#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Enhanced Single-View Gradio App for Semantic Segmentation, Depth Estimation, and 3D Point Cloud Processes one image and shows all outputs: segmentation, depth, and colored point cloud Now with precomputed examples for demonstration """ import sys import locale import os import datetime from pathlib import Path # Set UTF-8 encoding if sys.version_info >= (3, 7): sys.stdout.reconfigure(encoding='utf-8') sys.stderr.reconfigure(encoding='utf-8') # Set locale for proper Unicode support try: locale.setlocale(locale.LC_ALL, 'en_US.UTF-8') except locale.Error: try: locale.setlocale(locale.LC_ALL, 'C.UTF-8') except locale.Error: pass # Use system default import gradio as gr import torch import numpy as np import matplotlib.pyplot as plt from PIL import Image import io import base64 from dataclasses import dataclass from typing import Optional, List, Tuple, Dict, Any import requests import cv2 from abc import ABC, abstractmethod from collections import namedtuple import plotly.graph_objects as go import plotly.io as pio import open3d as o3d import json import subprocess # Import DepthAnythingV2 (assuming it's in the same directory or installed) try: from metric_depth.depth_anything_v2.dpt import DepthAnythingV2 DEPTH_AVAILABLE = True except ImportError: print("DepthAnythingV2 not available. Using precomputed examples only.") DEPTH_AVAILABLE = False CUDA_AVAILABLE = torch.cuda.is_available() # Set environment variable to disable xFormers os.environ['XFORMERS_DISABLED'] = '1' os.environ['XFORMERS_MORE_DETAILS'] = '1' # Output directory structure (mounted volume) OUTPUT_DIR = Path("outputs") def fix_lfs_on_startup(): """Quick fix for LFS issues on HuggingFace startup.""" print("Checking for LFS issues...") try: # Try to pull LFS files result = subprocess.run(['git', 'lfs', 'pull'], capture_output=True, text=True, timeout=30) if result.returncode == 0: print("LFS files pulled successfully") else: print(f"LFS pull failed: {result.stderr}") # Try checkout instead subprocess.run(['git', 'lfs', 'checkout'], capture_output=True, timeout=20) except Exception as e: print(f"LFS operations failed: {e}") # ============================================================================= # Model Base Classes and Configurations # ============================================================================= @dataclass class ModelConfig: """Configuration for segmentation models.""" model_name: str processor_name: str device: str = "cuda" if torch.cuda.is_available() else "cpu" trust_remote_code: bool = True task_type: str = "semantic" @dataclass class DepthConfig: """Configuration for depth estimation models.""" encoder: str = "vitl" # 'vits', 'vitb', 'vitl' dataset: str = "vkitti" # 'hypersim' for indoor, 'vkitti' for outdoor max_depth: int = 80 # 20 for indoor, 80 for outdoor weights_path: str = "depth_anything_v2_metric_vkitti_vitl.pth" device: str = "cuda" if torch.cuda.is_available() else "cpu" class BaseSegmentationModel(ABC): """Abstract base class for segmentation models.""" def __init__(self, model_config): self.config = model_config self.model = None self.processor = None self.device = torch.device(model_config.device if torch.cuda.is_available() else "cpu") @abstractmethod def load_model(self): """Load the model and processor.""" pass @abstractmethod def preprocess(self, image: Image.Image, **kwargs) -> Dict[str, torch.Tensor]: """Preprocess the input image.""" pass @abstractmethod def predict(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """Run inference on preprocessed inputs.""" pass @abstractmethod def postprocess(self, outputs: Dict[str, torch.Tensor], target_size: Tuple[int, int]) -> np.ndarray: """Postprocess model outputs to segmentation map.""" pass def segment_image(self, image: Image.Image, **kwargs) -> np.ndarray: """End-to-end segmentation pipeline.""" if self.model is None: self.load_model() inputs = self.preprocess(image, **kwargs) outputs = self.predict(inputs) segmentation_map = self.postprocess(outputs, image.size[::-1]) return segmentation_map # ============================================================================= # OneFormer Model Implementation # ============================================================================= class OneFormerModel(BaseSegmentationModel): """OneFormer model for universal segmentation.""" def __init__(self, model_config): super().