Spaces:
Running
on
Zero
Running
on
Zero
Change generate_kwargs
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import time
|
|
|
3 |
from pathlib import Path
|
4 |
|
5 |
import gradio as gr
|
@@ -9,13 +10,16 @@ import torch
|
|
9 |
from loguru import logger
|
10 |
from transformers import pipeline
|
11 |
|
|
|
|
|
12 |
is_hf = os.getenv("SYSTEM") == "spaces"
|
13 |
|
14 |
generate_kwargs = {
|
15 |
"language": "Japanese",
|
16 |
-
"do_sample": False,
|
17 |
-
"num_beams": 1,
|
18 |
-
"no_repeat_ngram_size": 3,
|
|
|
19 |
}
|
20 |
|
21 |
|
@@ -46,6 +50,8 @@ logger.success("Pipelines initialized!")
|
|
46 |
|
47 |
@spaces.GPU
|
48 |
def transcribe_common(audio: str, model: str) -> tuple[str, float]:
|
|
|
|
|
49 |
filename = Path(audio).name
|
50 |
logger.info(f"Model: {model}")
|
51 |
logger.info(f"Audio: {filename}")
|
@@ -55,7 +61,8 @@ def transcribe_common(audio: str, model: str) -> tuple[str, float]:
|
|
55 |
duration = librosa.get_duration(y=y, sr=sr)
|
56 |
logger.info(f"Duration: {duration:.2f}s")
|
57 |
if duration > 15:
|
58 |
-
|
|
|
59 |
start_time = time.time()
|
60 |
result = pipe_dict[model](y, generate_kwargs=generate_kwargs)["text"]
|
61 |
end_time = time.time()
|
@@ -97,18 +104,16 @@ initial_md = """
|
|
97 |
|
98 |
- 音声認識モデル [kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) をファインチューンした**未完成のモデル**のお試し
|
99 |
- https://huggingface.co/litagin/galgame-whisper-wip
|
|
|
|
|
100 |
- 現在0.1エポックくらい
|
101 |
-
- 日本語のみ対応
|
102 |
-
- デモでは音声は15秒まで
|
103 |
- 比較できるように他モデルもついでに試せる
|
104 |
|
105 |
-
pipeに渡しているkwargs
|
106 |
```python
|
107 |
generate_kwargs = {
|
108 |
"language": "Japanese",
|
109 |
-
"
|
110 |
-
"num_beams": 1,
|
111 |
-
"no_repeat_ngram_size": 3, # 3回以上の繰り返しを防ぐ
|
112 |
}
|
113 |
```
|
114 |
"""
|
|
|
1 |
import os
|
2 |
import time
|
3 |
+
import warnings
|
4 |
from pathlib import Path
|
5 |
|
6 |
import gradio as gr
|
|
|
10 |
from loguru import logger
|
11 |
from transformers import pipeline
|
12 |
|
13 |
+
warnings.filterwarnings("ignore")
|
14 |
+
|
15 |
is_hf = os.getenv("SYSTEM") == "spaces"
|
16 |
|
17 |
generate_kwargs = {
|
18 |
"language": "Japanese",
|
19 |
+
# "do_sample": False,
|
20 |
+
# "num_beams": 1,
|
21 |
+
# "no_repeat_ngram_size": 3,
|
22 |
+
"max_new_tokens": 64,
|
23 |
}
|
24 |
|
25 |
|
|
|
50 |
|
51 |
@spaces.GPU
|
52 |
def transcribe_common(audio: str, model: str) -> tuple[str, float]:
|
53 |
+
if not audio:
|
54 |
+
return "No audio file", 0
|
55 |
filename = Path(audio).name
|
56 |
logger.info(f"Model: {model}")
|
57 |
logger.info(f"Audio: {filename}")
|
|
|
61 |
duration = librosa.get_duration(y=y, sr=sr)
|
62 |
logger.info(f"Duration: {duration:.2f}s")
|
63 |
if duration > 15:
|
64 |
+
logger.error(f"Audio too long, limit is 15 seconds, got {duration:.2f}s")
|
65 |
+
return f"Audio too long, limit is 15 seconds, got {duration:.2f}s", 0
|
66 |
start_time = time.time()
|
67 |
result = pipe_dict[model](y, generate_kwargs=generate_kwargs)["text"]
|
68 |
end_time = time.time()
|
|
|
104 |
|
105 |
- 音声認識モデル [kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) をファインチューンした**未完成のモデル**のお試し
|
106 |
- https://huggingface.co/litagin/galgame-whisper-wip
|
107 |
+
- デモでは**音声は15秒まで**しか受け付けません
|
108 |
+
- 日本語のみ対応 (Japanese only)
|
109 |
- 現在0.1エポックくらい
|
|
|
|
|
110 |
- 比較できるように他モデルもついでに試せる
|
111 |
|
112 |
+
pipeに渡しているkwargsは以下の最低限のもの:
|
113 |
```python
|
114 |
generate_kwargs = {
|
115 |
"language": "Japanese",
|
116 |
+
"max_new_tokens": 64,
|
|
|
|
|
117 |
}
|
118 |
```
|
119 |
"""
|