% faster to concatenate the images along the batch dimension
+ than to encode them separately
+ """
+ ## the two commented lines below is the naive version with separate encoding
+ # out, pos, _ = self._encode_image(img1, do_mask=False, return_all_blocks=return_all_blocks)
+ # out2, pos2, _ = self._encode_image(img2, do_mask=False, return_all_blocks=False)
+ ## and now the faster version
+ out, pos, _ = self._encode_image(
+ torch.cat((img1, img2), dim=0),
+ do_mask=False,
+ return_all_blocks=return_all_blocks,
+ )
+ if return_all_blocks:
+ out, out2 = list(map(list, zip(*[o.chunk(2, dim=0) for o in out])))
+ out2 = out2[-1]
+ else:
+ out, out2 = out.chunk(2, dim=0)
+ pos, pos2 = pos.chunk(2, dim=0)
+ return out, out2, pos, pos2
+
+ def forward(self, img1, img2):
+ B, C, H, W = img1.size()
+ img_info = {"height": H, "width": W}
+ return_all_blocks = (
+ hasattr(self.head, "return_all_blocks") and self.head.return_all_blocks
+ )
+ out, out2, pos, pos2 = self.encode_image_pairs(
+ img1, img2, return_all_blocks=return_all_blocks
+ )
+ if return_all_blocks:
+ decout = self._decoder(
+ out[-1], pos, None, out2, pos2, return_all_blocks=return_all_blocks
+ )
+ decout = out + decout
+ else:
+ decout = self._decoder(
+ out, pos, None, out2, pos2, return_all_blocks=return_all_blocks
+ )
+ return self.head(decout, img_info)
diff --git a/extern/CUT3R/src/croco/models/curope/__init__.py b/extern/CUT3R/src/croco/models/curope/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..25e3d48a162760260826080f6366838e83e26878
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/curope/__init__.py
@@ -0,0 +1,4 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+from .curope2d import cuRoPE2D
diff --git a/extern/CUT3R/src/croco/models/curope/curope.cpp b/extern/CUT3R/src/croco/models/curope/curope.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..8fe9058e05aa1bf3f37b0d970edc7312bc68455b
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/curope/curope.cpp
@@ -0,0 +1,69 @@
+/*
+ Copyright (C) 2022-present Naver Corporation. All rights reserved.
+ Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+*/
+
+#include
+
+// forward declaration
+void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd );
+
+void rope_2d_cpu( torch::Tensor tokens, const torch::Tensor positions, const float base, const float fwd )
+{
+ const int B = tokens.size(0);
+ const int N = tokens.size(1);
+ const int H = tokens.size(2);
+ const int D = tokens.size(3) / 4;
+
+ auto tok = tokens.accessor();
+ auto pos = positions.accessor();
+
+ for (int b = 0; b < B; b++) {
+ for (int x = 0; x < 2; x++) { // y and then x (2d)
+ for (int n = 0; n < N; n++) {
+
+ // grab the token position
+ const int p = pos[b][n][x];
+
+ for (int h = 0; h < H; h++) {
+ for (int d = 0; d < D; d++) {
+ // grab the two values
+ float u = tok[b][n][h][d+0+x*2*D];
+ float v = tok[b][n][h][d+D+x*2*D];
+
+ // grab the cos,sin
+ const float inv_freq = fwd * p / powf(base, d/float(D));
+ float c = cosf(inv_freq);
+ float s = sinf(inv_freq);
+
+ // write the result
+ tok[b][n][h][d+0+x*2*D] = u*c - v*s;
+ tok[b][n][h][d+D+x*2*D] = v*c + u*s;
+ }
+ }
+ }
+ }
+ }
+}
+
+void rope_2d( torch::Tensor tokens, // B,N,H,D
+ const torch::Tensor positions, // B,N,2
+ const float base,
+ const float fwd )
+{
+ TORCH_CHECK(tokens.dim() == 4, "tokens must have 4 dimensions");
+ TORCH_CHECK(positions.dim() == 3, "positions must have 3 dimensions");
+ TORCH_CHECK(tokens.size(0) == positions.size(0), "batch size differs between tokens & positions");
+ TORCH_CHECK(tokens.size(1) == positions.size(1), "seq_length differs between tokens & positions");
+ TORCH_CHECK(positions.size(2) == 2, "positions.shape[2] must be equal to 2");
+ TORCH_CHECK(tokens.is_cuda() == positions.is_cuda(), "tokens and positions are not on the same device" );
+
+ if (tokens.is_cuda())
+ rope_2d_cuda( tokens, positions, base, fwd );
+ else
+ rope_2d_cpu( tokens, positions, base, fwd );
+}
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+ m.def("rope_2d", &rope_2d, "RoPE 2d forward/backward");
+}
diff --git a/extern/CUT3R/src/croco/models/curope/curope2d.py b/extern/CUT3R/src/croco/models/curope/curope2d.py
new file mode 100644
index 0000000000000000000000000000000000000000..7e0345c31bd3925be91dde5b9cfc64432f7bf516
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/curope/curope2d.py
@@ -0,0 +1,40 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+import torch
+
+try:
+ import curope as _kernels # run `python setup.py install`
+except ModuleNotFoundError:
+ from . import curope as _kernels # run `python setup.py build_ext --inplace`
+
+
+class cuRoPE2D_func(torch.autograd.Function):
+
+ @staticmethod
+ def forward(ctx, tokens, positions, base, F0=1):
+ ctx.save_for_backward(positions)
+ ctx.saved_base = base
+ ctx.saved_F0 = F0
+ # tokens = tokens.clone() # uncomment this if inplace doesn't work
+ _kernels.rope_2d(tokens, positions, base, F0)
+ ctx.mark_dirty(tokens)
+ return tokens
+
+ @staticmethod
+ def backward(ctx, grad_res):
+ positions, base, F0 = ctx.saved_tensors[0], ctx.saved_base, ctx.saved_F0
+ _kernels.rope_2d(grad_res, positions, base, -F0)
+ ctx.mark_dirty(grad_res)
+ return grad_res, None, None, None
+
+
+class cuRoPE2D(torch.nn.Module):
+ def __init__(self, freq=100.0, F0=1.0):
+ super().__init__()
+ self.base = freq
+ self.F0 = F0
+
+ def forward(self, tokens, positions):
+ cuRoPE2D_func.apply(tokens.transpose(1, 2), positions, self.base, self.F0)
+ return tokens
diff --git a/extern/CUT3R/src/croco/models/curope/kernels.cu b/extern/CUT3R/src/croco/models/curope/kernels.cu
new file mode 100644
index 0000000000000000000000000000000000000000..bf777c25d7dd9fd3c70c25e0a7623799bc1434f5
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/curope/kernels.cu
@@ -0,0 +1,108 @@
+/*
+ Copyright (C) 2022-present Naver Corporation. All rights reserved.
+ Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+*/
+
+#include
+#include
+#include
+#include
+
+#define CHECK_CUDA(tensor) {\
+ TORCH_CHECK((tensor).is_cuda(), #tensor " is not in cuda memory"); \
+ TORCH_CHECK((tensor).is_contiguous(), #tensor " is not contiguous"); }
+void CHECK_KERNEL() {auto error = cudaGetLastError(); TORCH_CHECK( error == cudaSuccess, cudaGetErrorString(error));}
+
+
+template < typename scalar_t >
+__global__ void rope_2d_cuda_kernel(
+ //scalar_t* __restrict__ tokens,
+ torch::PackedTensorAccessor32 tokens,
+ const int64_t* __restrict__ pos,
+ const float base,
+ const float fwd )
+ // const int N, const int H, const int D )
+{
+ // tokens shape = (B, N, H, D)
+ const int N = tokens.size(1);
+ const int H = tokens.size(2);
+ const int D = tokens.size(3);
+
+ // each block update a single token, for all heads
+ // each thread takes care of a single output
+ extern __shared__ float shared[];
+ float* shared_inv_freq = shared + D;
+
+ const int b = blockIdx.x / N;
+ const int n = blockIdx.x % N;
+
+ const int Q = D / 4;
+ // one token = [0..Q : Q..2Q : 2Q..3Q : 3Q..D]
+ // u_Y v_Y u_X v_X
+
+ // shared memory: first, compute inv_freq
+ if (threadIdx.x < Q)
+ shared_inv_freq[threadIdx.x] = fwd / powf(base, threadIdx.x/float(Q));
+ __syncthreads();
+
+ // start of X or Y part
+ const int X = threadIdx.x < D/2 ? 0 : 1;
+ const int m = (X*D/2) + (threadIdx.x % Q); // index of u_Y or u_X
+
+ // grab the cos,sin appropriate for me
+ const float freq = pos[blockIdx.x*2+X] * shared_inv_freq[threadIdx.x % Q];
+ const float cos = cosf(freq);
+ const float sin = sinf(freq);
+ /*
+ float* shared_cos_sin = shared + D + D/4;
+ if ((threadIdx.x % (D/2)) < Q)
+ shared_cos_sin[m+0] = cosf(freq);
+ else
+ shared_cos_sin[m+Q] = sinf(freq);
+ __syncthreads();
+ const float cos = shared_cos_sin[m+0];
+ const float sin = shared_cos_sin[m+Q];
+ */
+
+ for (int h = 0; h < H; h++)
+ {
+ // then, load all the token for this head in shared memory
+ shared[threadIdx.x] = tokens[b][n][h][threadIdx.x];
+ __syncthreads();
+
+ const float u = shared[m];
+ const float v = shared[m+Q];
+
+ // write output
+ if ((threadIdx.x % (D/2)) < Q)
+ tokens[b][n][h][threadIdx.x] = u*cos - v*sin;
+ else
+ tokens[b][n][h][threadIdx.x] = v*cos + u*sin;
+ }
+}
+
+void rope_2d_cuda( torch::Tensor tokens, const torch::Tensor pos, const float base, const float fwd )
+{
+ const int B = tokens.size(0); // batch size
+ const int N = tokens.size(1); // sequence length
+ const int H = tokens.size(2); // number of heads
+ const int D = tokens.size(3); // dimension per head
+
+ TORCH_CHECK(tokens.stride(3) == 1 && tokens.stride(2) == D, "tokens are not contiguous");
+ TORCH_CHECK(pos.is_contiguous(), "positions are not contiguous");
+ TORCH_CHECK(pos.size(0) == B && pos.size(1) == N && pos.size(2) == 2, "bad pos.shape");
+ TORCH_CHECK(D % 4 == 0, "token dim must be multiple of 4");
+
+ // one block for each layer, one thread per local-max
+ const int THREADS_PER_BLOCK = D;
+ const int N_BLOCKS = B * N; // each block takes care of H*D values
+ const int SHARED_MEM = sizeof(float) * (D + D/4);
+
+ AT_DISPATCH_FLOATING_TYPES_AND_HALF(tokens.scalar_type(), "rope_2d_cuda", ([&] {
+ rope_2d_cuda_kernel <<>> (
+ //tokens.data_ptr(),
+ tokens.packed_accessor32(),
+ pos.data_ptr(),
+ base, fwd); //, N, H, D );
+ }));
+}
diff --git a/extern/CUT3R/src/croco/models/curope/setup.py b/extern/CUT3R/src/croco/models/curope/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..02ddb0912370a67a49fd2bb91164cf2f1da8648e
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/curope/setup.py
@@ -0,0 +1,34 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+from setuptools import setup
+from torch import cuda
+from torch.utils.cpp_extension import BuildExtension, CUDAExtension
+
+# compile for all possible CUDA architectures
+all_cuda_archs = cuda.get_gencode_flags().replace("compute=", "arch=").split()
+# alternatively, you can list cuda archs that you want, eg:
+# all_cuda_archs = [
+# '-gencode', 'arch=compute_70,code=sm_70',
+# '-gencode', 'arch=compute_75,code=sm_75',
+# '-gencode', 'arch=compute_80,code=sm_80',
+# '-gencode', 'arch=compute_86,code=sm_86'
+# ]
+
+setup(
+ name="curope",
+ ext_modules=[
+ CUDAExtension(
+ name="curope",
+ sources=[
+ "curope.cpp",
+ "kernels.cu",
+ ],
+ extra_compile_args=dict(
+ nvcc=["-O3", "--ptxas-options=-v", "--use_fast_math"] + all_cuda_archs,
+ cxx=["-O3"],
+ ),
+ )
+ ],
+ cmdclass={"build_ext": BuildExtension},
+)
diff --git a/extern/CUT3R/src/croco/models/dpt_block.py b/extern/CUT3R/src/croco/models/dpt_block.py
new file mode 100644
index 0000000000000000000000000000000000000000..b470d91c9c86af8f3b3947e3abcf96d49ab3e06d
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/dpt_block.py
@@ -0,0 +1,513 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+# --------------------------------------------------------
+# DPT head for ViTs
+# --------------------------------------------------------
+# References:
+# https://github.com/isl-org/DPT
+# https://github.com/EPFL-VILAB/MultiMAE/blob/main/multimae/output_adapters.py
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from einops import rearrange, repeat
+from typing import Union, Tuple, Iterable, List, Optional, Dict
+
+
+def pair(t):
+ return t if isinstance(t, tuple) else (t, t)
+
+
+def make_scratch(in_shape, out_shape, groups=1, expand=False):
+ scratch = nn.Module()
+
+ out_shape1 = out_shape
+ out_shape2 = out_shape
+ out_shape3 = out_shape
+ out_shape4 = out_shape
+ if expand == True:
+ out_shape1 = out_shape
+ out_shape2 = out_shape * 2
+ out_shape3 = out_shape * 4
+ out_shape4 = out_shape * 8
+
+ scratch.layer1_rn = nn.Conv2d(
+ in_shape[0],
+ out_shape1,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=False,
+ groups=groups,
+ )
+ scratch.layer2_rn = nn.Conv2d(
+ in_shape[1],
+ out_shape2,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=False,
+ groups=groups,
+ )
+ scratch.layer3_rn = nn.Conv2d(
+ in_shape[2],
+ out_shape3,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=False,
+ groups=groups,
+ )
+ scratch.layer4_rn = nn.Conv2d(
+ in_shape[3],
+ out_shape4,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=False,
+ groups=groups,
+ )
+
+ scratch.layer_rn = nn.ModuleList(
+ [
+ scratch.layer1_rn,
+ scratch.layer2_rn,
+ scratch.layer3_rn,
+ scratch.layer4_rn,
+ ]
+ )
+
+ return scratch
+
+
+class ResidualConvUnit_custom(nn.Module):
+ """Residual convolution module."""