__init__(model_config) def load_model(self): """Load OneFormer model and processor.""" print(f"Loading OneFormer model: {self.config.model_name}") try: from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation self.processor = OneFormerProcessor.from_pretrained( self.config.processor_name, trust_remote_code=self.config.trust_remote_code ) self.model = OneFormerForUniversalSegmentation.from_pretrained( self.config.model_name, trust_remote_code=self.config.trust_remote_code ) self.model.to(self.device) self.model.eval() print(f"OneFormer model loaded successfully on {self.device}") except Exception as e: print(f"Error loading OneFormer model: {e}") raise def preprocess(self, image: Image.Image, task_inputs: List[str] = None) -> Dict[str, torch.Tensor]: """Preprocess image for OneFormer.""" if task_inputs is None: task_inputs = [self.config.task_type] inputs = self.processor( images=image, task_inputs=task_inputs, return_tensors="pt" ) # Move inputs to device inputs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} return inputs def predict(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: """Run inference with OneFormer.""" with torch.no_grad(): outputs = self.model(**inputs) return outputs def postprocess(self, outputs: Dict[str, torch.Tensor], target_size: Tuple[int, int]) -> np.ndarray: """Postprocess OneFormer outputs.""" predicted_semantic_map = self.processor.post_process_semantic_segmentation( outputs, target_sizes=[target_size] )[0] return predicted_semantic_map.cpu().numpy() # ============================================================================= # DepthAnythingV2 Model Implementation # ============================================================================= class DepthAnythingV2Model: """DepthAnythingV2 model for depth estimation.""" def __init__(self, depth_config: DepthConfig): self.config = depth_config self.model = None self.device = torch.device(depth_config.device if torch.cuda.is_available() else "cpu") def load_model(self): """Load DepthAnythingV2 model.""" if not DEPTH_AVAILABLE: raise ImportError("DepthAnythingV2 is not available") print(f"Loading DepthAnythingV2 model: {self.config.encoder}") try: model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]} } self.model = DepthAnythingV2(**{**model_configs[self.config.encoder], 'max_depth': self.config.max_depth}) # Load weights if os.path.exists(self.config.weights_path): self.model.load_state_dict(torch.load(self.config.weights_path, map_location='cpu')) print(f"Loaded weights from {self.config.weights_path}") else: print(f"Warning: Weights file {self.config.weights_path} not found") self.model.to(self.device) self.model.eval() print(f"DepthAnythingV2 model loaded successfully on {self.device}") except Exception as e: print(f"Error loading DepthAnythingV2 model: {e}") raise def estimate_depth(self, image: Image.Image) -> np.ndarray: """Estimate depth from image.""" if self.model is None: self.load_model() # Convert PIL to OpenCV format img_array = np.array(image) if len(img_array.shape) == 3: img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR) # Infer depth depth_map = self.model.infer_image(img_array) return depth_map # ============================================================================= # Cityscapes Label Definitions # ============================================================================= Label = namedtuple('Label', [ 