File size: 40,530 Bytes
77834ec 38a574e 77834ec 368f089 77834ec 38a574e ab393e6 38a574e ab393e6 38a574e ab393e6 38a574e ab393e6 38a574e 77834ec 38a574e 77834ec 368f089 77834ec 368f089 cf6ee13 77834ec cf6ee13 77834ec 368f089 cf6ee13 77834ec 38a574e 77834ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Enhanced Single-View Gradio App for Semantic Segmentation, Depth Estimation, and 3D Point Cloud
Processes one image and shows all outputs: segmentation, depth, and colored point cloud
Now with precomputed examples for demonstration
"""
import sys
import locale
import os
import datetime
from pathlib import Path
# Set UTF-8 encoding
if sys.version_info >= (3, 7):
sys.stdout.reconfigure(encoding='utf-8')
sys.stderr.reconfigure(encoding='utf-8')
# Set locale for proper Unicode support
try:
locale.setlocale(locale.LC_ALL, 'en_US.UTF-8')
except locale.Error:
try:
locale.setlocale(locale.LC_ALL, 'C.UTF-8')
except locale.Error:
pass # Use system default
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import io
import base64
from dataclasses import dataclass
from typing import Optional, List, Tuple, Dict, Any
import requests
import cv2
from abc import ABC, abstractmethod
from collections import namedtuple
import plotly.graph_objects as go
import plotly.io as pio
import open3d as o3d
import json
import subprocess
# Import DepthAnythingV2 (assuming it's in the same directory or installed)
try:
from metric_depth.depth_anything_v2.dpt import DepthAnythingV2
DEPTH_AVAILABLE = True
except ImportError:
print("DepthAnythingV2 not available. Using precomputed examples only.")
DEPTH_AVAILABLE = False
CUDA_AVAILABLE = torch.cuda.is_available()
# Set environment variable to disable xFormers
os.environ['XFORMERS_DISABLED'] = '1'
os.environ['XFORMERS_MORE_DETAILS'] = '1'
# Output directory structure (mounted volume)
OUTPUT_DIR = Path("outputs")
def fix_lfs_on_startup():
"""Quick fix for LFS issues on HuggingFace startup."""
print("Checking for LFS issues...")
try:
# Try to pull LFS files
result = subprocess.run(['git', 'lfs', 'pull'],
capture_output=True, text=True, timeout=30)
if result.returncode == 0:
print("LFS files pulled successfully")
else:
print(f"LFS pull failed: {result.stderr}")
# Try checkout instead
subprocess.run(['git', 'lfs', 'checkout'],
capture_output=True, timeout=20)
except Exception as e:
print(f"LFS operations failed: {e}")
# =============================================================================
# Model Base Classes and Configurations
# =============================================================================
@dataclass
class ModelConfig:
"""Configuration for segmentation models."""
model_name: str
processor_name: str
device: str = "cuda" if torch.cuda.is_available() else "cpu"
trust_remote_code: bool = True
task_type: str = "semantic"
@dataclass
class DepthConfig:
"""Configuration for depth estimation models."""
encoder: str = "vitl" # 'vits', 'vitb', 'vitl'
dataset: str = "vkitti" # 'hypersim' for indoor, 'vkitti' for outdoor
max_depth: int = 80 # 20 for indoor, 80 for outdoor
weights_path: str = "depth_anything_v2_metric_vkitti_vitl.pth"
device: str = "cuda" if torch.cuda.is_available() else "cpu"
class BaseSegmentationModel(ABC):
"""Abstract base class for segmentation models."""
def __init__(self, model_config):
self.config = model_config
self.model = None
self.processor = None
self.device = torch.device(model_config.device if torch.cuda.is_available() else "cpu")
@abstractmethod
def load_model(self):
"""Load the model and processor."""
pass
@abstractmethod
def preprocess(self, image: Image.Image, **kwargs) -> Dict[str, torch.Tensor]:
"""Preprocess the input image."""
pass
@abstractmethod
def predict(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Run inference on preprocessed inputs."""
pass
@abstractmethod
def postprocess(self, outputs: Dict[str, torch.Tensor], target_size: Tuple[int, int]) -> np.ndarray:
"""Postprocess model outputs to segmentation map."""