+
+ def __init__(self, features, activation, bn):
+ """Init.
+ Args:
+ features (int): number of features
+ """
+ super().__init__()
+
+ self.bn = bn
+
+ self.groups = 1
+
+ self.conv1 = nn.Conv2d(
+ features,
+ features,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=not self.bn,
+ groups=self.groups,
+ )
+
+ self.conv2 = nn.Conv2d(
+ features,
+ features,
+ kernel_size=3,
+ stride=1,
+ padding=1,
+ bias=not self.bn,
+ groups=self.groups,
+ )
+
+ if self.bn == True:
+ self.bn1 = nn.BatchNorm2d(features)
+ self.bn2 = nn.BatchNorm2d(features)
+
+ self.activation = activation
+
+ self.skip_add = nn.quantized.FloatFunctional()
+
+ def forward(self, x):
+ """Forward pass.
+ Args:
+ x (tensor): input
+ Returns:
+ tensor: output
+ """
+
+ out = self.activation(x)
+ out = self.conv1(out)
+ if self.bn == True:
+ out = self.bn1(out)
+
+ out = self.activation(out)
+ out = self.conv2(out)
+ if self.bn == True:
+ out = self.bn2(out)
+
+ if self.groups > 1:
+ out = self.conv_merge(out)
+
+ return self.skip_add.add(out, x)
+
+
+class FeatureFusionBlock_custom(nn.Module):
+ """Feature fusion block."""
+
+ def __init__(
+ self,
+ features,
+ activation,
+ deconv=False,
+ bn=False,
+ expand=False,
+ align_corners=True,
+ width_ratio=1,
+ ):
+ """Init.
+ Args:
+ features (int): number of features
+ """
+ super(FeatureFusionBlock_custom, self).__init__()
+ self.width_ratio = width_ratio
+
+ self.deconv = deconv
+ self.align_corners = align_corners
+
+ self.groups = 1
+
+ self.expand = expand
+ out_features = features
+ if self.expand == True:
+ out_features = features // 2
+
+ self.out_conv = nn.Conv2d(
+ features,
+ out_features,
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ bias=True,
+ groups=1,
+ )
+
+ self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
+ self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
+
+ self.skip_add = nn.quantized.FloatFunctional()
+
+ def forward(self, *xs):
+ """Forward pass.
+ Returns:
+ tensor: output
+ """
+ output = xs[0]
+
+ if len(xs) == 2:
+ res = self.resConfUnit1(xs[1])
+ if self.width_ratio != 1:
+ res = F.interpolate(
+ res, size=(output.shape[2], output.shape[3]), mode="bilinear"
+ )
+
+ output = self.skip_add.add(output, res)
+ # output += res
+
+ output = self.resConfUnit2(output)
+
+ if self.width_ratio != 1:
+ # and output.shape[3] < self.width_ratio * output.shape[2]
+ # size=(image.shape[])
+ if (output.shape[3] / output.shape[2]) < (2 / 3) * self.width_ratio:
+ shape = 3 * output.shape[3]
+ else:
+ shape = int(self.width_ratio * 2 * output.shape[2])
+ output = F.interpolate(
+ output, size=(2 * output.shape[2], shape), mode="bilinear"
+ )
+ else:
+ output = nn.functional.interpolate(
+ output,
+ scale_factor=2,
+ mode="bilinear",
+ align_corners=self.align_corners,
+ )
+ output = self.out_conv(output)
+ return output
+
+
+def make_fusion_block(features, use_bn, width_ratio=1):
+ return FeatureFusionBlock_custom(
+ features,
+ nn.ReLU(False),
+ deconv=False,
+ bn=use_bn,
+ expand=False,
+ align_corners=True,
+ width_ratio=width_ratio,
+ )
+
+
+class Interpolate(nn.Module):
+ """Interpolation module."""
+
+ def __init__(self, scale_factor, mode, align_corners=False):
+ """Init.
+ Args:
+ scale_factor (float): scaling
+ mode (str): interpolation mode
+ """
+ super(Interpolate, self).__init__()
+
+ self.interp = nn.functional.interpolate
+ self.scale_factor = scale_factor
+ self.mode = mode
+ self.align_corners = align_corners
+
+ def forward(self, x):
+ """Forward pass.
+ Args:
+ x (tensor): input
+ Returns:
+ tensor: interpolated data
+ """
+
+ x = self.interp(
+ x,
+ scale_factor=self.scale_factor,
+ mode=self.mode,
+ align_corners=self.align_corners,
+ )
+
+ return x
+
+
+class DPTOutputAdapter(nn.Module):
+ """DPT output adapter.
+
+ :param num_cahnnels: Number of output channels
+ :param stride_level: tride level compared to the full-sized image.
+ E.g. 4 for 1/4th the size of the image.
+ :param patch_size_full: Int or tuple of the patch size over the full image size.
+ Patch size for smaller inputs will be computed accordingly.
+ :param hooks: Index of intermediate layers
+ :param layer_dims: Dimension of intermediate layers
+ :param feature_dim: Feature dimension
+ :param last_dim: out_channels/in_channels for the last two Conv2d when head_type == regression
+ :param use_bn: If set to True, activates batch norm
+ :param dim_tokens_enc: Dimension of tokens coming from encoder
+ """
+
+ def __init__(
+ self,
+ num_channels: int = 1,
+ stride_level: int = 1,
+ patch_size: Union[int, Tuple[int, int]] = 16,
+ main_tasks: Iterable[str] = ("rgb",),
+ hooks: List[int] = [2, 5, 8, 11],
+ layer_dims: List[int] = [96, 192, 384, 768],
+ feature_dim: int = 256,
+ last_dim: int = 32,
+ use_bn: bool = False,
+ dim_tokens_enc: Optional[int] = None,
+ head_type: str = "regression",
+ output_width_ratio=1,
+ **kwargs
+ ):
+ super().__init__()
+ self.num_channels = num_channels
+ self.stride_level = stride_level
+ self.patch_size = pair(patch_size)
+ self.main_tasks = main_tasks
+ self.hooks = hooks
+ self.layer_dims = layer_dims
+ self.feature_dim = feature_dim
+ self.dim_tokens_enc = (
+ dim_tokens_enc * len(self.main_tasks)
+ if dim_tokens_enc is not None
+ else None
+ )
+ self.head_type = head_type
+
+ # Actual patch height and width, taking into account stride of input
+ self.P_H = max(1, self.patch_size[0] // stride_level)
+ self.P_W = max(1, self.patch_size[1] // stride_level)
+
+ self.scratch = make_scratch(layer_dims, feature_dim, groups=1, expand=False)
+
+ self.scratch.refinenet1 = make_fusion_block(
+ feature_dim, use_bn, output_width_ratio
+ )
+ self.scratch.refinenet2 = make_fusion_block(
+ feature_dim, use_bn, output_width_ratio
+ )
+ self.scratch.refinenet3 = make_fusion_block(
+ feature_dim, use_bn, output_width_ratio
+ )
+ self.scratch.refinenet4 = make_fusion_block(
+ feature_dim, use_bn, output_width_ratio
+ )
+
+ if self.head_type == "regression":
+ # The "DPTDepthModel" head
+ self.head = nn.Sequential(
+ nn.Conv2d(
+ feature_dim, feature_dim // 2, kernel_size=3, stride=1, padding=1
+ ),
+ Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
+ nn.Conv2d(
+ feature_dim // 2, last_dim, kernel_size=3, stride=1, padding=1
+ ),
+ nn.ReLU(True),
+ nn.Conv2d(
+ last_dim, self.num_channels, kernel_size=1, stride=1, padding=0
+ ),
+ )
+ elif self.head_type == "semseg":
+ # The "DPTSegmentationModel" head
+ self.head = nn.Sequential(
+ nn.Conv2d(
+ feature_dim, feature_dim, kernel_size=3, padding=1, bias=False
+ ),
+ nn.BatchNorm2d(feature_dim) if use_bn else nn.Identity(),
+ nn.ReLU(True),
+ nn.Dropout(0.1, False),
+ nn.Conv2d(feature_dim, self.num_channels, kernel_size=1),
+ Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
+ )
+ else:
+ raise ValueError('DPT head_type must be "regression" or "semseg".')
+
+ if self.dim_tokens_enc is not None:
+ self.init(dim_tokens_enc=dim_tokens_enc)
+
+ def init(self, dim_tokens_enc=768):
+ """
+ Initialize parts of decoder that are dependent on dimension of encoder tokens.
+ Should be called when setting up MultiMAE.
+
+ :param dim_tokens_enc: Dimension of tokens coming from encoder
+ """
+ # print(dim_tokens_enc)
+
+ # Set up activation postprocessing layers
+ if isinstance(dim_tokens_enc, int):
+ dim_tokens_enc = 4 * [dim_tokens_enc]
+
+ self.dim_tokens_enc = [dt * len(self.main_tasks) for dt in dim_tokens_enc]
+
+ self.act_1_postprocess = nn.Sequential(
+ nn.Conv2d(
+ in_channels=self.dim_tokens_enc[0],
+ out_channels=self.layer_dims[0],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ nn.ConvTranspose2d(
+ in_channels=self.layer_dims[0],
+ out_channels=self.layer_dims[0],
+ kernel_size=4,
+ stride=4,
+ padding=0,
+ bias=True,
+ dilation=1,
+ groups=1,
+ ),
+ )
+
+ self.act_2_postprocess = nn.Sequential(
+ nn.Conv2d(
+ in_channels=self.dim_tokens_enc[1],
+ out_channels=self.layer_dims[1],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ nn.ConvTranspose2d(
+ in_channels=self.layer_dims[1],
+ out_channels=self.layer_dims[1],
+ kernel_size=2,
+ stride=2,
+ padding=0,
+ bias=True,
+ dilation=1,
+ groups=1,
+ ),
+ )
+
+ self.act_3_postprocess = nn.Sequential(
+ nn.Conv2d(
+ in_channels=self.dim_tokens_enc[2],
+ out_channels=self.layer_dims[2],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ )
+ )
+
+ self.act_4_postprocess = nn.Sequential(
+ nn.Conv2d(
+ in_channels=self.dim_tokens_enc[3],
+ out_channels=self.layer_dims[3],
+ kernel_size=1,
+ stride=1,
+ padding=0,
+ ),
+ nn.Conv2d(
+ in_channels=self.layer_dims[3],
+ out_channels=self.layer_dims[3],
+ kernel_size=3,
+ stride=2,
+ padding=1,
+ ),
+ )
+
+ self.act_postprocess = nn.ModuleList(
+ [
+ self.act_1_postprocess,
+ self.act_2_postprocess,
+ self.act_3_postprocess,
+ self.act_4_postprocess,
+ ]
+ )
+
+ def adapt_tokens(self, encoder_tokens):
+ # Adapt tokens
+ x = []
+ x.append(encoder_tokens[:, :])
+ x = torch.cat(x, dim=-1)
+ return x
+
+ def forward(self, encoder_tokens: List[torch.Tensor], image_size):
+ # input_info: Dict):
+ assert (
+ self.dim_tokens_enc is not None
+ ), "Need to call init(dim_tokens_enc) function first"
+ H, W = image_size
+
+ # Number of patches in height and width
+ N_H = H // (self.stride_level * self.P_H)
+ N_W = W // (self.stride_level * self.P_W)
+
+ # Hook decoder onto 4 layers from specified ViT layers
+ layers = [encoder_tokens[hook] for hook in self.hooks]
+
+ # Extract only task-relevant tokens and ignore global tokens.
