Spaces:
Runtime error
Runtime error
File size: 35,389 Bytes
e824e2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
import csv
import io
import json
import logging
import os
import queue
import urllib.parse
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from enum import Enum
from functools import partial
from queue import Queue
from typing import Any, Dict, Generator, List, Optional, Tuple, TypeVar
import click
import duckdb
import gradio as gr
import requests
from bs4 import BeautifulSoup
from dotenv import load_dotenv
from jinja2 import BaseLoader, Environment
from openai import OpenAI
from pydantic import BaseModel, create_model
TypeVar_BaseModel = TypeVar("TypeVar_BaseModel", bound=BaseModel)
script_dir = os.path.dirname(os.path.abspath(__file__))
default_env_file = os.path.abspath(os.path.join(script_dir, ".env"))
class OutputMode(str, Enum):
answer = "answer"
extract = "extract"
class AskSettings(BaseModel):
date_restrict: int
target_site: str
output_language: str
output_length: int
url_list: List[str]
inference_model_name: str
hybrid_search: bool
output_mode: OutputMode
extract_schema_str: str
def _get_logger(log_level: str) -> logging.Logger:
logger = logging.getLogger(__name__)
logger.setLevel(log_level)
if len(logger.handlers) > 0:
return logger
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
def _read_url_list(url_list_file: str) -> List[str]:
if not url_list_file:
return []
with open(url_list_file, "r") as f:
links = f.readlines()
url_list = [
link.strip()
for link in links
if link.strip() != "" and not link.startswith("#")
]
return url_list
def _read_extract_schema_str(extract_schema_file: str) -> str:
if not extract_schema_file:
return ""
with open(extract_schema_file, "r") as f:
schema_str = f.read()
return schema_str
def _output_csv(result_dict: Dict[str, List[BaseModel]], key_name: str) -> str:
# generate the CSV content from a Dict of URL and list of extracted items
output = io.StringIO()
csv_writer = None
for src_url, items in result_dict.items():
for item in items:
value_dict = item.model_dump()
item_with_url = {**value_dict, key_name: src_url}
if csv_writer is None:
headers = list(value_dict.keys()) + [key_name]
csv_writer = csv.DictWriter(output, fieldnames=headers)
csv_writer.writeheader()
csv_writer.writerow(item_with_url)
csv_content = output.getvalue()
output.close()
return csv_content
class Ask:
def __init__(self, logger: Optional[logging.Logger] = None):
self.read_env_variables()
if logger is not None:
self.logger = logger
else:
self.logger = _get_logger("INFO")
self.db_con = duckdb.connect(":memory:")
self.db_con.install_extension("vss")
self.db_con.load_extension("vss")
self.db_con.install_extension("fts")
self.db_con.load_extension("fts")
self.db_con.sql("CREATE SEQUENCE seq_docid START 1000")
self.session = requests.Session()
user_agent: str = (
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
"AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
)
self.session.headers.update({"User-Agent": user_agent})
def read_env_variables(self) -> None:
err_msg = ""
self.search_api_key = os.environ.get("SEARCH_API_KEY")
if self.search_api_key is None:
err_msg += "SEARCH_API_KEY env variable not set.\n"
self.search_project_id = os.environ.get("SEARCH_PROJECT_KEY")
if self.search_project_id is None:
err_msg += "SEARCH_PROJECT_KEY env variable not set.\n"
self.llm_api_key = os.environ.get("LLM_API_KEY")
if self.llm_api_key is None:
err_msg += "LLM_API_KEY env variable not set.\n"
if err_msg != "":
raise Exception(f"\n{err_msg}\n")
self.llm_base_url = os.environ.get("LLM_BASE_URL")
if self.llm_base_url is None:
self.llm_base_url = "https://api.openai.com/v1"
self.embedding_model = os.environ.get("EMBEDDING_MODEL")
self.embedding_dimensions = os.environ.get("EMBEDDING_DIMENSIONS")
