Spaces:
Sleeping
Sleeping
File size: 9,859 Bytes
95d69c7 105c55a 95d69c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import csv
import os
import sys
import tempfile
from pathlib import Path
import gradio as gr
import laspy
import numpy as np
import plotly.graph_objects as go
csv.field_size_limit(sys.maxsize)
POINT_CLOUD_CACHE = {}
# Define classification categories and colors
CLASSIFICATION_COLORS = {
1: ("Soil", "saddlebrown"),
2: ("Terrain", "peru"),
3: ("Vegetation", "green"),
4: ("Building", "red"),
5: ("Street elements", "yellow"),
6: ("Water", "blue"),
}
def load_point_cloud(las_path):
if las_path in POINT_CLOUD_CACHE:
return POINT_CLOUD_CACHE[las_path]
with laspy.open(las_path) as fh:
las = fh.read()
point_count = len(las.points)
x, y, z = las.x, las.y, las.z
classification = las.classification
intensity = las.intensity
intensity = np.clip(np.log(intensity + 1) / 10.0, 0, 1)
try:
r, g, b = (
las.red / 65535,
las.green / 65535,
las.blue / 65535,
)
has_color = True
except:
has_color = False
r = g = b = None
point_cloud_data = {
"x": x,
"y": y,
"z": z,
"intensity": intensity,
"classification": classification,
"has_color": has_color,
"r": r,
"g": g,
"b": b,
"point_count": len(x),
"original_count": point_count,
}
POINT_CLOUD_CACHE[las_path] = point_cloud_data
return point_cloud_data
def visualize_point_cloud(point_cloud_data, point_size=2, color_mode="RGB"):
x, y, z = point_cloud_data["x"], point_cloud_data["y"], point_cloud_data["z"]
legend_title = None
fig_title_suffix = color_mode
traces = []
if color_mode == "RGB" and point_cloud_data["has_color"]:
fig_title_suffix = "RGB"
rgb_colors = [
f"rgb({int(r*255)},{int(g*255)},{int(b*255)})"
for r, g, b in zip(
point_cloud_data["r"], point_cloud_data["g"], point_cloud_data["b"]
)
]
traces.append(
go.Scatter3d(
x=x,
y=y,
z=z,
mode="markers",
marker=dict(size=point_size, color=rgb_colors, opacity=0.8),
name="Points (RGB)",
showlegend=False,
)
)
elif color_mode == "Intensity":
fig_title_suffix = "Intensity"
traces.append(
go.Scatter3d(
x=x,
y=y,
z=z,
mode="markers",
marker=dict(
size=point_size,
color=point_cloud_data["intensity"],
colorscale="Hot", # Popular heat palettes: Hot, YlOrRd, Inferno, Magma
opacity=0.8,
colorbar=dict(
title="Intensity",
thickness=15,
len=0.75,
yanchor="middle",
y=0.5,
),
),
name="Points (Intensity)",
showlegend=False,
)
)
else:
# Assign colors based on classification
fig_title_suffix = "Classification"
legend_title = "Classes"
for class_value, info in CLASSIFICATION_COLORS.items():
label, color = info
mask = point_cloud_data["classification"] == class_value
print(mask.shape)
print(z.shape)
x_c, y_c, z_c = x[mask], y[mask], z[mask]
traces.append(
go.Scatter3d(
x=x_c,
y=y_c,
z=z_c,
mode="markers",
marker=dict(size=point_size, color=color, opacity=0.8),
name=f"{label} ({class_value})", # This name appears in the legend
)
)
fig = go.Figure(data=traces)
# Add a legend for classification colors
fig.update_layout(
scene=dict(
xaxis=dict(visible=False, showgrid=False, zeroline=False, title=""),
yaxis=dict(visible=False, showgrid=False, zeroline=False, title=""),
zaxis=dict(visible=False, showgrid=False, zeroline=False, title=""),
aspectmode="data", # Crucial for correct 3D aspect ratio
),
margin=dict(l=0, r=0, b=0, t=50), # Adjust top margin for title
title=dict(text=f"Point Cloud ({fig_title_suffix})", x=0.5, xanchor="center"),
legend_title_text=legend_title,
legend=dict(
traceorder="normal", # Or "reversed"
itemsizing="constant", # Makes legend markers a consistent size
# You can also position the legend, e.g.:
# x=1.05, y=1,
# xanchor='left', yanchor='top'
),
)
return fig
def process_upload(file, point_size, color_mode):
if file is None:
return None
file_path = Path(file.name)
pc_data = load_point_cloud(file_path)