+ layers = [self.adapt_tokens(l) for l in layers]
+
+ # Reshape tokens to spatial representation
+ layers = [
+ rearrange(l, "b (nh nw) c -> b c nh nw", nh=N_H, nw=N_W) for l in layers
+ ]
+
+ layers = [self.act_postprocess[idx](l) for idx, l in enumerate(layers)]
+ # Project layers to chosen feature dim
+ layers = [self.scratch.layer_rn[idx](l) for idx, l in enumerate(layers)]
+
+ # Fuse layers using refinement stages
+ path_4 = self.scratch.refinenet4(layers[3])
+ path_3 = self.scratch.refinenet3(path_4, layers[2])
+ path_2 = self.scratch.refinenet2(path_3, layers[1])
+ path_1 = self.scratch.refinenet1(path_2, layers[0])
+
+ # Output head
+ out = self.head(path_1)
+
+ return out
diff --git a/extern/CUT3R/src/croco/models/head_downstream.py b/extern/CUT3R/src/croco/models/head_downstream.py
new file mode 100644
index 0000000000000000000000000000000000000000..384afcbd6ac9d4b5729c0219dd8534b5123d2b17
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/head_downstream.py
@@ -0,0 +1,83 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+# --------------------------------------------------------
+# Heads for downstream tasks
+# --------------------------------------------------------
+
+"""
+A head is a module where the __init__ defines only the head hyperparameters.
+A method setup(croconet) takes a CroCoNet and set all layers according to the head and croconet attributes.
+The forward takes the features as well as a dictionary img_info containing the keys 'width' and 'height'
+"""
+
+import torch
+import torch.nn as nn
+from .dpt_block import DPTOutputAdapter
+
+
+class PixelwiseTaskWithDPT(nn.Module):
+ """DPT module for CroCo.
+ by default, hooks_idx will be equal to:
+ * for encoder-only: 4 equally spread layers
+ * for encoder+decoder: last encoder + 3 equally spread layers of the decoder
+ """
+
+ def __init__(
+ self,
+ *,
+ hooks_idx=None,
+ layer_dims=[96, 192, 384, 768],
+ output_width_ratio=1,
+ num_channels=1,
+ postprocess=None,
+ **kwargs,
+ ):
+ super(PixelwiseTaskWithDPT, self).__init__()
+ self.return_all_blocks = True # backbone needs to return all layers
+ self.postprocess = postprocess
+ self.output_width_ratio = output_width_ratio
+ self.num_channels = num_channels
+ self.hooks_idx = hooks_idx
+ self.layer_dims = layer_dims
+
+ def setup(self, croconet):
+ dpt_args = {
+ "output_width_ratio": self.output_width_ratio,
+ "num_channels": self.num_channels,
+ }
+ if self.hooks_idx is None:
+ if hasattr(croconet, "dec_blocks"): # encoder + decoder
+ step = {8: 3, 12: 4, 24: 8}[croconet.dec_depth]
+ hooks_idx = [
+ croconet.dec_depth + croconet.enc_depth - 1 - i * step
+ for i in range(3, -1, -1)
+ ]
+ else: # encoder only
+ step = croconet.enc_depth // 4
+ hooks_idx = [
+ croconet.enc_depth - 1 - i * step for i in range(3, -1, -1)
+ ]
+ self.hooks_idx = hooks_idx
+ print(
+ f" PixelwiseTaskWithDPT: automatically setting hook_idxs={self.hooks_idx}"
+ )
+ dpt_args["hooks"] = self.hooks_idx
+ dpt_args["layer_dims"] = self.layer_dims
+ self.dpt = DPTOutputAdapter(**dpt_args)
+ dim_tokens = [
+ (
+ croconet.enc_embed_dim
+ if hook < croconet.enc_depth
+ else croconet.dec_embed_dim
+ )
+ for hook in self.hooks_idx
+ ]
+ dpt_init_args = {"dim_tokens_enc": dim_tokens}
+ self.dpt.init(**dpt_init_args)
+
+ def forward(self, x, img_info):
+ out = self.dpt(x, image_size=(img_info["height"], img_info["width"]))
+ if self.postprocess:
+ out = self.postprocess(out)
+ return out
diff --git a/extern/CUT3R/src/croco/models/masking.py b/extern/CUT3R/src/croco/models/masking.py
new file mode 100644
index 0000000000000000000000000000000000000000..ae18f927ae82e4075c2246ce722007c69a4da344
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/masking.py
@@ -0,0 +1,26 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+
+# --------------------------------------------------------
+# Masking utils
+# --------------------------------------------------------
+
+import torch
+import torch.nn as nn
+
+
+class RandomMask(nn.Module):
+ """
+ random masking
+ """
+
+ def __init__(self, num_patches, mask_ratio):
+ super().__init__()
+ self.num_patches = num_patches
+ self.num_mask = int(mask_ratio * self.num_patches)
+
+ def __call__(self, x):
+ noise = torch.rand(x.size(0), self.num_patches, device=x.device)
+ argsort = torch.argsort(noise, dim=1)
+ return argsort < self.num_mask
diff --git a/extern/CUT3R/src/croco/models/pos_embed.py b/extern/CUT3R/src/croco/models/pos_embed.py
new file mode 100644
index 0000000000000000000000000000000000000000..97bf1323bc9113dd22cd7e32ae4f47e8899460b4
--- /dev/null
+++ b/extern/CUT3R/src/croco/models/pos_embed.py
@@ -0,0 +1,181 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+
+# --------------------------------------------------------
+# Position embedding utils
+# --------------------------------------------------------
+
+
+import numpy as np
+
+import torch
+
+
+# --------------------------------------------------------
+# 2D sine-cosine position embedding
+# References:
+# MAE: https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
+# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
+# MoCo v3: https://github.com/facebookresearch/moco-v3
+# --------------------------------------------------------
+def get_2d_sincos_pos_embed(embed_dim, grid_size, n_cls_token=0):
+ """
+ grid_size: int of the grid height and width
+ return:
+ pos_embed: [grid_size*grid_size, embed_dim] or [n_cls_token+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
+ """
+ grid_h = np.arange(grid_size, dtype=np.float32)
+ grid_w = np.arange(grid_size, dtype=np.float32)
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
+ grid = np.stack(grid, axis=0)
+
+ grid = grid.reshape([2, 1, grid_size, grid_size])
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
+ if n_cls_token > 0:
+ pos_embed = np.concatenate(
+ [np.zeros([n_cls_token, embed_dim]), pos_embed], axis=0
+ )
+ return pos_embed
+
+
+def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
+ assert embed_dim % 2 == 0
+
+ # use half of dimensions to encode grid_h
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
+
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
+ return emb
+
+
+def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
+ """
+ embed_dim: output dimension for each position
+ pos: a list of positions to be encoded: size (M,)
+ out: (M, D)
+ """
+ assert embed_dim % 2 == 0
+ omega = np.arange(embed_dim // 2, dtype=float)
+ omega /= embed_dim / 2.0
+ omega = 1.0 / 10000**omega # (D/2,)
+
+ pos = pos.reshape(-1) # (M,)
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
+
+ emb_sin = np.sin(out) # (M, D/2)
+ emb_cos = np.cos(out) # (M, D/2)
+
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
+ return emb
+
+
+# --------------------------------------------------------
+# Interpolate position embeddings for high-resolution
+# References:
+# MAE: https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
+# DeiT: https://github.com/facebookresearch/deit
+# --------------------------------------------------------
+def interpolate_pos_embed(model, checkpoint_model):
+ if "pos_embed" in checkpoint_model:
+ pos_embed_checkpoint = checkpoint_model["pos_embed"]
+ embedding_size = pos_embed_checkpoint.shape[-1]
+ num_patches = model.patch_embed.num_patches
+ num_extra_tokens = model.pos_embed.shape[-2] - num_patches
+ # height (== width) for the checkpoint position embedding
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
+ # height (== width) for the new position embedding
+ new_size = int(num_patches**0.5)
+ # class_token and dist_token are kept unchanged
+ if orig_size != new_size:
+ print(
+ "Position interpolate from %dx%d to %dx%d"
+ % (orig_size, orig_size, new_size, new_size)
+ )
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
+ # only the position tokens are interpolated
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
+ pos_tokens = pos_tokens.reshape(
+ -1, orig_size, orig_size, embedding_size
+ ).permute(0, 3, 1, 2)
+ pos_tokens = torch.nn.functional.interpolate(
+ pos_tokens,
+ size=(new_size, new_size),
+ mode="bicubic",
+ align_corners=False,
+ )
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
+ checkpoint_model["pos_embed"] = new_pos_embed
+
+
+# ----------------------------------------------------------
+# RoPE2D: RoPE implementation in 2D
+# ----------------------------------------------------------
+
+# Directly use PyTorch implementation due to CUDA compatibility issues
+try:
+ from models.curope import cuRoPE2D
+ RoPE2D = cuRoPE2D
+ print("Using CUDA-compiled version of RoPE2D")
+except ImportError:
+ print(
+ "Warning, cannot find cuda-compiled version of RoPE2D, using a slow pytorch version instead"
+ )
+
+
+# class RoPE2D(torch.nn.Module):
+
+# def __init__(self, freq=100.0, F0=1.0):
+# super().__init__()
+# self.base = freq
+# self.F0 = F0
+# self.cache = {}
+
+# def get_cos_sin(self, D, seq_len, device, dtype):
+# if (D, seq_len, device, dtype) not in self.cache:
+# inv_freq = 1.0 / (
+# self.base ** (torch.arange(0, D, 2).float().to(device) / D)
+# )
+# t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype)
+# freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype)
+# freqs = torch.cat((freqs, freqs), dim=-1)
+# cos = freqs.cos() # (Seq, Dim)
+# sin = freqs.sin()
+# self.cache[D, seq_len, device, dtype] = (cos, sin)
+# return self.cache[D, seq_len, device, dtype]
+
+# @staticmethod
+# def rotate_half(x):
+# x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
+# return torch.cat((-x2, x1), dim=-1)
+
+# def apply_rope1d(self, tokens, pos1d, cos, sin):
+# assert pos1d.ndim == 2
+# cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :]
+# sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :]
+# return (tokens * cos) + (self.rotate_half(tokens) * sin)
+
+# def forward(self, tokens, positions):
+# """
+# input:
+# * tokens: batch_size x nheads x ntokens x dim
+# * positions: batch_size x ntokens x 2 (y and x position of each token)
+# output:
+# * tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim)
+# """
+# assert (
+# tokens.size(3) % 2 == 0
+# ), "number of dimensions should be a multiple of two"
+# D = tokens.size(3) // 2
+# assert positions.ndim == 3 and positions.shape[-1] == 2 # Batch, Seq, 2
+# cos, sin = self.get_cos_sin(
+# D, int(positions.max()) + 1, tokens.device, tokens.dtype
+# )
+# # split features into two along the feature dimension, and apply rope1d on each half
+# y, x = tokens.chunk(2, dim=-1)
+# y = self.apply_rope1d(y, positions[:, :, 0], cos, sin)
+# x = self.apply_rope1d(x, positions[:, :, 1], cos, sin)
+# tokens = torch.cat((y, x), dim=-1)
+# return tokens
diff --git a/extern/CUT3R/src/croco/pretrain.py b/extern/CUT3R/src/croco/pretrain.py
new file mode 100644
index 0000000000000000000000000000000000000000..fef4ff2a0b7cb865a68741ac0e76d43d50ee4659
--- /dev/null
+++ b/extern/CUT3R/src/croco/pretrain.py
@@ -0,0 +1,391 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+#
+# --------------------------------------------------------
+# Pre-training CroCo
+# --------------------------------------------------------
+# References:
+# MAE: https://github.com/facebookresearch/mae
+# DeiT: https://github.com/facebookresearch/deit
+# BEiT: https://github.com/microsoft/unilm/tree/master/beit
+# --------------------------------------------------------
+import argparse
+import datetime
+import json
+import numpy as np
+import os
+import sys
+import time
+import math
+from pathlib import Path
+from typing import Iterable
+
+import torch
+import torch.distributed as dist
+import torch.backends.cudnn as cudnn
+from torch.utils.tensorboard import SummaryWriter
+import torchvision.transforms as transforms
+import torchvision.datasets as datasets
+
+import utils.misc as misc
+from utils.misc import NativeScalerWithGradNormCount as NativeScaler
+from models.croco import CroCoNet
+from models.criterion import MaskedMSE
+from datasets.pairs_dataset import PairsDataset
+
+
+def get_args_parser():
+ parser = argparse.ArgumentParser("CroCo pre-training", add_help=False)
+ # model and criterion
+ parser.add_argument(
+ "--model",
+ default="CroCoNet()",
+ type=str,
+ help="string containing the model to build",
+ )
+ parser.add_argument(