if self.embedding_model is None or self.embedding_dimensions is None:
self.embedding_model = "text-embedding-3-small"
self.embedding_dimensions = 1536
def search_web(self, query: str, settings: AskSettings) -> List[str]:
escaped_query = urllib.parse.quote(query)
url_base = (
f"https://www.googleapis.com/customsearch/v1?key={self.search_api_key}"
f"&cx={self.search_project_id}&q={escaped_query}"
)
url_paras = f"&safe=active"
if settings.date_restrict > 0:
url_paras += f"&dateRestrict={settings.date_restrict}"
if settings.target_site:
url_paras += f"&siteSearch={settings.target_site}&siteSearchFilter=i"
url = f"{url_base}{url_paras}"
self.logger.debug(f"Searching for query: {query}")
resp = requests.get(url)
if resp is None:
raise Exception("No response from search API")
search_results_dict = json.loads(resp.text)
if "error" in search_results_dict:
raise Exception(
f"Error in search API response: {search_results_dict['error']}"
)
if "searchInformation" not in search_results_dict:
raise Exception(
f"No search information in search API response: {resp.text}"
)
total_results = search_results_dict["searchInformation"].get("totalResults", 0)
if total_results == 0:
self.logger.warning(f"No results found for query: {query}")
return []
results = search_results_dict.get("items", [])
if results is None or len(results) == 0:
self.logger.warning(f"No result items in the response for query: {query}")
return []
found_links = []
for result in results:
link = result.get("link", None)
if link is None or link == "":
self.logger.warning(f"Search result link missing: {result}")
continue
found_links.append(link)
return found_links
def _scape_url(self, url: str) -> Tuple[str, str]:
self.logger.info(f"Scraping {url} ...")
try:
response = self.session.get(url, timeout=10)
soup = BeautifulSoup(response.content, "lxml", from_encoding="utf-8")
body_tag = soup.body
if body_tag:
body_text = body_tag.get_text()
body_text = " ".join(body_text.split()).strip()
self.logger.debug(f"Scraped {url}: {body_text}...")
if len(body_text) > 100:
self.logger.info(
f"β
Successfully scraped {url} with length: {len(body_text)}"
)
return url, body_text
else:
self.logger.warning(
f"Body text too short for url: {url}, length: {len(body_text)}"
)
return url, ""
else:
self.logger.warning(f"No body tag found in the response for url: {url}")
return url, ""
except Exception as e:
self.logger.error(f"Scraping error {url}: {e}")
return url, ""
def scrape_urls(self, urls: List[str]) -> Dict[str, str]:
# the key is the url and the value is the body text
scrape_results: Dict[str, str] = {}
partial_scrape = partial(self._scape_url)
with ThreadPoolExecutor(max_workers=10) as executor:
results = executor.map(partial_scrape, urls)
for url, body_text in results:
if body_text != "":
scrape_results[url] = body_text
return scrape_results
def chunk_results(
self, scrape_results: Dict[str, str], size: int, overlap: int
) -> Dict[str, List[str]]:
chunking_results: Dict[str, List[str]] = {}
for url, text in scrape_results.items():
chunks = []
for pos in range(0, len(text), size - overlap):
chunks.append(text[pos : pos + size])
chunking_results[url] = chunks
return chunking_results
def get_embedding(self, client: OpenAI, texts: List[str]) -> List[List[float]]:
if len(texts) == 0:
return []
response = client.embeddings.create(input=texts, model=self.embedding_model)
embeddings = []
for i in range(len(response.data)):
embeddings.append(response.data[i].embedding)
return embeddings
def batch_get_embedding(
self, client: OpenAI, chunk_batch: Tuple[str, List[str]]
) -> Tuple[Tuple[str, List[str]], List[List[float]]]:
"""
Return the chunk_batch as well as the embeddings for each chunk so that
we can aggregate them and save them to the database together.