'name', 'id', 'trainId', 'category', 'categoryId', 'hasInstances', 'ignoreInEval', 'color' ]) labels = [ Label('unlabeled', 0, 255, 'void', 0, False, True, (0, 0, 0)), Label('ego vehicle', 1, 255, 'void', 0, False, True, (0, 0, 0)), Label('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)), Label('out of roi', 3, 255, 'void', 0, False, True, (0, 0, 0)), Label('static', 4, 255, 'void', 0, False, True, (0, 0, 0)), Label('dynamic', 5, 255, 'void', 0, False, True, (111, 74, 0)), Label('ground', 6, 255, 'void', 0, False, True, (81, 0, 81)), Label('road', 7, 0, 'flat', 1, False, False, (128, 64,128)), Label('sidewalk', 8, 1, 'flat', 1, False, False, (244, 35,232)), Label('parking', 9, 255, 'flat', 1, False, True, (250,170,160)), Label('rail track', 10, 255, 'flat', 1, False, True, (230,150,140)), Label('building', 11, 2, 'construction', 2, False, False, (70, 70, 70)), Label('wall', 12, 3, 'construction', 2, False, False, (102,102,156)), Label('fence', 13, 4, 'construction', 2, False, False, (190,153,153)), Label('guard rail', 14, 255, 'construction', 2, False, True, (180,165,180)), Label('bridge', 15, 255, 'construction', 2, False, True, (150,100,100)), Label('tunnel', 16, 255, 'construction', 2, False, True, (150,120, 90)), Label('pole', 17, 5, 'object', 3, False, False, (153,153,153)), Label('polegroup', 18, 255, 'object', 3, False, True, (153,153,153)), Label('traffic light', 19, 6, 'object', 3, False, False, (250,170, 30)), Label('traffic sign', 20, 7, 'object', 3, False, False, (220,220, 0)), Label('vegetation', 21, 8, 'nature', 4, False, False, (107,142, 35)), Label('terrain', 22, 9, 'nature', 4, False, False, (152,251,152)), Label('sky', 23, 10, 'sky', 5, False, False, (70,130,180)), Label('person', 24, 11, 'human', 6, True, False, (220, 20, 60)), Label('rider', 25, 12, 'human', 6, True, False, (255, 0, 0)), Label('car', 26, 13, 'vehicle', 7, True, False, (0, 0,142)), Label('truck', 27, 14, 'vehicle', 7, True, False, (0, 0, 70)), Label('bus', 28, 15, 'vehicle', 7, True, False, (0, 60,100)), Label('caravan', 29, 255, 'vehicle', 7, True, True, (0, 0, 90)), Label('trailer', 30, 255, 'vehicle', 7, True, True, (0, 0,110)), Label('train', 31, 16, 'vehicle', 7, True, False, (0, 80,100)), Label('motorcycle', 32, 17, 'vehicle', 7, True, False, (0, 0,230)), Label('bicycle', 33, 18, 'vehicle', 7, True, False, (119, 11, 32)), Label('license plate', -1, -1, 'vehicle', 7, False, True, (0, 0,142)), ] # Sky trainId is 10 SKY_TRAIN_ID = 10 # ============================================================================= # Utility Functions # ============================================================================= def get_color_map(labels): """Returns a color map dictionary for the given labels.""" color_map = {label.trainId: label.color for label in labels if label.trainId != 255} return color_map def apply_color_map(semantic_map, color_map): """Applies a color map to a semantic map.""" height, width = semantic_map.shape color_mapped_image = np.zeros((height, width, 3), dtype=np.uint8) for trainId, color in color_map.items(): mask = semantic_map == trainId color_mapped_image[mask] = color return color_mapped_image def create_depth_visualization(depth_map: np.ndarray, colormap: str = 'magma') -> Image.Image: """Create a colored depth map visualization with exact dimensions.""" # Normalize depth map to [0, 1] normalized_depth = depth_map / np.max(depth_map) # Apply colormap cmap = plt.get_cmap(colormap) colored_depth = cmap(normalized_depth) # Convert to 8-bit RGB (remove alpha channel) colored_depth_8bit = (colored_depth[:, :, :3] * 255).astype(np.uint8) return Image.fromarray(colored_depth_8bit) def depth_to_point_cloud_with_segmentation(depth_map: np.ndarray, rgb_image: Image.Image, semantic_map: np.ndarray, fx: float = 525.0, fy: float = 525.0, cx: float = None, cy: float = None) -> o3d.geometry.PointCloud: """Convert depth