+ "--norm_pix_loss",
+ default=1,
+ choices=[0, 1],
+ help="apply per-patch mean/std normalization before applying the loss",
+ )
+ # dataset
+ parser.add_argument(
+ "--dataset", default="habitat_release", type=str, help="training set"
+ )
+ parser.add_argument(
+ "--transforms", default="crop224+acolor", type=str, help="transforms to apply"
+ ) # in the paper, we also use some homography and rotation, but find later that they were not useful or even harmful
+ # training
+ parser.add_argument("--seed", default=0, type=int, help="Random seed")
+ parser.add_argument(
+ "--batch_size",
+ default=64,
+ type=int,
+ help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus",
+ )
+ parser.add_argument(
+ "--epochs",
+ default=800,
+ type=int,
+ help="Maximum number of epochs for the scheduler",
+ )
+ parser.add_argument(
+ "--max_epoch", default=400, type=int, help="Stop training at this epoch"
+ )
+ parser.add_argument(
+ "--accum_iter",
+ default=1,
+ type=int,
+ help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)",
+ )
+ parser.add_argument(
+ "--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)"
+ )
+ parser.add_argument(
+ "--lr",
+ type=float,
+ default=None,
+ metavar="LR",
+ help="learning rate (absolute lr)",
+ )
+ parser.add_argument(
+ "--blr",
+ type=float,
+ default=1.5e-4,
+ metavar="LR",
+ help="base learning rate: absolute_lr = base_lr * total_batch_size / 256",
+ )
+ parser.add_argument(
+ "--min_lr",
+ type=float,
+ default=0.0,
+ metavar="LR",
+ help="lower lr bound for cyclic schedulers that hit 0",
+ )
+ parser.add_argument(
+ "--warmup_epochs", type=int, default=40, metavar="N", help="epochs to warmup LR"
+ )
+ parser.add_argument(
+ "--amp",
+ type=int,
+ default=1,
+ choices=[0, 1],
+ help="Use Automatic Mixed Precision for pretraining",
+ )
+ # others
+ parser.add_argument("--num_workers", default=8, type=int)
+ parser.add_argument(
+ "--world_size", default=1, type=int, help="number of distributed processes"
+ )
+ parser.add_argument("--local_rank", default=-1, type=int)
+ parser.add_argument(
+ "--dist_url", default="env://", help="url used to set up distributed training"
+ )
+ parser.add_argument(
+ "--save_freq",
+ default=1,
+ type=int,
+ help="frequence (number of epochs) to save checkpoint in checkpoint-last.pth",
+ )
+ parser.add_argument(
+ "--keep_freq",
+ default=20,
+ type=int,
+ help="frequence (number of epochs) to save checkpoint in checkpoint-%d.pth",
+ )
+ parser.add_argument(
+ "--print_freq",
+ default=20,
+ type=int,
+ help="frequence (number of iterations) to print infos while training",
+ )
+ # paths
+ parser.add_argument(
+ "--output_dir",
+ default="./output/",
+ type=str,
+ help="path where to save the output",
+ )
+ parser.add_argument(
+ "--data_dir", default="./data/", type=str, help="path where data are stored"
+ )
+ return parser
+
+
+def main(args):
+ misc.init_distributed_mode(args)
+ global_rank = misc.get_rank()
+ world_size = misc.get_world_size()
+
+ print("output_dir: " + args.output_dir)
+ if args.output_dir:
+ Path(args.output_dir).mkdir(parents=True, exist_ok=True)
+
+ # auto resume
+ last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth")
+ args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None
+
+ print("job dir: {}".format(os.path.dirname(os.path.realpath(__file__))))
+ print("{}".format(args).replace(", ", ",\n"))
+
+ device = "cuda" if torch.cuda.is_available() else "cpu"
+ device = torch.device(device)
+
+ # fix the seed
+ seed = args.seed + misc.get_rank()
+ torch.manual_seed(seed)
+ np.random.seed(seed)
+
+ cudnn.benchmark = True
+
+ ## training dataset and loader
+ print(
+ "Building dataset for {:s} with transforms {:s}".format(
+ args.dataset, args.transforms
+ )
+ )
+ dataset = PairsDataset(args.dataset, trfs=args.transforms, data_dir=args.data_dir)
+ if world_size > 1:
+ sampler_train = torch.utils.data.DistributedSampler(
+ dataset, num_replicas=world_size, rank=global_rank, shuffle=True
+ )
+ print("Sampler_train = %s" % str(sampler_train))
+ else:
+ sampler_train = torch.utils.data.RandomSampler(dataset)
+ data_loader_train = torch.utils.data.DataLoader(
+ dataset,
+ sampler=sampler_train,
+ batch_size=args.batch_size,
+ num_workers=args.num_workers,
+ pin_memory=True,
+ drop_last=True,
+ )
+
+ ## model
+ print("Loading model: {:s}".format(args.model))
+ model = eval(args.model)
+ print(
+ "Loading criterion: MaskedMSE(norm_pix_loss={:s})".format(
+ str(bool(args.norm_pix_loss))
+ )
+ )
+ criterion = MaskedMSE(norm_pix_loss=bool(args.norm_pix_loss))
+
+ model.to(device)
+ model_without_ddp = model
+ print("Model = %s" % str(model_without_ddp))
+
+ eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
+ if args.lr is None: # only base_lr is specified
+ args.lr = args.blr * eff_batch_size / 256
+ print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
+ print("actual lr: %.2e" % args.lr)
+ print("accumulate grad iterations: %d" % args.accum_iter)
+ print("effective batch size: %d" % eff_batch_size)
+
+ if args.distributed:
+ model = torch.nn.parallel.DistributedDataParallel(
+ model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True
+ )
+ model_without_ddp = model.module
+
+ param_groups = misc.get_parameter_groups(
+ model_without_ddp, args.weight_decay
+ ) # following timm: set wd as 0 for bias and norm layers
+ optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
+ print(optimizer)
+ loss_scaler = NativeScaler()
+
+ misc.load_model(
+ args=args,
+ model_without_ddp=model_without_ddp,
+ optimizer=optimizer,
+ loss_scaler=loss_scaler,
+ )
+
+ if global_rank == 0 and args.output_dir is not None:
+ log_writer = SummaryWriter(log_dir=args.output_dir)
+ else:
+ log_writer = None
+
+ print(f"Start training until {args.max_epoch} epochs")
+ start_time = time.time()
+ for epoch in range(args.start_epoch, args.max_epoch):
+ if world_size > 1:
+ data_loader_train.sampler.set_epoch(epoch)
+
+ train_stats = train_one_epoch(
+ model,
+ criterion,
+ data_loader_train,
+ optimizer,
+ device,
+ epoch,
+ loss_scaler,
+ log_writer=log_writer,
+ args=args,
+ )
+
+ if args.output_dir and epoch % args.save_freq == 0:
+ misc.save_model(
+ args=args,
+ model_without_ddp=model_without_ddp,
+ optimizer=optimizer,
+ loss_scaler=loss_scaler,
+ epoch=epoch,
+ fname="last",
+ )
+
+ if (
+ args.output_dir
+ and (epoch % args.keep_freq == 0 or epoch + 1 == args.max_epoch)
+ and (epoch > 0 or args.max_epoch == 1)
+ ):
+ misc.save_model(
+ args=args,
+ model_without_ddp=model_without_ddp,
+ optimizer=optimizer,
+ loss_scaler=loss_scaler,
+ epoch=epoch,
+ )
+
+ log_stats = {
+ **{f"train_{k}": v for k, v in train_stats.items()},
+ "epoch": epoch,
+ }
+
+ if args.output_dir and misc.is_main_process():
+ if log_writer is not None:
+ log_writer.flush()
+ with open(
+ os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8"
+ ) as f:
+ f.write(json.dumps(log_stats) + "\n")
+
+ total_time = time.time() - start_time
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
+ print("Training time {}".format(total_time_str))
+
+
+def train_one_epoch(
+ model: torch.nn.Module,
+ criterion: torch.nn.Module,
+ data_loader: Iterable,
+ optimizer: torch.optim.Optimizer,
+ device: torch.device,
+ epoch: int,
+ loss_scaler,
+ log_writer=None,
+ args=None,
+):
+ model.train(True)
+ metric_logger = misc.MetricLogger(delimiter=" ")
+ metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}"))
+ header = "Epoch: [{}]".format(epoch)
+ accum_iter = args.accum_iter
+
+ optimizer.zero_grad()
+
+ if log_writer is not None:
+ print("log_dir: {}".format(log_writer.log_dir))
+
+ for data_iter_step, (image1, image2) in enumerate(
+ metric_logger.log_every(data_loader, args.print_freq, header)
+ ):
+
+ # we use a per iteration lr scheduler
+ if data_iter_step % accum_iter == 0:
+ misc.adjust_learning_rate(
+ optimizer, data_iter_step / len(data_loader) + epoch, args
+ )
+
+ image1 = image1.to(device, non_blocking=True)
+ image2 = image2.to(device, non_blocking=True)
+ with torch.cuda.amp.autocast(enabled=bool(args.amp)):
+ out, mask, target = model(image1, image2)
+ loss = criterion(out, mask, target)
+
+ loss_value = loss.item()
+
+ if not math.isfinite(loss_value):
+ print("Loss is {}, stopping training".format(loss_value))
+ sys.exit(1)
+
+ loss /= accum_iter
+ loss_scaler(
+ loss,
+ optimizer,
+ parameters=model.parameters(),
+ update_grad=(data_iter_step + 1) % accum_iter == 0,
+ )
+ if (data_iter_step + 1) % accum_iter == 0:
+ optimizer.zero_grad()
+
+ torch.cuda.synchronize()
+
+ metric_logger.update(loss=loss_value)
+
+ lr = optimizer.param_groups[0]["lr"]
+ metric_logger.update(lr=lr)
+
+ loss_value_reduce = misc.all_reduce_mean(loss_value)
+ if (
+ log_writer is not None
+ and ((data_iter_step + 1) % (accum_iter * args.print_freq)) == 0
+ ):
+ # x-axis is based on epoch_1000x in the tensorboard, calibrating differences curves when batch size changes
+ epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
+ log_writer.add_scalar("train_loss", loss_value_reduce, epoch_1000x)
+ log_writer.add_scalar("lr", lr, epoch_1000x)
+
+ # gather the stats from all processes
+ metric_logger.synchronize_between_processes()
+ print("Averaged stats:", metric_logger)
+ return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
+
+
+if __name__ == "__main__":
+ args = get_args_parser()
+ args = args.parse_args()
+ main(args)
diff --git a/extern/CUT3R/src/croco/stereoflow/README.MD b/extern/CUT3R/src/croco/stereoflow/README.MD
new file mode 100644
index 0000000000000000000000000000000000000000..81595380fadd274b523e0cf77921b1b65cbedb34
--- /dev/null
+++ b/extern/CUT3R/src/croco/stereoflow/README.MD
@@ -0,0 +1,318 @@
+## CroCo-Stereo and CroCo-Flow
+
+This README explains how to use CroCo-Stereo and CroCo-Flow as well as how they were trained.
+All commands should be launched from the root directory.
+
+### Simple inference example
+
+We provide a simple inference exemple for CroCo-Stereo and CroCo-Flow in the Totebook `croco-stereo-flow-demo.ipynb`.
+Before running it, please download the trained models with:
+```
+bash stereoflow/download_model.sh crocostereo.pth
+bash stereoflow/download_model.sh crocoflow.pth
+```
+
+### Prepare data for training or evaluation
+
+Put the datasets used for training/evaluation in `./data/stereoflow` (or update the paths at the top of `stereoflow/datasets_stereo.py` and `stereoflow/datasets_flow.py`).
+Please find below on the file structure should look for each dataset:
+
+FlyingChairs
+
+```
+./data/stereoflow/FlyingChairs/
+└───chairs_split.txt
+└───data/
+ └─── ...
+```
+
+
+
+MPI-Sintel
+
+```
+./data/stereoflow/MPI-Sintel/
+└───training/
+│ └───clean/
+│ └───final/
+│ └───flow/
+└───test/
+ └───clean/
+ └───final/
+```
+
+
+
+SceneFlow (including FlyingThings)
+
+```
+./data/stereoflow/SceneFlow/
+└───Driving/
+│ └───disparity/
+│ └───frames_cleanpass/
+│ └───frames_finalpass/
+└───FlyingThings/
+│ └───disparity/
+│ └───frames_cleanpass/
+│ └───frames_finalpass/
+│ └───optical_flow/
+└───Monkaa/
+ └───disparity/
+ └───frames_cleanpass/
+ └───frames_finalpass/
+```
+
+
+
+TartanAir
+
+```
+./data/stereoflow/TartanAir/
+└───abandonedfactory/
+│ └───.../
+└───abandonedfactory_night/
+│ └───.../
+└───.../
+```
+
+
+
+Booster
+
+```
+./data/stereoflow/booster_gt/
+└───train/
+ └───balanced/
+ └───Bathroom/
+ └───Bedroom/
+ └───...
+```
+
+
+
+CREStereo
+
+```
+./data/stereoflow/crenet_stereo_trainset/
+└───stereo_trainset/
+ └───crestereo/
+ └───hole/
+ └───reflective/
+ └───shapenet/
+ └───tree/
+```
+
+
+
+ETH3D Two-view Low-res
+
+```
+./data/stereoflow/eth3d_lowres/
+└───test/
+│ └───lakeside_1l/
+│ └───...
+└───train/
+│ └───delivery_area_1l/
+│ └───...
+└───train_gt/
+ └───delivery_area_1l/
+ └───...
+```
+
+
+
+KITTI 2012
+
+```
+./data/stereoflow/kitti-stereo-2012/
+└───testing/
+│ └───colored_0/
+│ └───colored_1/
+└───training/
+ └───colored_0/
+ └───colored_1/
+ └───disp_occ/
+ └───flow_occ/
+```
+
+
+
+KITTI 2015
+
+```
+./data/stereoflow/kitti-stereo-2015/
+└───testing/
+│ └───image_2/
+│ └───image_3/
+└───training/
+ └───image_2/
+ └───image_3/
+ └───disp_occ_0/
+ └───flow_occ/
+```
+
+
+
+Middlebury
+
+```
+./data/stereoflow/middlebury
+└───2005/
+│ └───train/
+│ └───Art/
+│ └───...