Args:
- client: OpenAI client
- chunk_batch: Tuple of URL and list of chunks scraped from the URL
Returns:
- Tuple of chunk_bach and list of result embeddings
"""
texts = chunk_batch[1]
embeddings = self.get_embedding(client, texts)
return chunk_batch, embeddings
def _create_table(self) -> str:
# Simple ways to get a unique table name
timestamp = datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
table_name = f"document_chunks_{timestamp}"
self.db_con.execute(
f"""
CREATE TABLE {table_name} (
doc_id INTEGER PRIMARY KEY DEFAULT nextval('seq_docid'),
url TEXT,
chunk TEXT,
vec FLOAT[{self.embedding_dimensions}]
);
"""
)
return table_name
def save_chunks_to_db(self, chunking_results: Dict[str, List[str]]) -> str:
"""
The key of chunking_results is the URL and the value is the list of chunks.
"""
client = self._get_api_client()
embed_batch_size = 50
query_batch_size = 100
insert_data = []
table_name = self._create_table()
batches: List[Tuple[str, List[str]]] = []
for url, list_chunks in chunking_results.items():
for i in range(0, len(list_chunks), embed_batch_size):
list_chunks = list_chunks[i : i + embed_batch_size]
batches.append((url, list_chunks))
self.logger.info(f"Embedding {len(batches)} batches of chunks ...")
partial_get_embedding = partial(self.batch_get_embedding, client)
with ThreadPoolExecutor(max_workers=10) as executor:
all_embeddings = executor.map(partial_get_embedding, batches)
self.logger.info(f"β
Finished embedding.")
# we batch the insert data to speed up the insertion operation
# although the DuckDB doc says executeMany is optimized for batch insert
# but we found that it is faster to batch the insert data and run a single insert
for chunk_batch, embeddings in all_embeddings:
url = chunk_batch[0]
list_chunks = chunk_batch[1]
insert_data.extend(
[
(url.replace("'", " "), chunk.replace("'", " "), embedding)
for chunk, embedding in zip(list_chunks, embeddings)
]
)
for i in range(0, len(insert_data), query_batch_size):
value_str = ", ".join(
[
f"('{url}', '{chunk}', {embedding})"
for url, chunk, embedding in insert_data[i : i + embed_batch_size]
]
)
query = f"""
INSERT INTO {table_name} (url, chunk, vec) VALUES {value_str};
"""
self.db_con.execute(query)
self.db_con.execute(
f"""
CREATE INDEX {table_name}_cos_idx ON {table_name} USING HNSW (vec)
WITH (metric = 'cosine');
"""
)
self.logger.info(f"β
Created the vector index ...")
self.db_con.execute(
f"""
PRAGMA create_fts_index(
{table_name}, 'doc_id', 'chunk'
);
"""
)
self.logger.info(f"β
Created the full text search index ...")
return table_name
def vector_search(
self, table_name: str, query: str, settings: AskSettings
) -> List[Dict[str, Any]]:
"""
The return value is a list of {url: str, chunk: str} records.
In a real world, we will define a class of Chunk to have more metadata such as offsets.
"""
client = self._get_api_client()
embeddings = self.get_embedding(client, [query])[0]
query_result: duckdb.DuckDBPyRelation = self.db_con.sql(
f"""
SELECT * FROM {table_name}
ORDER BY array_distance(vec, {embeddings}::FLOAT[{self.embedding_dimensions}])
LIMIT 10;
"""
)
self.logger.debug(query_result)
# use a dict to remove duplicates from vector search and full-text search
matched_chunks_dict = {}
for vec_result in query_result.fetchall():
doc_id = vec_result[0]
result_record = {
"url": vec_result[1],
"chunk": vec_result[2],
}
matched_chunks_dict[doc_id] = result_record
if settings.hybrid_search:
self.logger.info("Running full-text search ...")