pass
def segment_image(self, image: Image.Image, **kwargs) -> np.ndarray:
"""End-to-end segmentation pipeline."""
if self.model is None:
self.load_model()
inputs = self.preprocess(image, **kwargs)
outputs = self.predict(inputs)
segmentation_map = self.postprocess(outputs, image.size[::-1])
return segmentation_map
# =============================================================================
# OneFormer Model Implementation
# =============================================================================
class OneFormerModel(BaseSegmentationModel):
"""OneFormer model for universal segmentation."""
def __init__(self, model_config):
super().__init__(model_config)
def load_model(self):
"""Load OneFormer model and processor."""
print(f"Loading OneFormer model: {self.config.model_name}")
try:
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
self.processor = OneFormerProcessor.from_pretrained(
self.config.processor_name,
trust_remote_code=self.config.trust_remote_code
)
self.model = OneFormerForUniversalSegmentation.from_pretrained(
self.config.model_name,
trust_remote_code=self.config.trust_remote_code
)
self.model.to(self.device)
self.model.eval()
print(f"OneFormer model loaded successfully on {self.device}")
except Exception as e:
print(f"Error loading OneFormer model: {e}")
raise
def preprocess(self, image: Image.Image, task_inputs: List[str] = None) -> Dict[str, torch.Tensor]:
"""Preprocess image for OneFormer."""
if task_inputs is None:
task_inputs = [self.config.task_type]
inputs = self.processor(
images=image,
task_inputs=task_inputs,
return_tensors="pt"
)
# Move inputs to device
inputs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v
for k, v in inputs.items()}
return inputs
def predict(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Run inference with OneFormer."""
with torch.no_grad():
outputs = self.model(**inputs)
return outputs
def postprocess(self, outputs: Dict[str, torch.Tensor], target_size: Tuple[int, int]) -> np.ndarray:
"""Postprocess OneFormer outputs."""
predicted_semantic_map = self.processor.post_process_semantic_segmentation(
outputs,
target_sizes=[target_size]
)[0]
return predicted_semantic_map.cpu().numpy()
# =============================================================================
# DepthAnythingV2 Model Implementation
# =============================================================================
class DepthAnythingV2Model:
"""DepthAnythingV2 model for depth estimation."""
def __init__(self, depth_config: DepthConfig):
self.config = depth_config
self.model = None
self.device = torch.device(depth_config.device if torch.cuda.is_available() else "cpu")
def load_model(self):
"""Load DepthAnythingV2 model."""
if not DEPTH_AVAILABLE:
raise ImportError("DepthAnythingV2 is not available")
print(f"Loading DepthAnythingV2 model: {self.config.encoder}")
try:
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}
}
self.model = DepthAnythingV2(**{**model_configs[self.config.encoder], 'max_depth': self.config.max_depth})
# Load weights
if os.path.exists(self.config.weights_path):
self.model.load_state_dict(torch.load(self.config.weights_path, map_location='cpu'))
print(f"Loaded weights from {self.config.weights_path}")
else:
print(f"Warning: Weights file {self.config.weights_path} not found")
self.model.to(self.device)
self.model.eval()
print(f"DepthAnythingV2 model loaded successfully on {self.device}")
except Exception as e:
print(f"Error loading DepthAnythingV2 model: {e}")
raise
def estimate_depth(self, image: Image.Image) -> np.ndarray:
"""Estimate depth from image."""