map and RGB image to 3D point cloud with segmentation colors, excluding sky.""" height, width = depth_map.shape if cx is None: cx = width / 2.0 if cy is None: cy = height / 2.0 # Create coordinate matrices u, v = np.meshgrid(np.arange(width), np.arange(height)) # Convert to 3D coordinates z = depth_map x = (u - cx) * z / fx y = (v - cy) * z / fy # Stack coordinates points = np.stack([x, y, z], axis=-1).reshape(-1, 3) # Create mask to exclude sky points and invalid depths flat_semantic = semantic_map.flatten() flat_depth = z.flatten() # Filter out invalid points and sky points valid_mask = (flat_depth > 0) & (flat_depth < 1000) & (flat_semantic != SKY_TRAIN_ID) points = points[valid_mask] # Get segmentation colors for each point color_map = get_color_map(labels) seg_colors = np.zeros((len(flat_semantic), 3)) for trainId, color in color_map.items(): mask = flat_semantic == trainId seg_colors[mask] = color # Filter colors to match valid points colors = seg_colors[valid_mask] / 255.0 # Normalize to [0, 1] # Create Open3D point cloud pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) pcd.colors = o3d.utility.Vector3dVector(colors) return pcd def create_plotly_pointcloud(pcd: o3d.geometry.PointCloud, downsample_factor: float = 0.1) -> go.Figure: """Create interactive Plotly 3D point cloud visualization.""" # Downsample for performance if downsample_factor < 1.0: num_points = len(pcd.points) indices = np.random.choice(num_points, int(num_points * downsample_factor), replace=False) points = np.asarray(pcd.points)[indices] colors = np.asarray(pcd.colors)[indices] else: points = np.asarray(pcd.points) colors = np.asarray(pcd.colors) # Create 3D scatter plot fig = go.Figure(data=[go.Scatter3d( x=points[:, 0], y=points[:, 1], z=points[:, 2], mode='markers', marker=dict( size=1, color=colors, opacity=0.8 ), text=[f'Point {i}' for i in range(len(points))], hovertemplate='X: %{x:.2f}
Y: %{y:.2f}
Z: %{z:.2f}' )]) # Update layout for centered display fig.update_layout( scene=dict( xaxis_title='X (Horizontal)', yaxis_title='Y (Vertical)', zaxis_title='Z (Depth)', aspectmode='data' ), title={ 'text': 'Interactive 3D Point Cloud (Colored by Segmentation, Sky Excluded)', 'x': 0.5, 'xanchor': 'center' }, width=None, # Let it auto-size to container height=600, margin=dict(l=0, r=0, t=40, b=0), # Minimal margins autosize=True # Enable auto-sizing to container ) # Set camera for bird's eye view that clearly shows 3D structure fig.update_layout(scene_camera=dict( up=dict(x=0, y=0, z=1), # Z-axis points up center=dict(x=0, y=0, z=0), # Center at origin eye=dict(x=0.5, y=-2.5, z=1.5) # View from above-back position )) return fig def create_overlay_plot(rgb_image: Image.Image, semantic_map: np.ndarray, alpha: float = 0.5): """Create segmentation overlay plot without title and borders.""" rgb_array = np.array(rgb_image) color_map = get_color_map(labels) colored_semantic_map = apply_color_map(semantic_map, color_map) # Create figure with exact image dimensions height, width = rgb_array.shape[:2] dpi = 100 fig, ax = plt.subplots(1, 1, figsize=(width/dpi, height/dpi), dpi=dpi) # Remove all margins and padding fig.subplots_adjust(left=0, right=1, top=1, bottom=0) ax.imshow(rgb_array) ax.imshow(colored_semantic_map, alpha=alpha) ax.axis('off') buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=dpi) buf.seek(0) plt.close(fig) return Image.open(buf) class PrecomputedExamplesManager: """Manages precomputed examples from output folder structure.""" def __init__(self, output_dir: Path): self.output_dir = output_dir self.rgb_dir = output_dir / "rgb" self.segmentation_dir = output_dir / "segmentation" self.depth_dir = output_dir / "depth" self.pointclouds_dir = output_dir / "pointclouds" self.examples = self._load_examples() def _load_examples(self) -> Dict[str, Dict]: """Load all available precomputed examples from output structure.""" examples = {} if not