import os import os.path as osp import gradio as gr import spaces import torch from threading import Thread from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer HEADER = ("""
""") device = "cuda" model = AutoModelForCausalLM.from_pretrained( "DAMO-NLP-SG/VideoLLaMA3-7B-Image", trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) model.to(device) processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B-Image", trust_remote_code=True) example_dir = "./examples" image_formats = ("png", "jpg", "jpeg") video_formats = ("mp4",) image_examples, video_examples = [], [] if example_dir is not None: example_files = [ osp.join(example_dir, f) for f in os.listdir(example_dir) ] for example_file in example_files: if example_file.endswith(image_formats): image_examples.append([example_file]) elif example_file.endswith(video_formats): video_examples.append([example_file]) def _on_video_upload(messages, video): if video is not None: # messages.append({"role": "user", "content": gr.Video(video)}) messages.append({"role": "user", "content": {"path": video}}) return messages, None def _on_image_upload(messages, image): if image is not None: # messages.append({"role": "user", "content": gr.Image(image)}) messages.append({"role": "user", "content": {"path": image}}) return messages, None def _on_text_submit(messages, text): messages.append({"role": "user", "content": text}) return messages, "" @spaces.GPU(duration=120) def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens, fps, max_frames): if len(input_text) > 0: messages.append({"role": "user", "content": input_text}) new_messages = [] contents = [] for message in messages: if message["role"] == "assistant": if len(contents): new_messages.append({"role": "user", "content": contents}) contents = [] new_messages.append(message) elif message["role"] == "user": if isinstance(message["content"], str): contents.append(message["content"]) else: media_path = message["content"][0] if media_path.endswith(video_formats): contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}}) elif media_path.endswith(image_formats): contents.append({"type": "image", "image": {"image_path": media_path}}) else: raise ValueError(f"Unsupported media type: {media_path}") if len(contents): new_messages.append({"role": "user", "content": contents}) if len(new_messages) == 0 or new_messages[-1]["role"] != "user": return messages generation_config = { "do_sample": do_sample, "temperature": temperature, "top_p": top_p, "max_new_tokens": max_new_tokens } inputs = processor( conversation=new_messages, add_system_prompt=True, add_generation_prompt=True, return_tensors="pt" ) inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} if "pixel_values" in inputs: inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16) streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True) generation_kwargs = { **inputs, **generation_config, "streamer": streamer, } thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() messages.append({"role": "assistant", "content": ""}) for token in streamer: messages[-1]['content'] += token yield messages with gr.Blocks() as interface: gr.HTML(HEADER) with gr.Row(): chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=835) with gr.Column(): with gr.Tab(label="Input"): with gr.Row(): # input_video = gr.Video(sources=["upload"], label="Upload Video") input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image") input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit") submit_button = gr.Button("Generate") gr.Examples(examples=[ [f"examples/cake.jpg", "What are the words on the cake?"], [f"examples/chart.jpg", "What do you think of this stock? Is it worth holding? Why?"], [f"examples/performance.png", "Which model do you think is the strongest? Why?"], ], inputs=[input_image, input_text], label="Image examples") with gr.Tab(label="Configure"): with gr.Accordion("Generation Config", open=True): do_sample = gr.Checkbox(value=True, label="Do Sample") temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature") top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P") max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens") with gr.Accordion("Video Config", open=True): fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS") max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames") # input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video]) input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image]) input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text]) submit_button.click( _predict, [ chatbot, input_text, do_sample, temperature, top_p, max_new_tokens, fps, max_frames ], [chatbot], ) if __name__ == "__main__": interface.launch()