+└───2006/
+│ └───Aloe/
+│ └───Baby1/
+│ └───...
+└───2014/
+│ └───Adirondack-imperfect/
+│ └───Adirondack-perfect/
+│ └───...
+└───2021/
+│ └───data/
+│ └───artroom1/
+│ └───artroom2/
+│ └───...
+└───MiddEval3_F/
+ └───test/
+ │ └───Australia/
+ │ └───...
+ └───train/
+ └───Adirondack/
+ └───...
+```
+
+
+
+Spring
+
+```
+./data/stereoflow/spring/
+└───test/
+│ └───0003/
+│ └───...
+└───train/
+ └───0001/
+ └───...
+```
+
+
+
+### CroCo-Stereo
+
+##### Main model
+
+The main training of CroCo-Stereo was performed on a series of datasets, and it was used as it for Middlebury v3 benchmark.
+
+```
+# Download the model
+bash stereoflow/download_model.sh crocostereo.pth
+# Middlebury v3 submission
+python stereoflow/test.py --model stereoflow_models/crocostereo.pth --dataset "MdEval3('all_full')" --save submission --tile_overlap 0.9
+# Training command that was used, using checkpoint-last.pth
+python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/
+# or it can be launched on multiple gpus (while maintaining the effective batch size), e.g. on 3 gpus:
+torchrun --nproc_per_node 3 stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 2 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main/
+```
+
+For evaluation of validation set, we also provide the model trained on the `subtrain` subset of the training sets.
+
+```
+# Download the model
+bash stereoflow/download_model.sh crocostereo_subtrain.pth
+# Evaluation on validation sets
+python stereoflow/test.py --model stereoflow_models/crocostereo_subtrain.pth --dataset "MdEval3('subval_full')+ETH3DLowRes('subval')+SceneFlow('test_finalpass')+SceneFlow('test_cleanpass')" --save metrics --tile_overlap 0.9
+# Training command that was used (same as above but on subtrain, using checkpoint-best.pth), can also be launched on multiple gpus
+python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('subtrain')+50*Md05('subtrain')+50*Md06('subtrain')+50*Md14('subtrain')+50*Md21('subtrain')+50*MdEval3('subtrain_full')+Booster('subtrain_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_subtrain/
+```
+
+##### Other models
+
+
+ Model for ETH3D
+ The model used for the submission on ETH3D is trained with the same command but using an unbounded Laplacian loss.
+
+ # Download the model
+ bash stereoflow/download_model.sh crocostereo_eth3d.pth
+ # ETH3D submission
+ python stereoflow/test.py --model stereoflow_models/crocostereo_eth3d.pth --dataset "ETH3DLowRes('all')" --save submission --tile_overlap 0.9
+ # Training command that was used
+ python -u stereoflow/train.py stereo --criterion "LaplacianLoss()" --tile_conf_mode conf_expbeta3 --dataset "CREStereo('train')+SceneFlow('train_allpass')+30*ETH3DLowRes('train')+50*Md05('train')+50*Md06('train')+50*Md14('train')+50*Md21('train')+50*MdEval3('train_full')+Booster('train_balanced')" --val_dataset "SceneFlow('test1of100_finalpass')+SceneFlow('test1of100_cleanpass')+ETH3DLowRes('subval')+Md05('subval')+Md06('subval')+Md14('subval')+Md21('subval')+MdEval3('subval_full')+Booster('subval_balanced')" --lr 3e-5 --batch_size 6 --epochs 32 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocostereo/main_eth3d/
+
+
+
+
+ Main model finetuned on Kitti
+
+ # Download the model
+ bash stereoflow/download_model.sh crocostereo_finetune_kitti.pth
+ # Kitti submission
+ python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.9
+ # Training that was used
+ python -u stereoflow/train.py stereo --crop 352 1216 --criterion "LaplacianLossBounded2()" --dataset "Kitti12('train')+Kitti15('train')" --lr 3e-5 --batch_size 1 --accum_iter 6 --epochs 20 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_kitti/ --save_every 5
+
+
+
+ Main model finetuned on Spring
+
+ # Download the model
+ bash stereoflow/download_model.sh crocostereo_finetune_spring.pth
+ # Spring submission
+ python stereoflow/test.py --model stereoflow_models/crocostereo_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9
+ # Training command that was used
+ python -u stereoflow/train.py stereo --criterion "LaplacianLossBounded2()" --dataset "Spring('train')" --lr 3e-5 --batch_size 6 --epochs 8 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocostereo.pth --output_dir xps/crocostereo/finetune_spring/
+
+
+
+ Smaller models
+ To train CroCo-Stereo with smaller CroCo pretrained models, simply replace the --pretrained
argument. To download the smaller CroCo-Stereo models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_smalldecoder.pth
, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocostereo_subtrain_vitb_basedecoder.pth
.
+
+
+
+### CroCo-Flow
+
+##### Main model
+
+The main training of CroCo-Flow was performed on the FlyingThings, FlyingChairs, MPI-Sintel and TartanAir datasets.
+It was used for our submission to the MPI-Sintel benchmark.
+
+```
+# Download the model
+bash stereoflow/download_model.sh crocoflow.pth
+# Evaluation
+python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --save metrics --tile_overlap 0.9
+# Sintel submission
+python stereoflow/test.py --model stereoflow_models/crocoflow.pth --dataset "MPISintel('test_allpass')" --save submission --tile_overlap 0.9
+# Training command that was used, with checkpoint-best.pth
+python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "40*MPISintel('subtrain_cleanpass')+40*MPISintel('subtrain_finalpass')+4*FlyingThings('train_allpass')+4*FlyingChairs('train')+TartanAir('train')" --val_dataset "MPISintel('subval_cleanpass')+MPISintel('subval_finalpass')" --lr 2e-5 --batch_size 8 --epochs 240 --img_per_epoch 30000 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --output_dir xps/crocoflow/main/
+```
+
+##### Other models
+
+
+ Main model finetuned on Kitti
+
+ # Download the model
+ bash stereoflow/download_model.sh crocoflow_finetune_kitti.pth
+ # Kitti submission
+ python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_kitti.pth --dataset "Kitti15('test')" --save submission --tile_overlap 0.99
+ # Training that was used, with checkpoint-last.pth
+ python -u stereoflow/train.py flow --crop 352 1216 --criterion "LaplacianLossBounded()" --dataset "Kitti15('train')+Kitti12('train')" --lr 2e-5 --batch_size 1 --accum_iter 8 --epochs 150 --save_every 5 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_kitti/
+
+
+
+ Main model finetuned on Spring
+
+ # Download the model
+ bash stereoflow/download_model.sh crocoflow_finetune_spring.pth
+ # Spring submission
+ python stereoflow/test.py --model stereoflow_models/crocoflow_finetune_spring.pth --dataset "Spring('test')" --save submission --tile_overlap 0.9
+ # Training command that was used, with checkpoint-last.pth
+ python -u stereoflow/train.py flow --criterion "LaplacianLossBounded()" --dataset "Spring('train')" --lr 2e-5 --batch_size 8 --epochs 12 --pretrained pretrained_models/CroCo_V2_ViTLarge_BaseDecoder.pth --start_from stereoflow_models/crocoflow.pth --output_dir xps/crocoflow/finetune_spring/
+
+
+
+ Smaller models
+ To train CroCo-Flow with smaller CroCo pretrained models, simply replace the --pretrained
argument. To download the smaller CroCo-Flow models based on CroCo v2 pretraining with ViT-Base encoder and Small encoder, use bash stereoflow/download_model.sh crocoflow_vitb_smalldecoder.pth
, and for the model with a ViT-Base encoder and a Base decoder, use bash stereoflow/download_model.sh crocoflow_vitb_basedecoder.pth
.
+
diff --git a/extern/CUT3R/src/croco/stereoflow/augmentor.py b/extern/CUT3R/src/croco/stereoflow/augmentor.py
new file mode 100644
index 0000000000000000000000000000000000000000..aac818df45d927ac383a41978ff92dc5f2899890
--- /dev/null
+++ b/extern/CUT3R/src/croco/stereoflow/augmentor.py
@@ -0,0 +1,396 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+# --------------------------------------------------------
+# Data augmentation for training stereo and flow
+# --------------------------------------------------------
+
+# References
+# https://github.com/autonomousvision/unimatch/blob/master/dataloader/stereo/transforms.py
+# https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/transforms.py
+
+
+import numpy as np
+import random
+from PIL import Image
+
+import cv2
+
+cv2.setNumThreads(0)
+cv2.ocl.setUseOpenCL(False)
+
+import torch
+from torchvision.transforms import ColorJitter
+import torchvision.transforms.functional as FF
+
+
+class StereoAugmentor(object):
+
+ def __init__(
+ self,
+ crop_size,
+ scale_prob=0.5,
+ scale_xonly=True,
+ lhth=800.0,
+ lminscale=0.0,
+ lmaxscale=1.0,
+ hminscale=-0.2,
+ hmaxscale=0.4,
+ scale_interp_nearest=True,
+ rightjitterprob=0.5,
+ v_flip_prob=0.5,
+ color_aug_asym=True,
+ color_choice_prob=0.5,
+ ):
+ self.crop_size = crop_size
+ self.scale_prob = scale_prob
+ self.scale_xonly = scale_xonly
+ self.lhth = lhth
+ self.lminscale = lminscale
+ self.lmaxscale = lmaxscale
+ self.hminscale = hminscale
+ self.hmaxscale = hmaxscale
+ self.scale_interp_nearest = scale_interp_nearest
+ self.rightjitterprob = rightjitterprob
+ self.v_flip_prob = v_flip_prob
+ self.color_aug_asym = color_aug_asym
+ self.color_choice_prob = color_choice_prob
+
+ def _random_scale(self, img1, img2, disp):
+ ch, cw = self.crop_size
+ h, w = img1.shape[:2]
+ if self.scale_prob > 0.0 and np.random.rand() < self.scale_prob:
+ min_scale, max_scale = (
+ (self.lminscale, self.lmaxscale)
+ if min(h, w) < self.lhth
+ else (self.hminscale, self.hmaxscale)
+ )
+ scale_x = 2.0 ** np.random.uniform(min_scale, max_scale)
+ scale_x = np.clip(scale_x, (cw + 8) / float(w), None)
+ scale_y = 1.0
+ if not self.scale_xonly:
+ scale_y = scale_x
+ scale_y = np.clip(scale_y, (ch + 8) / float(h), None)
+ img1 = cv2.resize(
+ img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR
+ )
+ img2 = cv2.resize(
+ img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR
+ )
+ disp = (
+ cv2.resize(
+ disp,
+ None,
+ fx=scale_x,
+ fy=scale_y,
+ interpolation=(
+ cv2.INTER_LINEAR
+ if not self.scale_interp_nearest
+ else cv2.INTER_NEAREST
+ ),
+ )
+ * scale_x
+ )
+ else: # check if we need to resize to be able to crop
+ h, w = img1.shape[:2]
+ clip_scale = (cw + 8) / float(w)
+ if clip_scale > 1.0:
+ scale_x = clip_scale
+ scale_y = scale_x if not self.scale_xonly else 1.0
+ img1 = cv2.resize(
+ img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR
+ )
+ img2 = cv2.resize(
+ img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR
+ )
+ disp = (
+ cv2.resize(
+ disp,
+ None,
+ fx=scale_x,
+ fy=scale_y,
+ interpolation=(
+ cv2.INTER_LINEAR
+ if not self.scale_interp_nearest
+ else cv2.INTER_NEAREST
+ ),
+ )
+ * scale_x
+ )
+ return img1, img2, disp
+
+ def _random_crop(self, img1, img2, disp):
+ h, w = img1.shape[:2]
+ ch, cw = self.crop_size
+ assert ch <= h and cw <= w, (img1.shape, h, w, ch, cw)
+ offset_x = np.random.randint(w - cw + 1)
+ offset_y = np.random.randint(h - ch + 1)
+ img1 = img1[offset_y : offset_y + ch, offset_x : offset_x + cw]
+ img2 = img2[offset_y : offset_y + ch, offset_x : offset_x + cw]
+ disp = disp[offset_y : offset_y + ch, offset_x : offset_x + cw]
+ return img1, img2, disp
+
+ def _random_vflip(self, img1, img2, disp):
+ # vertical flip
+ if self.v_flip_prob > 0 and np.random.rand() < self.v_flip_prob:
+ img1 = np.copy(np.flipud(img1))
+ img2 = np.copy(np.flipud(img2))
+ disp = np.copy(np.flipud(disp))
+ return img1, img2, disp
+
+ def _random_rotate_shift_right(self, img2):
+ if self.rightjitterprob > 0.0 and np.random.rand() < self.rightjitterprob:
+ angle, pixel = 0.1, 2
+ px = np.random.uniform(-pixel, pixel)
+ ag = np.random.uniform(-angle, angle)
+ image_center = (
+ np.random.uniform(0, img2.shape[0]),
+ np.random.uniform(0, img2.shape[1]),
+ )
+ rot_mat = cv2.getRotationMatrix2D(image_center, ag, 1.0)
+ img2 = cv2.warpAffine(
+ img2, rot_mat, img2.shape[1::-1], flags=cv2.INTER_LINEAR
+ )
+ trans_mat = np.float32([[1, 0, 0], [0, 1, px]])
+ img2 = cv2.warpAffine(
+ img2, trans_mat, img2.shape[1::-1], flags=cv2.INTER_LINEAR
+ )
+ return img2
+
+ def _random_color_contrast(self, img1, img2):
+ if np.random.random() < 0.5:
+ contrast_factor = np.random.uniform(0.8, 1.2)
+ img1 = FF.adjust_contrast(img1, contrast_factor)
+ if self.color_aug_asym and np.random.random() < 0.5:
+ contrast_factor = np.random.uniform(0.8, 1.2)
+ img2 = FF.adjust_contrast(img2, contrast_factor)
+ return img1, img2
+
+ def _random_color_gamma(self, img1, img2):
+ if np.random.random() < 0.5:
+ gamma = np.random.uniform(0.7, 1.5)
+ img1 = FF.adjust_gamma(img1, gamma)
+ if self.color_aug_asym and np.random.random() < 0.5:
+ gamma = np.random.uniform(0.7, 1.5)
+ img2 = FF.adjust_gamma(img2, gamma)
+ return img1, img2
+
+ def _random_color_brightness(self, img1, img2):
+ if np.random.random() < 0.5:
+ brightness = np.random.uniform(0.5, 2.0)
+ img1 = FF.adjust_brightness(img1, brightness)
+ if self.color_aug_asym and np.random.random() < 0.5:
+ brightness = np.random.uniform(0.5, 2.0)
+ img2 = FF.adjust_brightness(img2, brightness)
+ return img1, img2
+
+ def _random_color_hue(self, img1, img2):
+ if np.random.random() < 0.5:
+ hue = np.random.uniform(-0.1, 0.1)
+ img1 = FF.adjust_hue(img1, hue)
+ if self.color_aug_asym and np.random.random() < 0.5:
+ hue = np.random.uniform(-0.1, 0.1)
+ img2 = FF.adjust_hue(img2, hue)
+ return img1, img2
+
+ def _random_color_saturation(self, img1, img2):
+ if np.random.random() < 0.5:
+ saturation = np.random.uniform(0.8, 1.2)
+ img1 = FF.adjust_saturation(img1, saturation)
+ if self.color_aug_asym and np.random.random() < 0.5:
+ saturation = np.random.uniform(-0.8, 1.2)
+ img2 = FF.adjust_saturation(img2, saturation)
+ return img1, img2
+
+ def _random_color(self, img1, img2):
+ trfs = [
+ self._random_color_contrast,
+ self._random_color_gamma,
+ self._random_color_brightness,
+ self._random_color_hue,
+ self._random_color_saturation,
+ ]
+ img1 = Image.fromarray(img1.astype("uint8"))
+ img2 = Image.fromarray(img2.astype("uint8"))
+ if np.random.random() < self.color_choice_prob:
+ # A single transform
+ t = random.choice(trfs)
+ img1, img2 = t(img1, img2)
+ else:
+ # Combination of trfs
+ # Random order
+ random.shuffle(trfs)
+ for t in trfs:
+ img1, img2 = t(img1, img2)
+ img1 = np.array(img1).astype(np.float32)
+ img2 = np.array(img2).astype(np.float32)
+ return img1, img2
+
+ def __call__(self, img1, img2, disp, dataset_name):
+ img1, img2, disp = self._random_scale(img1, img2, disp)
+ img1, img2, disp = self._random_crop(img1, img2, disp)
+ img1, img2, disp = self._random_vflip(img1, img2, disp)
+ img2 = self._random_rotate_shift_right(img2)
+ img1, img2 = self._random_color(img1, img2)
+ return img1, img2, disp
+
+
+class FlowAugmentor:
+
+ def __init__(
+ self,
+ crop_size,
+ min_scale=-0.2,
+ max_scale=0.5,
+ spatial_aug_prob=0.8,
+ stretch_prob=0.8,
+ max_stretch=0.2,
+ h_flip_prob=0.5,
+ v_flip_prob=0.1,
+ asymmetric_color_aug_prob=0.2,
+ ):
+
+ # spatial augmentation params
+ self.crop_size = crop_size
+ self.min_scale = min_scale
+ self.max_scale = max_scale
+ self.spatial_aug_prob = spatial_aug_prob
+ self.stretch_prob = stretch_prob
+ self.max_stretch = max_stretch
+
+ # flip augmentation params
+ self.h_flip_prob = h_flip_prob
+ self.v_flip_prob = v_flip_prob
+
+ # photometric augmentation params
+ self.photo_aug = ColorJitter(
+ brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5 / 3.14
+ )
+
+ self.asymmetric_color_aug_prob = asymmetric_color_aug_prob
+
+ def color_transform(self, img1, img2):
+ """Photometric augmentation"""
+
+ # asymmetric
+ if np.random.rand() < self.asymmetric_color_aug_prob:
+ img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8)
+ img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8)
+
+ # symmetric
+ else:
+ image_stack = np.concatenate([img1, img2], axis=0)
+ image_stack = np.array(
+ self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8
+ )
+ img1, img2 = np.split(image_stack, 2, axis=0)
+
+ return img1, img2
+
+ def _resize_flow(self, flow, scale_x, scale_y, factor=1.0):
+ if np.all(np.isfinite(flow)):
+ flow = cv2.resize(
+ flow,
+ None,
+ fx=scale_x / factor,
+ fy=scale_y / factor,
+ interpolation=cv2.INTER_LINEAR,
+ )
+ flow = flow * [scale_x, scale_y]
+ else: # sparse version
+ fx, fy = scale_x, scale_y
+ ht, wd = flow.shape[:2]
+ coords = np.meshgrid(np.arange(wd), np.arange(ht))
+ coords = np.stack(coords, axis=-1)
+
+ coords = coords.reshape(-1, 2).astype(np.float32)
+ flow = flow.reshape(-1, 2).astype(np.float32)
+ valid = np.isfinite(flow[:, 0])
+
+ coords0 = coords[valid]
+ flow0 = flow[valid]
+
+ ht1 = int(round(ht * fy / factor))
+ wd1 = int(round(wd * fx / factor))
+
+ rescale = np.expand_dims(np.array([fx, fy]), axis=0)
+ coords1 = coords0 * rescale / factor
+ flow1 = flow0 * rescale
+
+ xx = np.round(coords1[:, 0]).astype(np.int32)
+ yy = np.round(coords1[:, 1]).astype(np.int32)
+
+ v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1)
+ xx = xx[v]
+ yy = yy[v]
+ flow1 = flow1[v]
+
+ flow = np.inf * np.ones(
+ [ht1, wd1, 2], dtype=np.float32
+ ) # invalid value every where, before we fill it with the correct ones
+ flow[yy, xx] = flow1
+ return flow
+
+ def spatial_transform(self, img1, img2, flow, dname):
+
+ if np.random.rand() < self.spatial_aug_prob:
+ # randomly sample scale
+ ht, wd = img1.shape[:2]
+ clip_min_scale = np.maximum(
+ (self.crop_size[0] + 8) / float(ht), (self.crop_size[1] + 8) / float(wd)
+ )
+ min_scale, max_scale = self.min_scale, self.max_scale
+ scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
+ scale_x = scale
+ scale_y = scale
+ if np.random.rand() < self.stretch_prob:
+ scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
+ scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
+ scale_x = np.clip(scale_x, clip_min_scale, None)
+ scale_y = np.clip(scale_y, clip_min_scale, None)
+ # rescale the images
+ img1 = cv2.resize(
+ img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR
+ )
+ img2 = cv2.resize(
+ img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR
+ )
+ flow = self._resize_flow(
+ flow, scale_x, scale_y, factor=2.0 if dname == "Spring" else 1.0
+ )
+ elif dname == "Spring":
+ flow = self._resize_flow(flow, 1.0, 1.0, factor=2.0)
+
+ if self.h_flip_prob > 0.0 and np.random.rand() < self.h_flip_prob: # h-flip
+ img1 = img1[:, ::-1]
+ img2 = img2[:, ::-1]
+ flow = flow[:, ::-1] * [-1.0, 1.0]
+
+ if self.v_flip_prob > 0.0 and np.random.rand() < self.v_flip_prob: # v-flip
+ img1 = img1[::-1, :]
+ img2 = img2[::-1, :]
+ flow = flow[::-1, :] * [1.0, -1.0]
+
+ # In case no cropping
+ if img1.shape[0] - self.crop_size[0] > 0:
+ y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0])
+ else:
+ y0 = 0
+ if img1.shape[1] - self.crop_size[1] > 0:
+ x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1])
+ else:
+ x0 = 0
+
+ img1 = img1[y0 : y0 + self.crop_size[0], x0 : x0 + self.crop_size[1]]
+ img2 = img2[y0 : y0 + self.crop_size[0], x0 : x0 + self.crop_size[1]]
+ flow = flow[y0 : y0 + self.crop_size[0], x0 : x0 + self.crop_size[1]]
+
+ return img1, img2, flow
+
+ def __call__(self, img1, img2, flow, dname):
+ img1, img2, flow = self.spatial_transform(img1, img2, flow, dname)
+ img1, img2 = self.color_transform(img1, img2)
+ img1 = np.ascontiguousarray(img1)
+ img2 = np.ascontiguousarray(img2)
+ flow = np.ascontiguousarray(flow)
+ return img1, img2, flow
diff --git a/extern/CUT3R/src/croco/stereoflow/criterion.py b/extern/CUT3R/src/croco/stereoflow/criterion.py
new file mode 100644
index 0000000000000000000000000000000000000000..f041240edb549e32f2eaa1123b07871deb322fd5
--- /dev/null
+++ b/extern/CUT3R/src/croco/stereoflow/criterion.py
@@ -0,0 +1,351 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+# --------------------------------------------------------
+# Losses, metrics per batch, metrics per dataset
+# --------------------------------------------------------
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+
+
+def _get_gtnorm(gt):
+ if gt.size(1) == 1: # stereo
+ return gt
+ # flow
+ return torch.sqrt(torch.sum(gt**2, dim=1, keepdims=True)) # Bx1xHxW
+
+
+############ losses without confidence
+
+
+class L1Loss(nn.Module):
+
+ def __init__(self, max_gtnorm=None):
+ super().__init__()
+ self.max_gtnorm = max_gtnorm
+ self.with_conf = False
+
+ def _error(self, gt, predictions):
+ return torch.abs(gt - predictions)
+
+ def forward(self, predictions, gt, inspect=False):
+ mask = torch.isfinite(gt)
+ if self.max_gtnorm is not None:
+ mask *= _get_gtnorm(gt).expand(-1, gt.size(1), -1, -1) < self.max_gtnorm
+ if inspect:
+ return self._error(gt, predictions)
+ return self._error(gt[mask], predictions[mask]).mean()
+
+
+############## losses with confience
+## there are several parametrizations
+
+
+class LaplacianLoss(nn.Module): # used for CroCo-Stereo on ETH3D, d'=exp(d)
+
+ def __init__(self, max_gtnorm=None):
+ super().__init__()
+ self.max_gtnorm = max_gtnorm
+ self.with_conf = True
+
+ def forward(self, predictions, gt, conf):
+ mask = torch.isfinite(gt)
+ mask = mask[:, 0, :, :]
+ if self.max_gtnorm is not None:
+ mask *= _get_gtnorm(gt)[:, 0, :, :] < self.max_gtnorm
+ conf = conf.squeeze(1)
+ return (
+ torch.abs(gt - predictions).sum(dim=1)[mask] / torch.exp(conf[mask])
+ + conf[mask]
+ ).mean() # + torch.log(2) => which is a constant
+
+
+class LaplacianLossBounded(
+ nn.Module
+): # used for CroCo-Flow ; in the equation of the paper, we have a=1/b
+ def __init__(self, max_gtnorm=10000.0, a=0.25, b=4.0):
+ super().__init__()
+ self.max_gtnorm = max_gtnorm
+ self.with_conf = True
+ self.a, self.b = a, b
+
+ def forward(self, predictions, gt, conf):
+ mask = torch.isfinite(gt)
+ mask = mask[:, 0, :, :]
+ if self.max_gtnorm is not None:
+ mask *= _get_gtnorm(gt)[:, 0, :, :] < self.max_gtnorm
+ conf = conf.squeeze(1)
+ conf = (self.b - self.a) * torch.sigmoid(conf) + self.a
+ return (
+ torch.abs(gt - predictions).sum(dim=1)[mask] / conf[mask]
+ + torch.log(conf)[mask]
+ ).mean() # + torch.log(2) => which is a constant
+
+
+class LaplacianLossBounded2(
+ nn.Module
+): # used for CroCo-Stereo (except for ETH3D) ; in the equation of the paper, we have a=b
+ def __init__(self, max_gtnorm=None, a=3.0, b=3.0):
+ super().__init__()
+ self.max_gtnorm = max_gtnorm
+ self.with_conf = True
+ self.a, self.b = a, b
+
+ def forward(self, predictions, gt, conf):
+ mask = torch.isfinite(gt)
+ mask = mask[:, 0, :, :]
+ if self.max_gtnorm is not None:
+ mask *= _get_gtnorm(gt)[:, 0, :, :] < self.max_gtnorm
+ conf = conf.squeeze(1)
+ conf = 2 * self.a * (torch.sigmoid(conf / self.b) - 0.5)
+ return (
+ torch.abs(gt - predictions).sum(dim=1)[mask] / torch.exp(conf[mask])
+ + conf[mask]
+ ).mean() # + torch.log(2) => which is a constant
+
+
+############## metrics per batch
+
+
+class StereoMetrics(nn.Module):
+
+ def __init__(self, do_quantile=False):
+ super().__init__()
+ self.bad_ths = [0.5, 1, 2, 3]
+ self.do_quantile = do_quantile
+
+ def forward(self, predictions, gt):
+ B = predictions.size(0)
+ metrics = {}
+ gtcopy = gt.clone()
+ mask = torch.isfinite(gtcopy)
+ gtcopy[~mask] = (
+ 999999.0 # we make a copy and put a non-infinite value, such that it does not become nan once multiplied by the mask value 0
+ )
+ Npx = mask.view(B, -1).sum(dim=1)
+ L1error = (torch.abs(gtcopy - predictions) * mask).view(B, -1)
+ L2error = (torch.square(gtcopy - predictions) * mask).view(B, -1)
+ # avgerr
+ metrics["avgerr"] = torch.mean(L1error.sum(dim=1) / Npx)
+ # rmse
+ metrics["rmse"] = torch.sqrt(L2error.sum(dim=1) / Npx).mean(dim=0)
+ # err > t for t in [0.5,1,2,3]
+ for ths in self.bad_ths:
+ metrics["bad@{:.1f}".format(ths)] = (
+ ((L1error > ths) * mask.view(B, -1)).sum(dim=1) / Npx
+ ).mean(dim=0) * 100
+ return metrics
+
+
+class FlowMetrics(nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.bad_ths = [1, 3, 5]
+
+ def forward(self, predictions, gt):
+ B = predictions.size(0)
+ metrics = {}
+ mask = torch.isfinite(gt[:, 0, :, :]) # both x and y would be infinite
+ Npx = mask.view(B, -1).sum(dim=1)
+ gtcopy = (
+ gt.clone()
+ ) # to compute L1/L2 error, we need to have non-infinite value, the error computed at this locations will be ignored
+ gtcopy[:, 0, :, :][~mask] = 999999.0
+ gtcopy[:, 1, :, :][~mask] = 999999.0
+ L1error = (torch.abs(gtcopy - predictions).sum(dim=1) * mask).view(B, -1)
+ L2error = (
+ torch.sqrt(torch.sum(torch.square(gtcopy - predictions), dim=1)) * mask
+ ).view(B, -1)
+ metrics["L1err"] = torch.mean(L1error.sum(dim=1) / Npx)
+ metrics["EPE"] = torch.mean(L2error.sum(dim=1) / Npx)
+ for ths in self.bad_ths:
+ metrics["bad@{:.1f}".format(ths)] = (
+ ((L2error > ths) * mask.view(B, -1)).sum(dim=1) / Npx
+ ).mean(dim=0) * 100
+ return metrics
+
+
+############## metrics per dataset
+## we update the average and maintain the number of pixels while adding data batch per batch
+## at the beggining, call reset()
+## after each batch, call add_batch(...)