self.db_con.execute(
f"""
PREPARE fts_query AS (
WITH scored_docs AS (
SELECT *, fts_main_{table_name}.match_bm25(
doc_id, ?, fields := 'chunk'
) AS score FROM {table_name})
SELECT doc_id, url, chunk, score
FROM scored_docs
WHERE score IS NOT NULL
ORDER BY score DESC
LIMIT 10)
"""
)
self.db_con.execute("PRAGMA threads=4")
# You can run more complex query rewrite methods here
# usually: stemming, stop words, etc.
escaped_query = query.replace("'", " ")
fts_result: duckdb.DuckDBPyRelation = self.db_con.execute(
f"EXECUTE fts_query('{escaped_query}')"
)
index = 0
for fts_record in fts_result.fetchall():
index += 1
self.logger.debug(f"The full text search record #{index}: {fts_record}")
doc_id = fts_record[0]
result_record = {
"url": fts_record[1],
"chunk": fts_record[2],
}
# You can configure the score threashold and top-k
if fts_record[3] > 1:
matched_chunks_dict[doc_id] = result_record
else:
break
if index >= 10:
break
return matched_chunks_dict.values()
def _get_api_client(self) -> OpenAI:
return OpenAI(api_key=self.llm_api_key, base_url=self.llm_base_url)
def _render_template(self, template_str: str, variables: Dict[str, Any]) -> str:
env = Environment(loader=BaseLoader(), autoescape=False)
template = env.from_string(template_str)
return template.render(variables)
def _get_target_class(self, extract_schema_str: str) -> TypeVar_BaseModel:
local_namespace = {"BaseModel": BaseModel}
exec(extract_schema_str, local_namespace, local_namespace)
for key, value in local_namespace.items():
if key == "__builtins__":
continue
if key == "BaseModel":
continue
if isinstance(value, type):
if issubclass(value, BaseModel):
return value
raise Exception("No Pydantic schema found in the extract schema str.")
def run_inference(
self,
query: str,
matched_chunks: List[Dict[str, Any]],
settings: AskSettings,
) -> str:
system_prompt = (
"You are an expert summarizing the answers based on the provided contents."
)
user_promt_template = """
Given the context as a sequence of references with a reference id in the
format of a leading [x], please answer the following question using {{ language }}:
{{ query }}
In the answer, use format [1], [2], ..., [n] in line where the reference is used.
For example, "According to the research from Google[3], ...".
Please create the answer strictly related to the context. If the context has no
information about the query, please write "No related information found in the context."
using {{ language }}.
{{ length_instructions }}
Here is the context:
{{ context }}
"""
context = ""
for i, chunk in enumerate(matched_chunks):
context += f"[{i+1}] {chunk['chunk']}\n"
if not settings.output_length:
length_instructions = ""
else:
length_instructions = (
f"Please provide the answer in { settings.output_length } words."
)
user_prompt = self._render_template(
user_promt_template,
{
"query": query,
"context": context,
"language": settings.output_language,
"length_instructions": length_instructions,
},
)
self.logger.debug(
f"Running inference with model: {settings.inference_model_name}"
)
self.logger.debug(f"Final user prompt: {user_prompt}")
api_client = self._get_api_client()
completion = api_client.chat.completions.create(
model=settings.inference_model_name,
messages=[
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": user_prompt,
},
],
)
if completion is None:
raise Exception("No completion from the API")
response_str = completion.choices[0].message.content
return response_str
def run_extract(
self,
query: str,
extract_schema_str: str,
target_content: str,
settings: AskSettings,
) -> List[TypeVar_BaseModel]:
target_class = self._get_target_class(extract_schema_str)
system_prompt = (
"You are an expert of extract structual information from the document."