if self.model is None:
self.load_model()
# Convert PIL to OpenCV format
img_array = np.array(image)
if len(img_array.shape) == 3:
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
# Infer depth
depth_map = self.model.infer_image(img_array)
return depth_map
# =============================================================================
# Cityscapes Label Definitions
# =============================================================================
Label = namedtuple('Label', [
'name', 'id', 'trainId', 'category', 'categoryId',
'hasInstances', 'ignoreInEval', 'color'
])
labels = [
Label('unlabeled', 0, 255, 'void', 0, False, True, (0, 0, 0)),
Label('ego vehicle', 1, 255, 'void', 0, False, True, (0, 0, 0)),
Label('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)),
Label('out of roi', 3, 255, 'void', 0, False, True, (0, 0, 0)),
Label('static', 4, 255, 'void', 0, False, True, (0, 0, 0)),
Label('dynamic', 5, 255, 'void', 0, False, True, (111, 74, 0)),
Label('ground', 6, 255, 'void', 0, False, True, (81, 0, 81)),
Label('road', 7, 0, 'flat', 1, False, False, (128, 64,128)),
Label('sidewalk', 8, 1, 'flat', 1, False, False, (244, 35,232)),
Label('parking', 9, 255, 'flat', 1, False, True, (250,170,160)),
Label('rail track', 10, 255, 'flat', 1, False, True, (230,150,140)),
Label('building', 11, 2, 'construction', 2, False, False, (70, 70, 70)),
Label('wall', 12, 3, 'construction', 2, False, False, (102,102,156)),
Label('fence', 13, 4, 'construction', 2, False, False, (190,153,153)),
Label('guard rail', 14, 255, 'construction', 2, False, True, (180,165,180)),
Label('bridge', 15, 255, 'construction', 2, False, True, (150,100,100)),
Label('tunnel', 16, 255, 'construction', 2, False, True, (150,120, 90)),
Label('pole', 17, 5, 'object', 3, False, False, (153,153,153)),
Label('polegroup', 18, 255, 'object', 3, False, True, (153,153,153)),
Label('traffic light', 19, 6, 'object', 3, False, False, (250,170, 30)),
Label('traffic sign', 20, 7, 'object', 3, False, False, (220,220, 0)),
Label('vegetation', 21, 8, 'nature', 4, False, False, (107,142, 35)),
Label('terrain', 22, 9, 'nature', 4, False, False, (152,251,152)),
Label('sky', 23, 10, 'sky', 5, False, False, (70,130,180)),
Label('person', 24, 11, 'human', 6, True, False, (220, 20, 60)),
Label('rider', 25, 12, 'human', 6, True, False, (255, 0, 0)),
Label('car', 26, 13, 'vehicle', 7, True, False, (0, 0,142)),
Label('truck', 27, 14, 'vehicle', 7, True, False, (0, 0, 70)),
Label('bus', 28, 15, 'vehicle', 7, True, False, (0, 60,100)),
Label('caravan', 29, 255, 'vehicle', 7, True, True, (0, 0, 90)),
Label('trailer', 30, 255, 'vehicle', 7, True, True, (0, 0,110)),
Label('train', 31, 16, 'vehicle', 7, True, False, (0, 80,100)),
Label('motorcycle', 32, 17, 'vehicle', 7, True, False, (0, 0,230)),
Label('bicycle', 33, 18, 'vehicle', 7, True, False, (119, 11, 32)),
Label('license plate', -1, -1, 'vehicle', 7, False, True, (0, 0,142)),
]
# Sky trainId is 10
SKY_TRAIN_ID = 10
# =============================================================================
# Utility Functions
# =============================================================================
def get_color_map(labels):
"""Returns a color map dictionary for the given labels."""
color_map = {label.trainId: label.color for label in labels if label.trainId != 255}
return color_map
def apply_color_map(semantic_map, color_map):
"""Applies a color map to a semantic map."""
height, width = semantic_map.shape
color_mapped_image = np.zeros((height, width, 3), dtype=np.uint8)
for trainId, color in color_map.items():
mask = semantic_map == trainId
color_mapped_image[mask] = color
return color_mapped_image
def create_depth_visualization(depth_map: np.ndarray, colormap: str = 'magma') -> Image.Image:
"""Create a colored depth map visualization with exact dimensions."""