self.output_dir.exists(): print(f"Output directory {self.output_dir} not found.") return {} # Find all timestamps by looking at RGB files (the inputs) if not self.rgb_dir.exists(): print(f"RGB directory {self.rgb_dir} not found.") return {} # Get all RGB files and extract timestamps timestamps = set() for rgb_file in self.rgb_dir.glob("rgb_*.png"): # Extract timestamp from filename like "rgb_20241215_143022.png" filename = rgb_file.stem if filename.startswith("rgb_"): timestamp = filename.replace("rgb_", "") timestamps.add(timestamp) print(f"Found {len(timestamps)} RGB input images") # For each timestamp, try to load the complete example for timestamp in sorted(timestamps, reverse=True): # Most recent first example_data = self._load_single_example(timestamp) if example_data: examples[timestamp] = example_data print(f"Loaded {len(examples)} precomputed examples from output directory") return examples def _load_single_example(self, timestamp: str) -> Optional[Dict]: """Load a single precomputed example by timestamp.""" try: # Input file (required) rgb_path = self.rgb_dir / f"rgb_{timestamp}.png" # Output files (some may be optional) seg_path = self.segmentation_dir / f"segmentation_{timestamp}.png" depth_path = self.depth_dir / f"depth_{timestamp}.png" ply_path = self.pointclouds_dir / f"pointcloud_{timestamp}.ply" html_path = self.pointclouds_dir / f"pointcloud_{timestamp}.html" # Check if RGB input exists (required) if not rgb_path.exists(): print(f"RGB input file missing for timestamp {timestamp}: {rgb_path}") return None # Check if at least segmentation output exists if not seg_path.exists(): print(f"Segmentation output missing for timestamp {timestamp}: {seg_path}") return None # Create a display name from timestamp try: # Parse timestamp like "20241215_143022" if len(timestamp) >= 13 and "_" in timestamp: date_part = timestamp[:8] time_part = timestamp[9:15] # Format as "Dec 15, 2024 14:30" year = date_part[:4] month = date_part[4:6] day = date_part[6:8] hour = time_part[:2] minute = time_part[2:4] month_names = ["", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] month_name = month_names[int(month)] if 1 <= int(month) <= 12 else month display_name = f"{month_name} {int(day)}, {year} {hour}:{minute}" else: display_name = timestamp except: display_name = timestamp return { 'name': display_name, 'timestamp': timestamp, 'rgb_path': rgb_path, # Input image 'segmentation_path': seg_path, # Output 'depth_path': depth_path if depth_path.exists() else None, # Output (optional) 'pointcloud_ply_path': ply_path if ply_path.exists() else None, # Output (optional) 'pointcloud_html_path': html_path if html_path.exists() else None, # Output (optional) 'preview_image': self._create_preview_image(rgb_path, timestamp) } except Exception as e: print(f"Error loading example {timestamp}: {e}") return None def _create_preview_image(self, rgb_path: Path, timestamp: str) -> Image.Image: """Create a preview thumbnail from RGB input image.""" try: image = Image.open(rgb_path) image.thumbnail((600, 450), Image.Resampling.LANCZOS) return image except Exception as e: print(f"Error creating preview for {timestamp}: {e}") return Image.new('RGB', (200, 150), color=(128, 128, 128)) def get_example_names(self) -> List[str]: """Get list of available example names.""" return [data['name'] for data in self.examples.values()] def get_example_previews(self) -> List[Tuple[Image.Image, str]]: """Get preview images for all examples.""" previews = [] for timestamp, data in self.examples.items(): previews.append((data['preview_image'], data['name'])) return previews def get_timestamp_by_name(self, name: str) -> Optional[str]: """Get timestamp by display name.""" for timestamp, data in self.examples.items(): if data['name'] == name: return timestamp return None def load_example_results(self, example_name: str) -> Tuple[Optional[Image.Image], Optional[Image.Image], Optional[go.Figure], str]: """Load precomputed results for an example.""" if not example_name: return None, None, None, "Please select an example." # Find the timestamp for this example name timestamp = self.get_timestamp_by_name(example_name) if not timestamp or timestamp not in self.examples: return None, None, None, f"Example '{example_name}' not found." example_data = self.examples[timestamp] try: # Load output images segmentation_image = Image.open(example_data['segmentation_path']) depth_image = None if example_data['depth_path'] and example_data['depth_path'].exists(): depth_image = Image.open(example_data['depth_path']) # Load point cloud if available point_cloud_fig = None if example_data['pointcloud_ply_path'] and example_data['pointcloud_ply_path'].exists(): try: pcd = o3d.io.read_point_cloud(str(example_data['pointcloud_ply_path'])) if len(pcd.points) > 0: point_cloud_fig = create_plotly_pointcloud(pcd, downsample_factor=1) else: print(f"Point cloud file {example_data['pointcloud_ply_path']} is empty") except Exception as e: print(f"Error loading point cloud: {e}") return segmentation_image, depth_image, point_cloud_fig, "" except Exception as e: return None, None, None, f"Error loading example results: {str(e)}" # ============================================================================= # Main Application Class # ============================================================================= class EnhancedSingleViewApp: def __init__(self): # Model configurations self.oneformer_config = ModelConfig( model_name="shi-labs/oneformer_cityscapes_swin_large", processor_name="shi-labs/oneformer_cityscapes_swin_large", task_type="semantic" ) self.depth_config = DepthConfig( encoder="vitl", dataset="vkitti", max_depth=80, weights_path="depth_anything_v2_metric_vkitti_vitl.pth" ) # Models self.oneformer_model = None self.depth_model = None self.segmentation_loaded = False self.depth_loaded = False # Precomputed examples manager self.examples_manager = PrecomputedExamplesManager(OUTPUT_DIR) # Online sample images (fallback) self.sample_images = { "Street Scene 1": "https://images.unsplash.com/photo-1449824913935-59a10b8d2000?w=800", "Street Scene 2": "https://images.unsplash.com/photo-1502920917128-1aa500764cbd?w=800", "Urban Road": "https://images.unsplash.com/photo-1516738901171-8eb4fc13bd20?w=800", "City View": "https://images.unsplash.com/photo-1477959858617-67f85cf4f1df?w=800", "Highway": "https://images.unsplash.com/photo-1544620347-c4fd4a3d5957?w=800", } def download_sample_image(self, image_url: str) -> Image.Image: """Download a sample image from URL.""" try: response = requests.get(image_url, timeout=10) response.raise_for_status() return Image.open(io.BytesIO(response.content)).convert('RGB') except Exception as e: print(f"Error downloading image: {e}") return Image.new('RGB', (800, 600), color=(128, 128, 128)) def create_overlay_plot(self, rgb_image: Image.Image, semantic_map: np.ndarray, alpha: float = 0.5): """Create segmentation overlay plot without title and borders.""" rgb_array = np.array(rgb_image) color_map = get_color_map(labels) colored_semantic_map = apply_color_map(semantic_map, color_map) # Create figure with exact image dimensions height, width = rgb_array.shape[:2] dpi = 100 fig, ax = plt.subplots(1, 1, figsize=(width/dpi, height/dpi), dpi=dpi) # Remove all margins and padding fig.subplots_adjust(left=0, right=1, top=1, bottom=0) ax.imshow(rgb_array) ax.imshow(colored_semantic_map, alpha=alpha) ax.axis('off') buf = io.BytesIO() plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=dpi) buf.seek(0) plt.close(fig) return Image.open(buf) def process_complete_pipeline(self, image: Image.Image): """Process image through complete pipeline: segmentation + depth + point cloud.""" if image is None: return None, None, None, "Please upload an image." # Default values overlay_alpha = 0.5 depth_colormap = "magma" downsample_factor = 0.1 try: # Auto-load models if not loaded if not self.segmentation_loaded: if self.oneformer_model is None: self.oneformer_model = OneFormerModel(self.oneformer_config) self.oneformer_model.load_model() self.segmentation_loaded = True if not self.depth_loaded and DEPTH_AVAILABLE: if self.depth_model is None: self.depth_model = DepthAnythingV2Model(self.depth_config) self.depth_model.load_model() self.depth_loaded = True # Resize if too large original_size = image.size if max(image.size) > 1024: image.thumbnail((1024, 1024), Image.Resampling.LANCZOS) # Step 1: Semantic Segmentation task_inputs = ["semantic"] semantic_map = self.oneformer_model.segment_image(image, task_inputs=task_inputs) segmentation_overlay = self.create_overlay_plot(image, semantic_map, overlay_alpha) # Step 2: Depth Estimation (if available) depth_vis = None point_cloud_fig = None pcd = None if DEPTH_AVAILABLE and self.depth_loaded: depth_map = self.depth_model.estimate_depth(image) depth_vis = create_depth_visualization(depth_map, depth_colormap) # Step 3: Point Cloud with Segmentation Colors pcd = depth_to_point_cloud_with_segmentation(depth_map, image, semantic_map) point_cloud_fig = create_plotly_pointcloud(pcd, downsample_factor) # Generate comprehensive info unique_classes = np.unique(semantic_map) class_info = [] total_pixels = semantic_map.size for class_id in unique_classes: if class_id < len(labels) and class_id != 255: label = labels[class_id] pixel_count = np.sum(semantic_map == class_id) percentage = (pixel_count / total_pixels) * 100 if percentage > 0.1: class_info.append(f"- {label.name}: {percentage:.1f}%") # Point cloud statistics if point_cloud_fig is not None: num_points = len(pcd.points) downsampled_points = int(num_points * downsample_factor) point_cloud_info = f""" 3D Point Cloud: - Total points: {num_points:,} - Displayed points: {downsampled_points:,} ({downsample_factor*100:.0f}%) - Sky points excluded - Colors match segmentation classes""" else: point_cloud_info = "Point cloud not available (DepthAnythingV2 required)" # Depth statistics if depth_vis is not None and DEPTH_AVAILABLE: depth_stats = { 'min': np.min(depth_map), 'max': np.max(depth_map), 'mean': np.mean(depth_map), 'std': np.std(depth_map) } depth_info = f""" Depth Estimation: - Min depth: {depth_stats['min']:.2f}m - Max depth: {depth_stats['max']:.2f}m - Mean depth: {depth_stats['mean']:.2f}m - Std deviation: {depth_stats['std']:.2f}m - Colormap: {depth_colormap}""" else: depth_info = "Depth estimation not available" info_text = f"""Complete vision pipeline processed successfully! Models Used: - OneFormer (Semantic Segmentation) {f"- DepthAnythingV2 ({self.depth_config.encoder.upper()})" if DEPTH_AVAILABLE else "- DepthAnythingV2 (Not Available)"} Image Processing: - Original size: {original_size[0]}x{original_size[1]} - Processed size: {image.size[0]}x{image.size[1]} - Overlay transparency: {overlay_alpha:.1f} Detected Classes: {chr(10).join(class_info)} {depth_info} {point_cloud_info} The point cloud shows 3D structure with each point colored according to its segmentation class. Sky points are excluded for better visualization.""" return segmentation_overlay, depth_vis, point_cloud_fig, info_text except Exception as e: return None, None, None, f"Error processing pipeline: {str(e)}" # Initialize the app app = EnhancedSingleViewApp() def process_uploaded_image(image): try: return app.process_complete_pipeline(image) except: return None, None, None def process_sample_image(sample_choice): """Process sample image through complete pipeline.""" if sample_choice and sample_choice in app.sample_images: image_url = app.sample_images[sample_choice] image = app.download_sample_image(image_url) return app.process_complete_pipeline(image) return None, None, None, "Please select a sample image." def load_precomputed_example(evt: gr.SelectData): """Load