)
user_promt_template = """
Given the provided content, if it contains information about {{ query }}, please extract the
list of structured data items as defined in the following Pydantic schema:
{{ extract_schema_str }}
Below is the provided content:
{{ content }}
"""
user_prompt = self._render_template(
user_promt_template,
{
"query": query,
"content": target_content,
"extract_schema_str": extract_schema_str,
},
)
self.logger.debug(
f"Running extraction with model: {settings.inference_model_name}"
)
self.logger.debug(f"Final user prompt: {user_prompt}")
class_name = target_class.__name__
list_class_name = f"{class_name}_list"
response_pydantic_model = create_model(
list_class_name,
items=(List[target_class], ...),
)
api_client = self._get_api_client()
completion = api_client.beta.chat.completions.parse(
model=settings.inference_model_name,
messages=[
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": user_prompt,
},
],
response_format=response_pydantic_model,
)
if completion is None:
raise Exception("No completion from the API")
message = completion.choices[0].message
if message.refusal:
raise Exception(
f"Refused to extract information from the document: {message.refusal}."
)
extract_result = message.parsed
return extract_result.items
def run_query_gradio(
self,
query: str,
date_restrict: int,
target_site: str,
output_language: str,
output_length: int,
url_list_str: str,
inference_model_name: str,
hybrid_search: bool,
output_mode_str: str,
extract_schema_str: str,
) -> Generator[Tuple[str, str], None, Tuple[str, str]]:
logger = self.logger
log_queue = Queue()
if url_list_str:
url_list = url_list_str.split("\n")
else:
url_list = []
settings = AskSettings(
date_restrict=date_restrict,
target_site=target_site,
output_language=output_language,
output_length=output_length,
url_list=url_list,
inference_model_name=inference_model_name,
hybrid_search=hybrid_search,
output_mode=OutputMode(output_mode_str),
extract_schema_str=extract_schema_str,
)
queue_handler = logging.Handler()
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
queue_handler.emit = lambda record: log_queue.put(formatter.format(record))
logger.addHandler(queue_handler)
def update_logs():
logs = []
while True:
try:
log = log_queue.get_nowait()
logs.append(log)
except queue.Empty:
break
return "\n".join(logs)
# wrap the process in a generator to yield the logs to integrate with GradIO
def process_with_logs():
if len(settings.url_list) > 0:
links = settings.url_list
else:
logger.info("Searching the web ...")
yield "", update_logs()
links = self.search_web(query, settings)
logger.info(f"β
Found {len(links)} links for query: {query}")
for i, link in enumerate(links):
logger.debug(f"{i+1}. {link}")
yield "", update_logs()
logger.info("Scraping the URLs ...")
yield "", update_logs()
scrape_results = self.scrape_urls(links)
logger.info(f"β
Scraped {len(scrape_results)} URLs.")
yield "", update_logs()
if settings.output_mode == OutputMode.answer:
logger.info("Chunking the text ...")
yield "", update_logs()
chunking_results = self.chunk_results(scrape_results, 1000, 100)
total_chunks = 0
for url, chunks in chunking_results.items():
logger.debug(f"URL: {url}")
total_chunks += len(chunks)
for i, chunk in enumerate(chunks):
logger.debug(f"Chunk {i+1}: {chunk}")
logger.info(f"β
Generated {total_chunks} chunks ...")
yield "", update_logs()
logger.info(f"Saving {total_chunks} chunks to DB ...")
yield "", update_logs()
table_name = self.save_chunks_to_db(chunking_results)
logger.info(f"β
Successfully embedded and saved chunks to DB.")
yield "", update_logs()
logger.info("Querying the vector DB to get context ...")
matched_chunks = self.vector_search(table_name, query, settings)
for i, result in enumerate(matched_chunks):
logger.debug(f"{i+1}. {result}")
logger.info(f"β
Got {len(matched_chunks)} matched chunks.")
yield "", update_logs()
logger.info("Running inference with context ...")
yield "", update_logs()
answer = self.run_inference(
query=query,
matched_chunks=matched_chunks,
settings=settings,
)
logger.info("β
Finished inference API call.")