# Normalize depth map to [0, 1]
normalized_depth = depth_map / np.max(depth_map)
# Apply colormap
cmap = plt.get_cmap(colormap)
colored_depth = cmap(normalized_depth)
# Convert to 8-bit RGB (remove alpha channel)
colored_depth_8bit = (colored_depth[:, :, :3] * 255).astype(np.uint8)
return Image.fromarray(colored_depth_8bit)
def depth_to_point_cloud_with_segmentation(depth_map: np.ndarray, rgb_image: Image.Image,
semantic_map: np.ndarray,
fx: float = 525.0, fy: float = 525.0,
cx: float = None, cy: float = None) -> o3d.geometry.PointCloud:
"""Convert depth map and RGB image to 3D point cloud with segmentation colors, excluding sky."""
height, width = depth_map.shape
if cx is None:
cx = width / 2.0
if cy is None:
cy = height / 2.0
# Create coordinate matrices
u, v = np.meshgrid(np.arange(width), np.arange(height))
# Convert to 3D coordinates
z = depth_map
x = (u - cx) * z / fx
y = (v - cy) * z / fy
# Stack coordinates
points = np.stack([x, y, z], axis=-1).reshape(-1, 3)
# Create mask to exclude sky points and invalid depths
flat_semantic = semantic_map.flatten()
flat_depth = z.flatten()
# Filter out invalid points and sky points
valid_mask = (flat_depth > 0) & (flat_depth < 1000) & (flat_semantic != SKY_TRAIN_ID)
points = points[valid_mask]
# Get segmentation colors for each point
color_map = get_color_map(labels)
seg_colors = np.zeros((len(flat_semantic), 3))
for trainId, color in color_map.items():
mask = flat_semantic == trainId
seg_colors[mask] = color
# Filter colors to match valid points
colors = seg_colors[valid_mask] / 255.0 # Normalize to [0, 1]
# Create Open3D point cloud
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors)
return pcd
def create_plotly_pointcloud(pcd: o3d.geometry.PointCloud, downsample_factor: float = 0.1) -> go.Figure:
"""Create interactive Plotly 3D point cloud visualization."""
# Downsample for performance
if downsample_factor < 1.0:
num_points = len(pcd.points)
indices = np.random.choice(num_points, int(num_points * downsample_factor), replace=False)
points = np.asarray(pcd.points)[indices]
colors = np.asarray(pcd.colors)[indices]
else:
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
# Create 3D scatter plot
fig = go.Figure(data=[go.Scatter3d(
x=points[:, 0],
y=points[:, 1],
z=points[:, 2],
mode='markers',
marker=dict(
size=1,
color=colors,
opacity=0.8
),
text=[f'Point {i}' for i in range(len(points))],
hovertemplate='X: %{x:.2f}<br>Y: %{y:.2f}<br>Z: %{z:.2f}<extra></extra>'
)])
# Update layout for centered display
fig.update_layout(
scene=dict(
xaxis_title='X (Horizontal)',
yaxis_title='Y (Vertical)',
zaxis_title='Z (Depth)',
aspectmode='data'
),
title={
'text': 'Interactive 3D Point Cloud (Colored by Segmentation, Sky Excluded)',
'x': 0.5,
'xanchor': 'center'
},
width=None, # Let it auto-size to container
height=600,
margin=dict(l=0, r=0, t=40, b=0), # Minimal margins
autosize=True # Enable auto-sizing to container
)
# Set camera for bird's eye view that clearly shows 3D structure
fig.update_layout(scene_camera=dict(
up=dict(x=0, y=0, z=1), # Z-axis points up
center=dict(x=0, y=0, z=0), # Center at origin
eye=dict(x=0.5, y=-2.5, z=1.5) # View from above-back position
))
return fig
def create_overlay_plot(rgb_image: Image.Image, semantic_map: np.ndarray, alpha: float = 0.5):
"""Create segmentation overlay plot without title and borders."""
rgb_array = np.array(rgb_image)
color_map = get_color_map(labels)
colored_semantic_map = apply_color_map(semantic_map, color_map)
# Create figure with exact image dimensions
height, width = rgb_array.shape[:2]
dpi = 100
fig, ax = plt.subplots(1, 1, figsize=(width/dpi, height/dpi), dpi=dpi)
# Remove all margins and padding
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
ax.imshow(rgb_array)
ax.imshow(colored_semantic_map, alpha=alpha)
ax.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=dpi)
buf.seek(0)
plt.close(fig)
return Image.open(buf)
class PrecomputedExamplesManager:
"""Manages precomputed examples from output folder structure."""