+## at the end: call get_results()
+
+
+class StereoDatasetMetrics(nn.Module):
+
+ def __init__(self):
+ super().__init__()
+ self.bad_ths = [0.5, 1, 2, 3]
+
+ def reset(self):
+ self.agg_N = 0 # number of pixels so far
+ self.agg_L1err = torch.tensor(0.0) # L1 error so far
+ self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels
+ self._metrics = None
+
+ def add_batch(self, predictions, gt):
+ assert predictions.size(1) == 1, predictions.size()
+ assert gt.size(1) == 1, gt.size()
+ if (
+ gt.size(2) == predictions.size(2) * 2
+ and gt.size(3) == predictions.size(3) * 2
+ ): # special case for Spring ...
+ L1err = torch.minimum(
+ torch.minimum(
+ torch.minimum(
+ torch.sum(torch.abs(gt[:, :, 0::2, 0::2] - predictions), dim=1),
+ torch.sum(torch.abs(gt[:, :, 1::2, 0::2] - predictions), dim=1),
+ ),
+ torch.sum(torch.abs(gt[:, :, 0::2, 1::2] - predictions), dim=1),
+ ),
+ torch.sum(torch.abs(gt[:, :, 1::2, 1::2] - predictions), dim=1),
+ )
+ valid = torch.isfinite(L1err)
+ else:
+ valid = torch.isfinite(gt[:, 0, :, :]) # both x and y would be infinite
+ L1err = torch.sum(torch.abs(gt - predictions), dim=1)
+ N = valid.sum()
+ Nnew = self.agg_N + N
+ self.agg_L1err = (
+ float(self.agg_N) / Nnew * self.agg_L1err
+ + L1err[valid].mean().cpu() * float(N) / Nnew
+ )
+ self.agg_N = Nnew
+ for i, th in enumerate(self.bad_ths):
+ self.agg_Nbad[i] += (L1err[valid] > th).sum().cpu()
+
+ def _compute_metrics(self):
+ if self._metrics is not None:
+ return
+ out = {}
+ out["L1err"] = self.agg_L1err.item()
+ for i, th in enumerate(self.bad_ths):
+ out["bad@{:.1f}".format(th)] = (
+ float(self.agg_Nbad[i]) / self.agg_N
+ ).item() * 100.0
+ self._metrics = out
+
+ def get_results(self):
+ self._compute_metrics() # to avoid recompute them multiple times
+ return self._metrics
+
+
+class FlowDatasetMetrics(nn.Module):
+
+ def __init__(self):
+ super().__init__()
+ self.bad_ths = [0.5, 1, 3, 5]
+ self.speed_ths = [(0, 10), (10, 40), (40, torch.inf)]
+
+ def reset(self):
+ self.agg_N = 0 # number of pixels so far
+ self.agg_L1err = torch.tensor(0.0) # L1 error so far
+ self.agg_L2err = torch.tensor(0.0) # L2 (=EPE) error so far
+ self.agg_Nbad = [0 for _ in self.bad_ths] # counter of bad pixels
+ self.agg_EPEspeed = [
+ torch.tensor(0.0) for _ in self.speed_ths
+ ] # EPE per speed bin so far
+ self.agg_Nspeed = [0 for _ in self.speed_ths] # N pixels per speed bin so far
+ self._metrics = None
+ self.pairname_results = {}
+
+ def add_batch(self, predictions, gt):
+ assert predictions.size(1) == 2, predictions.size()
+ assert gt.size(1) == 2, gt.size()
+ if (
+ gt.size(2) == predictions.size(2) * 2
+ and gt.size(3) == predictions.size(3) * 2
+ ): # special case for Spring ...
+ L1err = torch.minimum(
+ torch.minimum(
+ torch.minimum(
+ torch.sum(torch.abs(gt[:, :, 0::2, 0::2] - predictions), dim=1),
+ torch.sum(torch.abs(gt[:, :, 1::2, 0::2] - predictions), dim=1),
+ ),
+ torch.sum(torch.abs(gt[:, :, 0::2, 1::2] - predictions), dim=1),
+ ),
+ torch.sum(torch.abs(gt[:, :, 1::2, 1::2] - predictions), dim=1),
+ )
+ L2err = torch.minimum(
+ torch.minimum(
+ torch.minimum(
+ torch.sqrt(
+ torch.sum(
+ torch.square(gt[:, :, 0::2, 0::2] - predictions), dim=1
+ )
+ ),
+ torch.sqrt(
+ torch.sum(
+ torch.square(gt[:, :, 1::2, 0::2] - predictions), dim=1
+ )
+ ),
+ ),
+ torch.sqrt(
+ torch.sum(
+ torch.square(gt[:, :, 0::2, 1::2] - predictions), dim=1
+ )
+ ),
+ ),
+ torch.sqrt(
+ torch.sum(torch.square(gt[:, :, 1::2, 1::2] - predictions), dim=1)
+ ),
+ )
+ valid = torch.isfinite(L1err)
+ gtspeed = (
+ torch.sqrt(torch.sum(torch.square(gt[:, :, 0::2, 0::2]), dim=1))
+ + torch.sqrt(torch.sum(torch.square(gt[:, :, 0::2, 1::2]), dim=1))
+ + torch.sqrt(torch.sum(torch.square(gt[:, :, 1::2, 0::2]), dim=1))
+ + torch.sqrt(torch.sum(torch.square(gt[:, :, 1::2, 1::2]), dim=1))
+ ) / 4.0 # let's just average them
+ else:
+ valid = torch.isfinite(gt[:, 0, :, :]) # both x and y would be infinite
+ L1err = torch.sum(torch.abs(gt - predictions), dim=1)
+ L2err = torch.sqrt(torch.sum(torch.square(gt - predictions), dim=1))
+ gtspeed = torch.sqrt(torch.sum(torch.square(gt), dim=1))
+ N = valid.sum()
+ Nnew = self.agg_N + N
+ self.agg_L1err = (
+ float(self.agg_N) / Nnew * self.agg_L1err
+ + L1err[valid].mean().cpu() * float(N) / Nnew
+ )
+ self.agg_L2err = (
+ float(self.agg_N) / Nnew * self.agg_L2err
+ + L2err[valid].mean().cpu() * float(N) / Nnew
+ )
+ self.agg_N = Nnew
+ for i, th in enumerate(self.bad_ths):
+ self.agg_Nbad[i] += (L2err[valid] > th).sum().cpu()
+ for i, (th1, th2) in enumerate(self.speed_ths):
+ vv = (gtspeed[valid] >= th1) * (gtspeed[valid] < th2)
+ iNspeed = vv.sum()
+ if iNspeed == 0:
+ continue
+ iNnew = self.agg_Nspeed[i] + iNspeed
+ self.agg_EPEspeed[i] = (
+ float(self.agg_Nspeed[i]) / iNnew * self.agg_EPEspeed[i]
+ + float(iNspeed) / iNnew * L2err[valid][vv].mean().cpu()
+ )
+ self.agg_Nspeed[i] = iNnew
+
+ def _compute_metrics(self):
+ if self._metrics is not None:
+ return
+ out = {}
+ out["L1err"] = self.agg_L1err.item()
+ out["EPE"] = self.agg_L2err.item()
+ for i, th in enumerate(self.bad_ths):
+ out["bad@{:.1f}".format(th)] = (
+ float(self.agg_Nbad[i]) / self.agg_N
+ ).item() * 100.0
+ for i, (th1, th2) in enumerate(self.speed_ths):
+ out["s{:d}{:s}".format(th1, "-" + str(th2) if th2 < torch.inf else "+")] = (
+ self.agg_EPEspeed[i].item()
+ )
+ self._metrics = out
+
+ def get_results(self):
+ self._compute_metrics() # to avoid recompute them multiple times
+ return self._metrics
diff --git a/extern/CUT3R/src/croco/stereoflow/datasets_flow.py b/extern/CUT3R/src/croco/stereoflow/datasets_flow.py
new file mode 100644
index 0000000000000000000000000000000000000000..d5b1bc603b97a18e1245ec1756b74a9424d53ead
--- /dev/null
+++ b/extern/CUT3R/src/croco/stereoflow/datasets_flow.py
@@ -0,0 +1,936 @@
+# Copyright (C) 2022-present Naver Corporation. All rights reserved.
+# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
+
+# --------------------------------------------------------
+# Dataset structure for flow
+# --------------------------------------------------------
+
+import os
+import os.path as osp
+import pickle
+import numpy as np
+import struct
+from PIL import Image
+import json
+import h5py
+import torch
+from torch.utils import data
+
+from .augmentor import FlowAugmentor
+from .datasets_stereo import _read_img, img_to_tensor, dataset_to_root, _read_pfm
+from copy import deepcopy
+
+dataset_to_root = deepcopy(dataset_to_root)
+
+dataset_to_root.update(
+ **{
+ "TartanAir": "./data/stereoflow/TartanAir",
+ "FlyingChairs": "./data/stereoflow/FlyingChairs/",
+ "FlyingThings": osp.join(dataset_to_root["SceneFlow"], "FlyingThings") + "/",
+ "MPISintel": "./data/stereoflow//MPI-Sintel/" + "/",
+ }
+)
+cache_dir = "./data/stereoflow/datasets_flow_cache/"
+
+
+def flow_to_tensor(disp):
+ return torch.from_numpy(disp).float().permute(2, 0, 1)
+
+
+class FlowDataset(data.Dataset):
+
+ def __init__(self, split, augmentor=False, crop_size=None, totensor=True):
+ self.split = split
+ if not augmentor:
+ assert crop_size is None
+ if crop_size is not None:
+ assert augmentor
+ self.crop_size = crop_size
+ self.augmentor_str = augmentor
+ self.augmentor = FlowAugmentor(crop_size) if augmentor else None
+ self.totensor = totensor
+ self.rmul = 1 # keep track of rmul
+ self.has_constant_resolution = True # whether the dataset has constant resolution or not (=> don't use batch_size>1 at test time)
+ self._prepare_data()
+ self._load_or_build_cache()
+
+ def prepare_data(self):
+ """
+ to be defined for each dataset
+ """
+ raise NotImplementedError
+
+ def __len__(self):
+ return len(
+ self.pairnames
+ ) # each pairname is typically of the form (str, int1, int2)
+
+ def __getitem__(self, index):
+ pairname = self.pairnames[index]
+
+ # get filenames
+ img1name = self.pairname_to_img1name(pairname)
+ img2name = self.pairname_to_img2name(pairname)
+ flowname = (
+ self.pairname_to_flowname(pairname)
+ if self.pairname_to_flowname is not None
+ else None
+ )
+
+ # load images and disparities
+ img1 = _read_img(img1name)
+ img2 = _read_img(img2name)
+ flow = self.load_flow(flowname) if flowname is not None else None
+
+ # apply augmentations
+ if self.augmentor is not None:
+ img1, img2, flow = self.augmentor(img1, img2, flow, self.name)
+
+ if self.totensor:
+ img1 = img_to_tensor(img1)
+ img2 = img_to_tensor(img2)
+ if flow is not None:
+ flow = flow_to_tensor(flow)
+ else:
+ flow = torch.tensor(
+ []
+ ) # to allow dataloader batching with default collate_gn
+ pairname = str(
+ pairname
+ ) # transform potential tuple to str to be able to batch it
+
+ return img1, img2, flow, pairname
+
+ def __rmul__(self, v):
+ self.rmul *= v
+ self.pairnames = v * self.pairnames
+ return self
+
+ def __str__(self):
+ return f"{self.__class__.__name__}_{self.split}"
+
+ def __repr__(self):
+ s = f"{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})"
+ if self.rmul == 1:
+ s += f"\n\tnum pairs: {len(self.pairnames)}"
+ else:
+ s += f"\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})"
+ return s
+
+ def _set_root(self):
+ self.root = dataset_to_root[self.name]
+ assert os.path.isdir(
+ self.root
+ ), f"could not find root directory for dataset {self.name}: {self.root}"
+
+ def _load_or_build_cache(self):
+ cache_file = osp.join(cache_dir, self.name + ".pkl")
+ if osp.isfile(cache_file):
+ with open(cache_file, "rb") as fid:
+ self.pairnames = pickle.load(fid)[self.split]
+ else:
+ tosave = self._build_cache()
+ os.makedirs(cache_dir, exist_ok=True)
+ with open(cache_file, "wb") as fid:
+ pickle.dump(tosave, fid)
+ self.pairnames = tosave[self.split]
+
+
+class TartanAirDataset(FlowDataset):
+
+ def _prepare_data(self):
+ self.name = "TartanAir"
+ self._set_root()
+ assert self.split in ["train"]
+ self.pairname_to_img1name = lambda pairname: osp.join(
+ self.root, pairname[0], "image_left/{:06d}_left.png".format(pairname[1])
+ )
+ self.pairname_to_img2name = lambda pairname: osp.join(
+ self.root, pairname[0], "image_left/{:06d}_left.png".format(pairname[2])
+ )
+ self.pairname_to_flowname = lambda pairname: osp.join(
+ self.root,
+ pairname[0],
+ "flow/{:06d}_{:06d}_flow.npy".format(pairname[1], pairname[2]),
+ )
+ self.pairname_to_str = lambda pairname: os.path.join(
+ pairname[0][pairname[0].find("/") + 1 :],
+ "{:06d}_{:06d}".format(pairname[1], pairname[2]),
+ )
+ self.load_flow = _read_numpy_flow
+
+ def _build_cache(self):
+ seqs = sorted(os.listdir(self.root))
+ pairs = [
+ (osp.join(s, s, difficulty, Pxxx), int(a[:6]), int(a[:6]) + 1)
+ for s in seqs
+ for difficulty in ["Easy", "Hard"]
+ for Pxxx in sorted(os.listdir(osp.join(self.root, s, s, difficulty)))
+ for a in sorted(
+ os.listdir(osp.join(self.root, s, s, difficulty, Pxxx, "image_left/"))
+ )[:-1]
+ ]
+ assert len(pairs) == 306268, "incorrect parsing of pairs in TartanAir"
+ tosave = {"train": pairs}
+ return tosave
+
+
+class FlyingChairsDataset(FlowDataset):
+
+ def _prepare_data(self):
+ self.name = "FlyingChairs"
+ self._set_root()
+ assert self.split in ["train", "val"]
+ self.pairname_to_img1name = lambda pairname: osp.join(
+ self.root, "data", pairname + "_img1.ppm"
+ )
+ self.pairname_to_img2name = lambda pairname: osp.join(
+ self.root, "data", pairname + "_img2.ppm"
+ )
+ self.pairname_to_flowname = lambda pairname: osp.join(
+ self.root, "data", pairname + "_flow.flo"
+ )
+ self.pairname_to_str = lambda pairname: pairname
+ self.load_flow = _read_flo_file
+
+ def _build_cache(self):
+ split_file = osp.join(self.root, "chairs_split.txt")
+ split_list = np.loadtxt(split_file, dtype=np.int32)
+ trainpairs = ["{:05d}".format(i) for i in np.where(split_list == 1)[0] + 1]
+ valpairs = ["{:05d}".format(i) for i in np.where(split_list == 2)[0] + 1]
+ assert (
+ len(trainpairs) == 22232 and len(valpairs) == 640
+ ), "incorrect parsing of pairs in MPI-Sintel"
+ tosave = {"train": trainpairs, "val": valpairs}
+ return tosave
+
+
+class FlyingThingsDataset(FlowDataset):
+
+ def _prepare_data(self):
+ self.name = "FlyingThings"
+ self._set_root()
+ assert self.split in [
+ f"{set_}_{pass_}pass{camstr}"
+ for set_ in ["train", "test", "test1024"]
+ for camstr in ["", "_rightcam"]
+ for pass_ in ["clean", "final", "all"]
+ ]
+ self.pairname_to_img1name = lambda pairname: osp.join(
+ self.root,
+ f"frames_{pairname[3]}pass",
+ pairname[0].replace("into_future", "").replace("into_past", ""),
+ "{:04d}.png".format(pairname[1]),
+ )
+ self.pairname_to_img2name = lambda pairname: osp.join(
+ self.root,
+ f"frames_{pairname[3]}pass",
+ pairname[0].replace("into_future", "").replace("into_past", ""),
+ "{:04d}.png".format(pairname[2]),
+ )
+ self.pairname_to_flowname = lambda pairname: osp.join(
+ self.root,
+ "optical_flow",
+ pairname[0],
+ "OpticalFlowInto{f:s}_{i:04d}_{c:s}.pfm".format(
+ f="Future" if "future" in pairname[0] else "Past",
+ i=pairname[1],
+ c="L" if "left" in pairname[0] else "R",
+ ),
+ )
+ self.pairname_to_str = lambda pairname: os.path.join(
+ pairname[3] + "pass",
+ pairname[0],
+ "Into{f:s}_{i:04d}_{c:s}".format(
+ f="Future" if "future" in pairname[0] else "Past",
+ i=pairname[1],
+ c="L" if "left" in pairname[0] else "R",
+ ),
+ )
+ self.load_flow = _read_pfm_flow
+
+ def _build_cache(self):
+ tosave = {}
+ # train and test splits for the different passes
+ for set_ in ["train", "test"]:
+ sroot = osp.join(self.root, "optical_flow", set_.upper())
+ fname_to_i = lambda f: int(
+ f[len("OpticalFlowIntoFuture_") : -len("_L.pfm")]
+ )
+ pp = [
+ (osp.join(set_.upper(), d, s, "into_future/left"), fname_to_i(fname))
+ for d in sorted(os.listdir(sroot))
+ for s in sorted(os.listdir(osp.join(sroot, d)))
+ for fname in sorted(
+ os.listdir(osp.join(sroot, d, s, "into_future/left"))
+ )[:-1]
+ ]
+ pairs = [(a, i, i + 1) for a, i in pp]
+ pairs += [(a.replace("into_future", "into_past"), i + 1, i) for a, i in pp]
+ assert (
+ len(pairs) == {"train": 40302, "test": 7866}[set_]
+ ), "incorrect parsing of pairs Flying Things"
+ for cam in ["left", "right"]:
+ camstr = "" if cam == "left" else f"_{cam}cam"
+ for pass_ in ["final", "clean"]:
+ tosave[f"{set_}_{pass_}pass{camstr}"] = [
+ (a.replace("left", cam), i, j, pass_) for a, i, j in pairs
+ ]
+ tosave[f"{set_}_allpass{camstr}"] = (
+ tosave[f"{set_}_cleanpass{camstr}"]
+ + tosave[f"{set_}_finalpass{camstr}"]
+ )
+ # test1024: this is the same split as unimatch 'validation' split
+ # see https://github.com/autonomousvision/unimatch/blob/master/dataloader/flow/datasets.py#L229
+ test1024_nsamples = 1024
+ alltest_nsamples = len(tosave["test_cleanpass"]) # 7866
+ stride = alltest_nsamples // test1024_nsamples
+ remove = alltest_nsamples % test1024_nsamples
+ for cam in ["left", "right"]:
+ camstr = "" if cam == "left" else f"_{cam}cam"
+ for pass_ in ["final", "clean"]:
+ tosave[f"test1024_{pass_}pass{camstr}"] = sorted(
+ tosave[f"test_{pass_}pass{camstr}"]
+ )[:-remove][
+ ::stride
+ ] # warning, it was not sorted before
+ assert (
+ len(tosave["test1024_cleanpass"]) == 1024
+ ), "incorrect parsing of pairs in Flying Things"
+ tosave[f"test1024_allpass{camstr}"] = (
+ tosave[f"test1024_cleanpass{camstr}"]
+ + tosave[f"test1024_finalpass{camstr}"]
+ )
+ return tosave
+
+
+class MPISintelDataset(FlowDataset):
+
+ def _prepare_data(self):
+ self.name = "MPISintel"
+ self._set_root()
+ assert self.split in [
+ s + "_" + p
+ for s in ["train", "test", "subval", "subtrain"]
+ for p in ["cleanpass", "finalpass", "allpass"]
+ ]
+ self.pairname_to_img1name = lambda pairname: osp.join(
+ self.root, pairname[0], "frame_{:04d}.png".format(pairname[1])
+ )
+ self.pairname_to_img2name = lambda pairname: osp.join(
+ self.root, pairname[0], "frame_{:04d}.png".format(pairname[1] + 1)
+ )
+ self.pairname_to_flowname = lambda pairname: (
+ None
+ if pairname[0].startswith("test/")
+ else osp.join(
+ self.root,
+ pairname[0].replace("/clean/", "/flow/").replace("/final/", "/flow/"),
+ "frame_{:04d}.flo".format(pairname[1]),
+ )
+ )
+ self.pairname_to_str = lambda pairname: osp.join(
+ pairname[0], "frame_{:04d}".format(pairname[1])
+ )
+ self.load_flow = _read_flo_file
+
+ def _build_cache(self):
+ trainseqs = sorted(os.listdir(self.root + "training/clean"))
+ trainpairs = [
+ (osp.join("training/clean", s), i)
+ for s in trainseqs
+ for i in range(1, len(os.listdir(self.root + "training/clean/" + s)))
+ ]
+ subvalseqs = ["temple_2", "temple_3"]
+ subtrainseqs = [s for s in trainseqs if s not in subvalseqs]
+ subvalpairs = [(p, i) for p, i in trainpairs if any(s in p for s in subvalseqs)]
+ subtrainpairs = [
+ (p, i) for p, i in trainpairs if any(s in p for s in subtrainseqs)
+ ]
+ testseqs = sorted(os.listdir(self.root + "test/clean"))
+ testpairs = [
+ (osp.join("test/clean", s), i)
+ for s in testseqs
+ for i in range(1, len(os.listdir(self.root + "test/clean/" + s)))
+ ]
+ assert (
+ len(trainpairs) == 1041
+ and len(testpairs) == 552
+ and len(subvalpairs) == 98
+ and len(subtrainpairs) == 943
+ ), "incorrect parsing of pairs in MPI-Sintel"
+ tosave = {}
+ tosave["train_cleanpass"] = trainpairs
+ tosave["test_cleanpass"] = testpairs
+ tosave["subval_cleanpass"] = subvalpairs
+ tosave["subtrain_cleanpass"] = subtrainpairs
+ for t in ["train", "test", "subval", "subtrain"]:
+ tosave[t + "_finalpass"] = [
+ (p.replace("/clean/", "/final/"), i)
+ for p, i in tosave[t + "_cleanpass"]
+ ]
+ tosave[t + "_allpass"] = tosave[t + "_cleanpass"] + tosave[t + "_finalpass"]
+ return tosave
+
+ def submission_save_pairname(self, pairname, prediction, outdir, _time):
+ assert prediction.shape[2] == 2
+ outfile = os.path.join(
+ outdir, "submission", self.pairname_to_str(pairname) + ".flo"
+ )
+ os.makedirs(os.path.dirname(outfile), exist_ok=True)
+ writeFlowFile(prediction, outfile)
+
+ def finalize_submission(self, outdir):
+ assert self.split == "test_allpass"
+ bundle_exe = "/nfs/data/ffs-3d/datasets/StereoFlow/MPI-Sintel/bundler/linux-x64/bundler" # eg