candle-yolo / yoloWorker.js
radames's picture
add new UI and runtime
c18de0d
raw
history blame
1.65 kB
//load the candle yolo wasm module
import init, { Model } from "./build/m.js";
class Yolo {
static instance = {};
// Retrieve the YOLO model. When called for the first time,
// this will load the model and save it for future use.
static async getInstance(modelID, modelURL, modelSize) {
// load individual modelID only once
if (!this.instance[modelID]) {
await init();
self.postMessage({ status: `loading model ${modelID}:${modelSize}` });
const modelRes = await fetch(modelURL);
const yoloArrayBuffer = await modelRes.arrayBuffer();
const weightsArrayU8 = new Uint8Array(yoloArrayBuffer);
this.instance[modelID] = new Model(weightsArrayU8, modelSize);
} else {
self.postMessage({ status: "model already loaded" });
}
return this.instance[modelID];
}
}
self.addEventListener("message", async (event) => {
const { imageURL, modelID, modelURL, modelSize, confidence, iou_threshold } =
event.data;
try {
self.postMessage({ status: "detecting" });
const yolo = await Yolo.getInstance(modelID, modelURL, modelSize);
self.postMessage({ status: "loading image" });
const imgRes = await fetch(imageURL);
const imgData = await imgRes.arrayBuffer();
const imageArrayU8 = new Uint8Array(imgData);
self.postMessage({ status: `running inference ${modelID}:${modelSize}` });
const bboxes = yolo.run(imageArrayU8, confidence, iou_threshold);
// Send the output back to the main thread as JSON
self.postMessage({
status: "complete",
output: JSON.parse(bboxes),
});
} catch (e) {
self.postMessage({ error: e });
}
});