def __init__(self, output_dir: Path):
self.output_dir = output_dir
self.rgb_dir = output_dir / "rgb"
self.segmentation_dir = output_dir / "segmentation"
self.depth_dir = output_dir / "depth"
self.pointclouds_dir = output_dir / "pointclouds"
self.examples = self._load_examples()
def _load_examples(self) -> Dict[str, Dict]:
"""Load all available precomputed examples from output structure."""
examples = {}
if not self.output_dir.exists():
print(f"Output directory {self.output_dir} not found.")
return {}
# Find all timestamps by looking at RGB files (the inputs)
if not self.rgb_dir.exists():
print(f"RGB directory {self.rgb_dir} not found.")
return {}
# Get all RGB files and extract timestamps
timestamps = set()
for rgb_file in self.rgb_dir.glob("rgb_*.png"):
# Extract timestamp from filename like "rgb_20241215_143022.png"
filename = rgb_file.stem
if filename.startswith("rgb_"):
timestamp = filename.replace("rgb_", "")
timestamps.add(timestamp)
print(f"Found {len(timestamps)} RGB input images")
# For each timestamp, try to load the complete example
for timestamp in sorted(timestamps, reverse=True): # Most recent first
example_data = self._load_single_example(timestamp)
if example_data:
examples[timestamp] = example_data
print(f"Loaded {len(examples)} precomputed examples from output directory")
return examples
def _load_single_example(self, timestamp: str) -> Optional[Dict]:
"""Load a single precomputed example by timestamp."""
try:
# Input file (required)
rgb_path = self.rgb_dir / f"rgb_{timestamp}.png"
# Output files (some may be optional)
seg_path = self.segmentation_dir / f"segmentation_{timestamp}.png"
depth_path = self.depth_dir / f"depth_{timestamp}.png"
ply_path = self.pointclouds_dir / f"pointcloud_{timestamp}.ply"
html_path = self.pointclouds_dir / f"pointcloud_{timestamp}.html"
# Check if RGB input exists (required)
if not rgb_path.exists():
print(f"RGB input file missing for timestamp {timestamp}: {rgb_path}")
return None
# Check if at least segmentation output exists
if not seg_path.exists():
print(f"Segmentation output missing for timestamp {timestamp}: {seg_path}")
return None
# Create a display name from timestamp
try:
# Parse timestamp like "20241215_143022"
if len(timestamp) >= 13 and "_" in timestamp:
date_part = timestamp[:8]
time_part = timestamp[9:15]
# Format as "Dec 15, 2024 14:30"
year = date_part[:4]
month = date_part[4:6]
day = date_part[6:8]
hour = time_part[:2]
minute = time_part[2:4]
month_names = ["", "Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
month_name = month_names[int(month)] if 1 <= int(month) <= 12 else month
display_name = f"{month_name} {int(day)}, {year} {hour}:{minute}"
else:
display_name = timestamp
except:
display_name = timestamp
return {
'name': display_name,
'timestamp': timestamp,
'rgb_path': rgb_path, # Input image
'segmentation_path': seg_path, # Output
'depth_path': depth_path if depth_path.exists() else None, # Output (optional)
'pointcloud_ply_path': ply_path if ply_path.exists() else None, # Output (optional)
'pointcloud_html_path': html_path if html_path.exists() else None, # Output (optional)
'preview_image': self._create_preview_image(rgb_path, timestamp)
}
except Exception as e:
print(f"Error loading example {timestamp}: {e}")
return None
def _create_preview_image(self, rgb_path: Path, timestamp: str) -> Image.Image:
"""Create a preview thumbnail from RGB input image."""
try:
image = Image.open(rgb_path)
image.thumbnail((600, 450), Image.Resampling.LANCZOS)
return image
except Exception as e:
print(f"Error creating preview for {timestamp}: {e}")
return Image.new('RGB', (200, 150), color=(128, 128, 128))
def get_example_names(self) -> List[str]:
"""Get list of available example names."""
return [data['name'] for data in self.examples.values()]
def get_example_previews(self) -> List[Tuple[Image.Image, str]]:
"""Get preview images for all examples."""
previews = []
for timestamp, data in self.examples.items():
previews.append((data['preview_image'], data['name']))
return previews
def get_timestamp_by_name(self, name: str) -> Optional[str]:
"""Get timestamp by display name."""
for timestamp, data in self.examples.items():
if data['name'] == name:
return timestamp
return None
def load_example_results(self, example_name: str) -> Tuple[Optional[Image.Image], Optional[Image.Image], Optional[go.Figure], str]:
"""Load precomputed results for an example."""
if not example_name:
return None, None, None, "Please select an example."