# os.unlink(file_path)
return visualize_point_cloud(pc_data, point_size, color_mode)
EXAMPLES_DIR = Path("examples")
EXAMPLES_DIR.mkdir(exist_ok=True)
example_files = [
EXAMPLES_DIR / "Hillside.las",
EXAMPLES_DIR / "Park.las",
EXAMPLES_DIR / "Apartments.las",
]
for example in example_files:
if not example.exists():
for test_file in example_files:
if test_file.exists():
POINT_CLOUD_CACHE[str(example)] = POINT_CLOUD_CACHE.get(str(test_file))
break
with gr.Blocks(title="Turin3D Dataset Visualizer") as app:
gr.Markdown(
"""
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Turin3D Dataset</title>
<style>
body {
font-family: 'Segoe UI', sans-serif;
line-height: 1.6;
margin: 0;
padding: 0;
color: #333;
}
header {
background-color: #FFEE8C;
color: white !important;
padding: 20px;
text-align: center;
}
section {
padding: 20px;
margin: 20px auto;
color-scheme: light;
}
ul {
padding-left: 20px;
}
body, p, ul, li, strong, code {
color: #333;
}
</style>
</head>
<body>
<header>
<h1 style="color:white !important;">🏙️ Turin3D Dataset</h1>
<p style="color:white !important;">Showcase of some portions of Turin3D dataset</p>
</header>
</body>
</html>
"""
) # Updated main page title
gr.Markdown(
"""
## About the Turin3D Dataset and Our Research
This application showcases portions of the **Turin3D dataset**, which is introduced in our paper:
**"Turin3D: Evaluating Adaptation Strategies under Label Scarcity in Urban LiDAR Segmentation with Semi-Supervised Techniques"**
Our work presents Turin3D, a new large-scale aerial LiDAR dataset for 3D point cloud semantic segmentation. It covers approximately 1.43 km² in the city centre of Turin, Italy, and contains almost 70 million points.
The dataset is specifically designed to address the challenges of label scarcity in urban environments. While the validation and test sets are manually annotated to ensure reliable evaluation of segmentation techniques, the training set is intentionally left unlabelled. This encourages the development and benchmarking of semi-supervised and self-supervised learning approaches, which are crucial when extensive ground truth annotations are not available.
The full Turin3D dataset will be made publicly available to support further research in outdoor point cloud segmentation.
For more details, please refer to our paper.
"""
)
gr.Markdown(
"""
## About this Interactive Visualizer
This visualizer allows you to explore selected example point clouds from the Turin3D dataset.
You can interact with the 3D data, switch between different color modes (RGB, Intensity, and Classification for ground truth labels on provided examples), and adjust the point size for visualization.
**Important Note:** To ensure a smooth and responsive experience in this web application, the point clouds displayed here are **sub-sampled to a lower resolution** compared to the original high-density dataset. The example files are illustrative portions chosen for this demonstration.
"""
)
gr.Markdown(
"--- \nUse the controls below to load an example or adjust the visualization."
)
with gr.Row():
with gr.Column(scale=1):
example_dropdown = gr.Dropdown(
choices=[f.name for f in example_files], label="Example Point Clouds"
)
point_size = gr.Slider(
minimum=1, maximum=10, value=2, step=1, label="Point Size"
)
color_mode = gr.Radio(
choices=["RGB", "Intensity", "Classification"],
value="RGB",
label="Color Mode",
)
with gr.Row():
example_btn = gr.Button("Load Example")
with gr.Column(scale=2):
plot_output = gr.Plot(label="Point Cloud Visualization")
example_btn.click(
fn=lambda example, size, mode: visualize_point_cloud(
load_point_cloud(str(EXAMPLES_DIR / example)),
point_size=size,
color_mode=mode,
),
inputs=[example_dropdown, point_size, color_mode],
outputs=plot_output,
)
if __name__ == "__main__":
app.launch(share=False)
|