logger.info("Generating output ...")
yield "", update_logs()
answer = f"# Answer\n\n{answer}\n"
references = "\n".join(
[
f"[{i+1}] {result['url']}"
for i, result in enumerate(matched_chunks)
]
)
yield f"{answer}\n\n# References\n\n{references}", update_logs()
elif settings.output_mode == OutputMode.extract:
logger.info("Extracting structured data ...")
yield "", update_logs()
aggregated_output = {}
for url, text in scrape_results.items():
items = self.run_extract(
query=query,
extract_schema_str=extract_schema_str,
target_content=text,
settings=settings,
)
self.logger.info(
f"β
Finished inference API call. Extracted {len(items)} items from {url}."
)
yield "", update_logs()
self.logger.debug(items)
aggregated_output[url] = items
logger.info("β
Finished extraction from all urls.")
logger.info("Generating output ...")
yield "", update_logs()
answer = _output_csv(aggregated_output, "SourceURL")
yield f"{answer}", update_logs()
else:
raise Exception(f"Invalid output mode: {settings.output_mode}")
logs = ""
final_result = ""
try:
for result, log_update in process_with_logs():
logs += log_update + "\n"
final_result = result
yield final_result, logs
finally:
logger.removeHandler(queue_handler)
return final_result, logs
def run_query(
self,
query: str,
settings: AskSettings,
) -> str:
url_list_str = "\n".join(settings.url_list)
for result, logs in self.run_query_gradio(
query=query,
date_restrict=settings.date_restrict,
target_site=settings.target_site,
output_language=settings.output_language,
output_length=settings.output_length,
url_list_str=url_list_str,
inference_model_name=settings.inference_model_name,
hybrid_search=settings.hybrid_search,
output_mode_str=settings.output_mode,
extract_schema_str=settings.extract_schema_str,
):
final_result = result
return final_result
def launch_gradio(
query: str,
init_settings: AskSettings,
share_ui: bool,
logger: logging.Logger,
) -> None:
ask = Ask(logger=logger)
def toggle_schema_textbox(option):
if option == "extract":
return gr.update(visible=True)
else:
return gr.update(visible=False)
with gr.Blocks() as demo:
gr.Markdown("# Ask.py - Web Search-Extract-Summarize")
gr.Markdown(
"Search the web with the query and summarize the results. Source code: https://github.com/pengfeng/ask.py"
)
with gr.Row():
with gr.Column():
query_input = gr.Textbox(label="Query", value=query)
output_mode_input = gr.Radio(
label="Output Mode [answer: simple answer, extract: get structured data]",
choices=["answer", "extract"],
value=init_settings.output_mode,
)
extract_schema_input = gr.Textbox(
label="Extract Pydantic Schema",
visible=(init_settings.output_mode == "extract"),
value=init_settings.extract_schema_str,
lines=5,
max_lines=20,
)
output_mode_input.change(
fn=toggle_schema_textbox,
inputs=output_mode_input,
outputs=extract_schema_input,
)
date_restrict_input = gr.Number(
label="Date Restrict (Optional) [0 or empty means no date limit.]",
value=init_settings.date_restrict,
)
target_site_input = gr.Textbox(
label="Target Sites (Optional) [Empty means searching the whole web.]",
value=init_settings.target_site,
)
output_language_input = gr.Textbox(
label="Output Language (Optional) [Default is English.]",
value=init_settings.output_language,
)
output_length_input = gr.Number(
label="Output Length in words (Optional) [Default is automatically decided by LLM.]",
value=init_settings.output_length,
)
url_list_input = gr.Textbox(
label="URL List (Optional) [When specified, scrape the urls instead of searching the web.]",
lines=5,
max_lines=20,
value="\n".join(init_settings.url_list),
)
with gr.Accordion("More Options", open=False):
hybrid_search_input = gr.Checkbox(
label="Hybrid Search [Use both vector search and full-text search.]",
value=init_settings.hybrid_search,
)
inference_model_name_input = gr.Textbox(
label="Inference Model Name",
value=init_settings.inference_model_name,
)
submit_button = gr.Button("Submit")
with gr.Column():
answer_output = gr.Textbox(label="Answer")
logs_output = gr.Textbox(label="Logs", lines=10)
submit_button.click(
fn=ask.run_query_gradio,
inputs=[
query_input,
date_restrict_input,
target_site_input,
output_language_input,
output_length_input,
url_list_input,
inference_model_name_input,
hybrid_search_input,
output_mode_input,
extract_schema_input,
],
outputs=[answer_output, logs_output],
)
demo.queue().launch(share=share_ui)
@click.command(help="Search web for the query and summarize the results.")