# Find the timestamp for this example name
timestamp = self.get_timestamp_by_name(example_name)
if not timestamp or timestamp not in self.examples:
return None, None, None, f"Example '{example_name}' not found."
example_data = self.examples[timestamp]
try:
# Load output images
segmentation_image = Image.open(example_data['segmentation_path'])
depth_image = None
if example_data['depth_path'] and example_data['depth_path'].exists():
depth_image = Image.open(example_data['depth_path'])
# Load point cloud if available
point_cloud_fig = None
if example_data['pointcloud_ply_path'] and example_data['pointcloud_ply_path'].exists():
try:
pcd = o3d.io.read_point_cloud(str(example_data['pointcloud_ply_path']))
if len(pcd.points) > 0:
point_cloud_fig = create_plotly_pointcloud(pcd, downsample_factor=1)
else:
print(f"Point cloud file {example_data['pointcloud_ply_path']} is empty")
except Exception as e:
print(f"Error loading point cloud: {e}")
return segmentation_image, depth_image, point_cloud_fig, ""
except Exception as e:
return None, None, None, f"Error loading example results: {str(e)}"
# =============================================================================
# Main Application Class
# =============================================================================
class EnhancedSingleViewApp:
def __init__(self):
# Model configurations
self.oneformer_config = ModelConfig(
model_name="shi-labs/oneformer_cityscapes_swin_large",
processor_name="shi-labs/oneformer_cityscapes_swin_large",
task_type="semantic"
)
self.depth_config = DepthConfig(
encoder="vitl",
dataset="vkitti",
max_depth=80,
weights_path="depth_anything_v2_metric_vkitti_vitl.pth"
)
# Models
self.oneformer_model = None
self.depth_model = None
self.segmentation_loaded = False
self.depth_loaded = False
# Precomputed examples manager
self.examples_manager = PrecomputedExamplesManager(OUTPUT_DIR)
# Online sample images (fallback)
self.sample_images = {
"Street Scene 1": "https://images.unsplash.com/photo-1449824913935-59a10b8d2000?w=800",
"Street Scene 2": "https://images.unsplash.com/photo-1502920917128-1aa500764cbd?w=800",
"Urban Road": "https://images.unsplash.com/photo-1516738901171-8eb4fc13bd20?w=800",
"City View": "https://images.unsplash.com/photo-1477959858617-67f85cf4f1df?w=800",
"Highway": "https://images.unsplash.com/photo-1544620347-c4fd4a3d5957?w=800",
}
def download_sample_image(self, image_url: str) -> Image.Image:
"""Download a sample image from URL."""
try:
response = requests.get(image_url, timeout=10)
response.raise_for_status()
return Image.open(io.BytesIO(response.content)).convert('RGB')
except Exception as e:
print(f"Error downloading image: {e}")
return Image.new('RGB', (800, 600), color=(128, 128, 128))
def create_overlay_plot(self, rgb_image: Image.Image, semantic_map: np.ndarray, alpha: float = 0.5):
"""Create segmentation overlay plot without title and borders."""
rgb_array = np.array(rgb_image)
color_map = get_color_map(labels)
colored_semantic_map = apply_color_map(semantic_map, color_map)
# Create figure with exact image dimensions
height, width = rgb_array.shape[:2]
dpi = 100
fig, ax = plt.subplots(1, 1, figsize=(width/dpi, height/dpi), dpi=dpi)
# Remove all margins and padding
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
ax.imshow(rgb_array)
ax.imshow(colored_semantic_map, alpha=alpha)
ax.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=dpi)
buf.seek(0)
plt.close(fig)
return Image.open(buf)
def process_complete_pipeline(self, image: Image.Image):
"""Process image through complete pipeline: segmentation + depth + point cloud."""
if image is None:
return None, None, None, "Please upload an image."
