lkhl commited on
Commit
a0cd639
·
1 Parent(s): 09eb172

Add VideoLLaMA3 interface

Browse files
Files changed (1) hide show
  1. app.py +161 -49
app.py CHANGED
@@ -1,64 +1,176 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
3
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
1
+ import os
2
+ import os.path as osp
3
+
4
  import gradio as gr
5
+ import spaces
6
+ import torch
7
+ from threading import Thread
8
+ from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
9
 
10
+ HEADER = """
11
  """
 
 
 
12
 
13
 
14
+ class VideoLLaMA3GradioInterface(object):
 
 
 
 
 
 
 
 
15
 
16
+ def __init__(self, model_name, device="cpu", example_dir=None, **server_kwargs):
17
+ self.device = device
18
+ self.model = AutoModelForCausalLM.from_pretrained(
19
+ model_name,
20
+ trust_remote_code=True,
21
+ torch_dtype=torch.bfloat16,
22
+ attn_implementation="flash_attention_2",
23
+ )
24
+ self.model.to(self.device)
25
+ self.processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
26
 
27
+ self.server_kwargs = server_kwargs
28
+
29
+ self.image_formats = ("png", "jpg", "jpeg")
30
+ self.video_formats = ("mp4",)
31
 
32
+ image_examples, video_examples = [], []
33
+ if example_dir is not None:
34
+ example_files = [
35
+ osp.join(example_dir, f) for f in os.listdir(example_dir)
36
+ ]
37
+ for example_file in example_files:
38
+ if example_file.endswith(self.image_formats):
39
+ image_examples.append([example_file])
40
+ elif example_file.endswith(self.video_formats):
41
+ video_examples.append([example_file])
42
 
43
+ with gr.Blocks() as self.interface:
44
+ gr.Markdown(HEADER)
45
+ with gr.Row():
46
+ chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=710)
 
 
 
 
47
 
48
+ with gr.Column():
49
+ with gr.Tab(label="Input"):
50
 
51
+ with gr.Row():
52
+ input_video = gr.Video(sources=["upload"], label="Upload Video")
53
+ input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
54
 
55
+ if len(image_examples):
56
+ gr.Examples(image_examples, inputs=[input_image], label="Example Images")
57
+ if len(video_examples):
58
+ gr.Examples(video_examples, inputs=[input_video], label="Example Videos")
59
+
60
+ input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")
61
+
62
+ submit_button = gr.Button("Generate")
63
+
64
+ with gr.Tab(label="Configure"):
65
+ with gr.Accordion("Generation Config", open=True):
66
+ do_sample = gr.Checkbox(value=True, label="Do Sample")
67
+ temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
68
+ top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
69
+ max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")
70
+
71
+ with gr.Accordion("Video Config", open=True):
72
+ fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
73
+ max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")
74
+
75
+ input_video.change(self._on_video_upload, [chatbot, input_video], [chatbot, input_video])
76
+ input_image.change(self._on_image_upload, [chatbot, input_image], [chatbot, input_image])
77
+ input_text.submit(self._on_text_submit, [chatbot, input_text], [chatbot, input_text])
78
+ submit_button.click(
79
+ self._predict,
80
+ [
81
+ chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
82
+ fps, max_frames
83
+ ],
84
+ [chatbot],
85
+ )
86
+
87
+ def _on_video_upload(self, messages, video):
88
+ if video is not None:
89
+ # messages.append({"role": "user", "content": gr.Video(video)})
90
+ messages.append({"role": "user", "content": {"path": video}})
91
+ return messages, None
92
+
93
+ def _on_image_upload(self, messages, image):
94
+ if image is not None:
95
+ # messages.append({"role": "user", "content": gr.Image(image)})
96
+ messages.append({"role": "user", "content": {"path": image}})
97
+ return messages, None
98
+
99
+ def _on_text_submit(self, messages, text):
100
+ messages.append({"role": "user", "content": text})
101
+ return messages, ""
102
+
103
+ @spaces.GPU(duration=120)
104
+ def _predict(self, messages, input_text, do_sample, temperature, top_p, max_new_tokens,
105
+ fps, max_frames):
106
+ if len(input_text) > 0:
107
+ messages.append({"role": "user", "content": input_text})
108
+ new_messages = []
109
+ contents = []
110
+ for message in messages:
111
+ if message["role"] == "assistant":
112
+ if len(contents):
113
+ new_messages.append({"role": "user", "content": contents})
114
+ contents = []
115
+ new_messages.append(message)
116
+ elif message["role"] == "user":
117
+ if isinstance(message["content"], str):
118
+ contents.append(message["content"])
119
+ else:
120
+ media_path = message["content"][0]
121
+ if media_path.endswith(self.video_formats):
122
+ contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
123
+ elif media_path.endswith(self.image_formats):
124
+ contents.append({"type": "image", "image": {"image_path": media_path}})
125
+ else:
126
+ raise ValueError(f"Unsupported media type: {media_path}")
127
+
128
+ if len(contents):
129
+ new_messages.append({"role": "user", "content": contents})
130
+
131
+ if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
132
+ return messages
133
+
134
+ generation_config = {
135
+ "do_sample": do_sample,
136
+ "temperature": temperature,
137
+ "top_p": top_p,
138
+ "max_new_tokens": max_new_tokens
139
+ }
140
+
141
+ inputs = self.processor(
142
+ conversation=new_messages,
143
+ add_system_prompt=True,
144
+ add_generation_prompt=True,
145
+ return_tensors="pt"
146
+ )
147
+ inputs = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
148
+ if "pixel_values" in inputs:
149
+ inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
150
+
151
+ streamer = TextIteratorStreamer(self.processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
152
+ generation_kwargs = {
153
+ **inputs,
154
+ **generation_config,
155
+ "streamer": streamer,
156
+ }
157
+
158
+ thread = Thread(target=self.model.generate, kwargs=generation_kwargs)
159
+ thread.start()
160
+
161
+ messages.append({"role": "assistant", "content": ""})
162
+ for token in streamer:
163
+ messages[-1]['content'] += token
164
+ yield messages
165
+
166
+ def launch(self):
167
+ self.interface.launch(**self.server_kwargs)
168
 
169
 
170
  if __name__ == "__main__":
171
+ interface = VideoLLaMA3GradioInterface(
172
+ model_name="DAMO-NLP-SG/VideoLLaMA3-7B",
173
+ device="cuda",
174
+ example_dir="./examples",
175
+ )
176
+ interface.launch()