@click.option("--query", "-q", required=False, help="Query to search")
@click.option(
"--output-mode",
"-o",
type=click.Choice(["answer", "extract"], case_sensitive=False),
default="answer",
required=False,
help="Output mode for the answer, default is a simple answer",
)
@click.option(
"--date-restrict",
"-d",
type=int,
required=False,
default=0,
help="Restrict search results to a specific date range, default is no restriction",
)
@click.option(
"--target-site",
"-s",
required=False,
default="",
help="Restrict search results to a specific site, default is no restriction",
)
@click.option(
"--output-language",
required=False,
default="English",
help="Output language for the answer",
)
@click.option(
"--output-length",
type=int,
required=False,
default=0,
help="Output length for the answer",
)
@click.option(
"--url-list-file",
type=str,
required=False,
default="",
show_default=True,
help="Instead of doing web search, scrape the target URL list and answer the query based on the content",
)
@click.option(
"--extract-schema-file",
type=str,
required=False,
default="",
show_default=True,
help="Pydantic schema for the extract mode",
)
@click.option(
"--inference-model-name",
"-m",
required=False,
default="gpt-4o-mini",
help="Model name to use for inference",
)
@click.option(
"--hybrid-search",
is_flag=True,
help="Use hybrid search mode with both vector search and full-text search",
)
@click.option(
"--web-ui",
is_flag=True,
help="Launch the web interface",
)
@click.option(
"-l",
"--log-level",
"log_level",
default="INFO",
type=click.Choice(["DEBUG", "INFO", "WARNING", "ERROR"], case_sensitive=False),
help="Set the logging level",
show_default=True,
)
def search_extract_summarize(
query: str,
output_mode: str,
date_restrict: int,
target_site: str,
output_language: str,
output_length: int,
url_list_file: str,
extract_schema_file: str,
inference_model_name: str,
hybrid_search: bool,
web_ui: bool,
log_level: str,
):
load_dotenv(dotenv_path=default_env_file, override=False)
logger = _get_logger(log_level)
if output_mode == "extract" and not extract_schema_file:
raise Exception("Extract mode requires the --extract-schema-file argument.")
settings = AskSettings(
date_restrict=date_restrict,
target_site=target_site,
output_language=output_language,
output_length=output_length,
url_list=_read_url_list(url_list_file),
inference_model_name=inference_model_name,
hybrid_search=hybrid_search,
output_mode=OutputMode(output_mode),
extract_schema_str=_read_extract_schema_str(extract_schema_file),
)
if web_ui or os.environ.get("RUN_GRADIO_UI", "false").lower() != "false":
if os.environ.get("SHARE_GRADIO_UI", "false").lower() == "true":
share_ui = True
else:
share_ui = False
launch_gradio(
query=query,
init_settings=settings,
share_ui=share_ui,
logger=logger,
)
else:
if query is None:
raise Exception("Query is required for the command line mode")
ask = Ask(logger=logger)
final_result = ask.run_query(query=query, settings=settings)
click.echo(final_result)
if __name__ == "__main__":
search_extract_summarize()
|