# Default values
overlay_alpha = 0.5
depth_colormap = "magma"
downsample_factor = 0.1
try:
# Auto-load models if not loaded
if not self.segmentation_loaded:
if self.oneformer_model is None:
self.oneformer_model = OneFormerModel(self.oneformer_config)
self.oneformer_model.load_model()
self.segmentation_loaded = True
if not self.depth_loaded and DEPTH_AVAILABLE:
if self.depth_model is None:
self.depth_model = DepthAnythingV2Model(self.depth_config)
self.depth_model.load_model()
self.depth_loaded = True
# Resize if too large
original_size = image.size
if max(image.size) > 1024:
image.thumbnail((1024, 1024), Image.Resampling.LANCZOS)
# Step 1: Semantic Segmentation
task_inputs = ["semantic"]
semantic_map = self.oneformer_model.segment_image(image, task_inputs=task_inputs)
segmentation_overlay = self.create_overlay_plot(image, semantic_map, overlay_alpha)
# Step 2: Depth Estimation (if available)
depth_vis = None
point_cloud_fig = None
pcd = None
if DEPTH_AVAILABLE and self.depth_loaded:
depth_map = self.depth_model.estimate_depth(image)
depth_vis = create_depth_visualization(depth_map, depth_colormap)
# Step 3: Point Cloud with Segmentation Colors
pcd = depth_to_point_cloud_with_segmentation(depth_map, image, semantic_map)
point_cloud_fig = create_plotly_pointcloud(pcd, downsample_factor)
# Generate comprehensive info
unique_classes = np.unique(semantic_map)
class_info = []
total_pixels = semantic_map.size
for class_id in unique_classes:
if class_id < len(labels) and class_id != 255:
label = labels[class_id]
pixel_count = np.sum(semantic_map == class_id)
percentage = (pixel_count / total_pixels) * 100
if percentage > 0.1:
class_info.append(f"- {label.name}: {percentage:.1f}%")
# Point cloud statistics
if point_cloud_fig is not None:
num_points = len(pcd.points)
downsampled_points = int(num_points * downsample_factor)
point_cloud_info = f"""
3D Point Cloud:
- Total points: {num_points:,}
- Displayed points: {downsampled_points:,} ({downsample_factor*100:.0f}%)
- Sky points excluded
- Colors match segmentation classes"""
else:
point_cloud_info = "Point cloud not available (DepthAnythingV2 required)"
# Depth statistics
if depth_vis is not None and DEPTH_AVAILABLE:
depth_stats = {
'min': np.min(depth_map),
'max': np.max(depth_map),
'mean': np.mean(depth_map),
'std': np.std(depth_map)
}
depth_info = f"""
Depth Estimation:
- Min depth: {depth_stats['min']:.2f}m
- Max depth: {depth_stats['max']:.2f}m
- Mean depth: {depth_stats['mean']:.2f}m
- Std deviation: {depth_stats['std']:.2f}m
- Colormap: {depth_colormap}"""
else:
depth_info = "Depth estimation not available"
info_text = f"""Complete vision pipeline processed successfully!
Models Used:
- OneFormer (Semantic Segmentation)
{f"- DepthAnythingV2 ({self.depth_config.encoder.upper()})" if DEPTH_AVAILABLE else "- DepthAnythingV2 (Not Available)"}
Image Processing:
- Original size: {original_size[0]}x{original_size[1]}
- Processed size: {image.size[0]}x{image.size[1]}
- Overlay transparency: {overlay_alpha:.1f}
Detected Classes:
{chr(10).join(class_info)}
{depth_info}
{point_cloud_info}
The point cloud shows 3D structure with each point colored according to its segmentation class. Sky points are excluded for better visualization."""
return segmentation_overlay, depth_vis, point_cloud_fig, info_text
except Exception as e:
return None, None, None, f"Error processing pipeline: {str(e)}"
# Initialize the app
app = EnhancedSingleViewApp()
def process_uploaded_image(image):
try:
return app.process_complete_pipeline(image)
except:
return None, None, None
def process_sample_image(sample_choice):
"""Process sample image through complete pipeline."""
