Gregor Betz
commited on
add backends / api key secrets
Browse files- backend/config.py +19 -10
- config.yaml +2 -0
backend/config.py
CHANGED
@@ -3,8 +3,14 @@ import os
|
|
3 |
|
4 |
|
5 |
def process_config(config):
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
client_kwargs = {}
|
9 |
if "client_llm" in config:
|
10 |
if "model_id" in config["client_llm"]:
|
@@ -15,8 +21,11 @@ def process_config(config):
|
|
15 |
client_kwargs["inference_server_url"] = config["client_llm"]["url"]
|
16 |
else:
|
17 |
raise ValueError("config.yaml is missing client url.")
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
client_kwargs["temperature"] = config["client_llm"].get("temperature",.6)
|
21 |
client_kwargs["max_tokens"] = config["client_llm"].get("max_tokens",800)
|
22 |
else:
|
@@ -32,8 +41,11 @@ def process_config(config):
|
|
32 |
guide_kwargs["inference_server_url"] = config["expert_llm"]["url"]
|
33 |
else:
|
34 |
raise ValueError("config.yaml is missing expert url.")
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
else:
|
38 |
raise ValueError("config.yaml is missing expert_llm settings.")
|
39 |
|
@@ -50,12 +62,9 @@ def process_config(config):
|
|
50 |
guide_kwargs["classifier_kwargs"]["batch_size"] = int(config["classifier_llm"]["batch_size"])
|
51 |
else:
|
52 |
raise ValueError("config.yaml is missing classifier batch_size.")
|
53 |
-
guide_kwargs["classifier_kwargs"]["api_key"] = os.getenv("
|
54 |
else:
|
55 |
raise ValueError("config.yaml is missing classifier_llm settings.")
|
56 |
|
57 |
-
logging.info(f"client_kwargs: {client_kwargs}")
|
58 |
-
logging.info(f"guide_kwargs: {guide_kwargs}")
|
59 |
-
|
60 |
return client_kwargs, guide_kwargs
|
61 |
|
|
|
3 |
|
4 |
|
5 |
def process_config(config):
|
6 |
+
|
7 |
+
if "CLIENT_TOKEN" not in os.environ:
|
8 |
+
raise ValueError("Please set the CLIENT_TOKEN environment variable.")
|
9 |
+
if "GUIDE_TOKEN" not in os.environ:
|
10 |
+
raise ValueError("Please set the GUIDE_TOKEN environment variable.")
|
11 |
+
if "CLASSIFIER_TOKEN" not in os.environ:
|
12 |
+
raise ValueError("Please set the CLASSIFIER_TOKEN environment variable.")
|
13 |
+
|
14 |
client_kwargs = {}
|
15 |
if "client_llm" in config:
|
16 |
if "model_id" in config["client_llm"]:
|
|
|
21 |
client_kwargs["inference_server_url"] = config["client_llm"]["url"]
|
22 |
else:
|
23 |
raise ValueError("config.yaml is missing client url.")
|
24 |
+
if "backend" in config["client_llm"]:
|
25 |
+
client_kwargs["llm_backend"] = config["client_llm"]["backend"]
|
26 |
+
else:
|
27 |
+
raise ValueError("config.yaml is missing client backend.")
|
28 |
+
client_kwargs["api_key"] = os.getenv("CLIENT_TOKEN")
|
29 |
client_kwargs["temperature"] = config["client_llm"].get("temperature",.6)
|
30 |
client_kwargs["max_tokens"] = config["client_llm"].get("max_tokens",800)
|
31 |
else:
|
|
|
41 |
guide_kwargs["inference_server_url"] = config["expert_llm"]["url"]
|
42 |
else:
|
43 |
raise ValueError("config.yaml is missing expert url.")
|
44 |
+
if "backend" in config["expert_llm"]:
|
45 |
+
guide_kwargs["llm_backend"] = config["expert_llm"]["backend"]
|
46 |
+
else:
|
47 |
+
raise ValueError("config.yaml is missing expert backend.")
|
48 |
+
guide_kwargs["api_key"] = os.getenv("GUIDE_TOKEN")
|
49 |
else:
|
50 |
raise ValueError("config.yaml is missing expert_llm settings.")
|
51 |
|
|
|
62 |
guide_kwargs["classifier_kwargs"]["batch_size"] = int(config["classifier_llm"]["batch_size"])
|
63 |
else:
|
64 |
raise ValueError("config.yaml is missing classifier batch_size.")
|
65 |
+
guide_kwargs["classifier_kwargs"]["api_key"] = os.getenv("CLASSIFIER_TOKEN") # classifier api key
|
66 |
else:
|
67 |
raise ValueError("config.yaml is missing classifier_llm settings.")
|
68 |
|
|
|
|
|
|
|
69 |
return client_kwargs, guide_kwargs
|
70 |
|
config.yaml
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
client_llm:
|
2 |
url: "" # <-- start your own inference endpoint and provide url here (or use https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta)
|
3 |
model_id: "HuggingFaceH4/zephyr-7b-beta" # <-- your client llm
|
|
|
4 |
max_tokens: 800
|
5 |
temperature: 0.6
|
6 |
expert_llm:
|
7 |
url: "" # <-- start your own inference endpoint and provide url here (or use https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct)
|
8 |
model_id: "meta-llama/Meta-Llama-3-70B-Instruct"
|
|
|
9 |
classifier_llm:
|
10 |
model_id: "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
|
11 |
url: "" # <-- start your own inference endpoint of classifier model and provide url here
|
|
|
1 |
client_llm:
|
2 |
url: "" # <-- start your own inference endpoint and provide url here (or use https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta)
|
3 |
model_id: "HuggingFaceH4/zephyr-7b-beta" # <-- your client llm
|
4 |
+
backend: HFChat
|
5 |
max_tokens: 800
|
6 |
temperature: 0.6
|
7 |
expert_llm:
|
8 |
url: "" # <-- start your own inference endpoint and provide url here (or use https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B-Instruct)
|
9 |
model_id: "meta-llama/Meta-Llama-3-70B-Instruct"
|
10 |
+
backend: HFChat
|
11 |
classifier_llm:
|
12 |
model_id: "MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli"
|
13 |
url: "" # <-- start your own inference endpoint of classifier model and provide url here
|