Spaces:
Sleeping
Sleeping
File size: 6,080 Bytes
ef98b47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# storygen_tts_final.py
import streamlit as st
from transformers import (
BlipForConditionalGeneration,
BlipProcessor,
AutoProcessor,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan,
pipeline
)
from datasets import load_dataset
import torch
import numpy as np
from PIL import Image
# 初始化模型(CPU优化版)
@st.cache_resource
def load_models():
"""加载所有需要的AI模型"""
try:
# 图像描述模型
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# 文本生成pipeline
story_generator = pipeline(
"text-generation",
model="openai-community/gpt2",
device_map="auto"
)
# 语音合成模型
tts_processor = AutoProcessor.from_pretrained("microsoft/speecht5_tts")
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# 加载说话者嵌入数据集
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
return blip_processor, blip_model, story_generator, tts_processor, tts_model, vocoder, embeddings_dataset
except Exception as e:
st.error(f"模型加载失败: {str(e)}")
raise
def generate_story(image, blip_processor, blip_model, story_generator):
"""生成高质量儿童故事"""
inputs = blip_processor(image, return_tensors="pt")
# 生成图像描述
caption_ids = blip_model.generate(
**inputs,
max_new_tokens=100,
num_beams=5,
early_stopping=True,
temperature=0.9
)
caption = blip_processor.decode(caption_ids[0], skip_special_tokens=True)
# 构建故事生成提示词
prompt = f"""Based on this image: {caption}
Write a magical story for children with:
1. Talking animals
2. Happy ending
3. Sound effects (*whoosh*, *giggle*)
4. 50-100 words
Story:"""
# 使用GPT-2生成故事
generated = story_generator(
prompt,
max_length=100,
min_length=50,
num_return_sequences=1,
temperature=0.85,
repetition_penalty=2.0
)
# 提取生成文本并清理
full_text = generated[0]['generated_text']
story = full_text.split("Story:")[-1].strip()
return story[:600].replace(caption, "").strip()
def text_to_speech(text, processor, model, vocoder, embeddings_dataset):
"""文本转语音"""
try:
inputs = processor(
text=text,
return_tensors="pt",
voice_preset=None
)
input_ids = inputs["input_ids"].to(torch.int64)
# 随机选择一个说话者嵌入
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
with torch.no_grad():
speech = model.generate_speech(
input_ids=input_ids,
speaker_embeddings=speaker_embeddings,
vocoder=vocoder
)
audio_array = speech.numpy()
audio_array = audio_array / np.max(np.abs(audio_array))
return audio_array, 16000
except Exception as e:
st.error(f"语音生成失败: {str(e)}")
raise
def main():
# 界面配置
st.set_page_config(
page_title="Magic Story Box",
page_icon="🧙",
layout="centered"
)
st.title("🧚♀️ Magic Story Box")
st.markdown("---")
st.write("Upload an image to get your magical story!")
# 初始化会话状态
if 'generated' not in st.session_state:
st.session_state.generated = False
# 加载模型
try:
(blip_proc, blip_model, story_gen,
tts_proc, tts_model, vocoder, embeddings) = load_models()
except:
return
# 文件上传组件
uploaded_file = st.file_uploader(
"Choose your magic image",
type=["jpg", "png", "jpeg"],
help="Upload photos of pets, toys or adventures!",
key="uploader"
)
# 处理上传文件
if uploaded_file and not st.session_state.generated:
try:
image = Image.open(uploaded_file).convert("RGB")
st.image(image, caption="Your Magic Picture ✨", use_container_width=True)
with st.status("Creating Magic...", expanded=True) as status:
# 生成故事
st.write("🔍 Reading the image...")
story = generate_story(image, blip_proc, blip_model, story_gen)
# 生成语音
st.write("🔊 Adding sounds...")
audio_array, sr = text_to_speech(story, tts_proc, tts_model, vocoder, embeddings)
# 保存结果
st.session_state.story = story
st.session_state.audio = (audio_array, sr)
status.update(label="Ready!", state="complete", expanded=False)
st.session_state.generated = True
st.rerun()
except Exception as e:
st.error(f"Magic failed: {str(e)}")
# 显示结果
if st.session_state.generated:
st.markdown("---")
st.subheader("Your Story 📖")
st.markdown(f'<div style="background:#fff3e6; padding:20px; border-radius:10px;">{st.session_state.story}</div>',
unsafe_allow_html=True)
st.markdown("---")
st.subheader("Listen 🎧")
audio_data, sr = st.session_state.audio
st.audio(audio_data, sample_rate=sr)
st.markdown("---")
if st.button("Create New Story", use_container_width=True):
st.session_state.generated = False
st.session_state.uploader = None
st.rerun()
if __name__ == "__main__":
main() |