if sample_choice and sample_choice in app.sample_images:
image_url = app.sample_images[sample_choice]
image = app.download_sample_image(image_url)
return app.process_complete_pipeline(image)
return None, None, None, "Please select a sample image."
def load_precomputed_example(evt: gr.SelectData):
"""Load precomputed example results from gallery selection."""
if evt.index is not None:
example_names = app.examples_manager.get_example_names()
if evt.index < len(example_names):
example_name = example_names[evt.index]
seg_image, depth_image, pc_fig, info_text = app.examples_manager.load_example_results(example_name)
return seg_image, depth_image, pc_fig
return None, None, None
def get_example_previews():
"""Get preview images for the gallery."""
previews = app.examples_manager.get_example_previews()
if not previews:
return []
return previews
# =============================================================================
# Create Gradio Interface
# =============================================================================
def create_gradio_interface():
"""Create and return the enhanced single-view Gradio interface."""
with gr.Blocks(
title="Enhanced Computer Vision Pipeline",
theme=gr.themes.Default()
) as demo:
gr.Markdown("""
# Street Scene 3D Reconstruction
Upload an image or select an example to see:
- **Semantic Segmentation** - Identify roads, buildings, vehicles, people, and other scene elements
- **Depth Estimation** - Generate metric depth maps showing distance to objects
- **3D Point Cloud** - Interactive 3D reconstruction with semantic colors)
""")
with gr.Row():
# Left Column: Controls and Input
with gr.Column(scale=1):
if CUDA_AVAILABLE:
gr.Markdown("### Upload Image")
uploaded_image = gr.Image(
type="pil",
label="Upload Image"
)
upload_btn = gr.Button("Process Image", variant="primary", size="lg")
else:
uploaded_image = gr.Image(visible=False) # Hidden placeholder
upload_btn = gr.Button(visible=False) # Hidden placeholder
gr.Markdown("### CPU Mode")
gr.Markdown("⚠️ **Upload disabled**: DepthAnythingV2 requires CUDA. Using precomputed examples only.")
gr.Markdown("### Examples")
gr.Markdown("Click on an image to load the example:")
# Example gallery (always visible)
example_gallery = gr.Gallery(
value=get_example_previews(),
label="Example Images",
show_label=False,
elem_id="example_gallery",
columns=2,
rows=3,
height="auto",
object_fit="cover"
)
# Right Column: Results
with gr.Column(scale=2):
gr.Markdown("### Results")
# Segmentation and Depth side by side
with gr.Row():
with gr.Column():
gr.Markdown("#### Semantic Segmentation")
segmentation_output = gr.Image(label="Segmentation Overlay")
with gr.Column():
gr.Markdown("#### Depth Estimation")
depth_output = gr.Image(label="Depth Map")
# Point Cloud below
gr.Markdown("#### 3D Point Cloud")
pointcloud_output = gr.Plot(label="Interactive 3D Point Cloud (Colored by Segmentation)")
if CUDA_AVAILABLE:
upload_btn.click(
fn=process_uploaded_image,
inputs=[uploaded_image],
outputs=[segmentation_output, depth_output, pointcloud_output]
)
# Gallery selection loads example directly
example_gallery.select(
fn=load_precomputed_example,
outputs=[segmentation_output, depth_output, pointcloud_output]
)
return demo
# =============================================================================
# Main Execution
# =============================================================================
if __name__ == "__main__":
fix_lfs_on_startup()
# Create and launch the interface
demo = create_gradio_interface()
print("Starting Enhanced Single-View Computer Vision App...")
print("Complete Pipeline: Segmentation + Depth + 3D Point Cloud")
print("Device:", "CUDA" if torch.cuda.is_available() else "CPU")
print("Depth Available:", "YES" if DEPTH_AVAILABLE else "NO")
print("Point Cloud Colors: Segmentation-based (Sky Excluded)")
print(f"Output Directory: {OUTPUT_DIR.absolute()}")
print(f"Available Examples: {len(app.examples_manager.examples)}")
# Launch the app
demo.launch(
share=True, # Creates a public link
debug=True, # Enable debugging
server_name="0.0.0.0", # Allow external connections
server_port=7860, # Default port
show_error=True, # Show errors in the interface
quiet=False # Show startup logs
) |