precomputed example results from gallery selection.""" if evt.index is not None: example_names = app.examples_manager.get_example_names() if evt.index < len(example_names): example_name = example_names[evt.index] seg_image, depth_image, pc_fig, info_text = app.examples_manager.load_example_results(example_name) return seg_image, depth_image, pc_fig return None, None, None def get_example_previews(): """Get preview images for the gallery.""" previews = app.examples_manager.get_example_previews() if not previews: return [] return previews # ============================================================================= # Create Gradio Interface # ============================================================================= def create_gradio_interface(): """Create and return the enhanced single-view Gradio interface.""" with gr.Blocks( title="Enhanced Computer Vision Pipeline", theme=gr.themes.Default() ) as demo: gr.Markdown(""" # Street Scene 3D Reconstruction Upload an image or select an example to see: - **Semantic Segmentation** - Identify roads, buildings, vehicles, people, and other scene elements - **Depth Estimation** - Generate metric depth maps showing distance to objects - **3D Point Cloud** - Interactive 3D reconstruction with semantic colors) """) with gr.Row(): # Left Column: Controls and Input with gr.Column(scale=1): if CUDA_AVAILABLE: gr.Markdown("### Upload Image") uploaded_image = gr.Image( type="pil", label="Upload Image" ) upload_btn = gr.Button("Process Image", variant="primary", size="lg") else: uploaded_image = gr.Image(visible=False) # Hidden placeholder upload_btn = gr.Button(visible=False) # Hidden placeholder gr.Markdown("### CPU Mode") gr.Markdown("⚠️ **Upload disabled**: DepthAnythingV2 requires CUDA. Using precomputed examples only.") gr.Markdown("### Examples") gr.Markdown("Click on an image to load the example:") # Example gallery (always visible) example_gallery = gr.Gallery( value=get_example_previews(), label="Example Images", show_label=False, elem_id="example_gallery", columns=2, rows=3, height="auto", object_fit="cover" ) # Right Column: Results with gr.Column(scale=2): gr.Markdown("### Results") # Segmentation and Depth side by side with gr.Row(): with gr.Column(): gr.Markdown("#### Semantic Segmentation") segmentation_output = gr.Image(label="Segmentation Overlay") with gr.Column(): gr.Markdown("#### Depth Estimation") depth_output = gr.Image(label="Depth Map") # Point Cloud below gr.Markdown("#### 3D Point Cloud") pointcloud_output = gr.Plot(label="Interactive 3D Point Cloud (Colored by Segmentation)") if CUDA_AVAILABLE: upload_btn.click( fn=process_uploaded_image, inputs=[uploaded_image], outputs=[segmentation_output, depth_output, pointcloud_output] ) # Gallery selection loads example directly example_gallery.select( fn=load_precomputed_example, outputs=[segmentation_output, depth_output, pointcloud_output] ) return demo # ============================================================================= # Main Execution # ============================================================================= if __name__ == "__main__": fix_lfs_on_startup() # Create and launch the interface demo = create_gradio_interface() print("Starting Enhanced Single-View Computer Vision App...") print("Complete Pipeline: Segmentation + Depth + 3D Point Cloud") print("Device:", "CUDA" if torch.cuda.is_available() else "CPU") print("Depth Available:", "YES" if DEPTH_AVAILABLE else "NO") print("Point Cloud Colors: Segmentation-based (Sky Excluded)") print(f"Output Directory: {OUTPUT_DIR.absolute()}") print(f"Available Examples: {len(app.examples_manager.examples)}") # Launch the app demo.launch( share=True, # Creates a public link debug=True, # Enable debugging server_name="0.0.0.0", # Allow external connections server_port=7860, # Default port show_error=True, # Show errors in the interface quiet=False # Show startup logs )