Spaces:
Runtime error
Runtime error
v1, sd1.5
Browse files- Atkinson-Hyperlegible-Bold-102.otf +0 -0
- app.py +116 -0
- requirements.txt +5 -0
Atkinson-Hyperlegible-Bold-102.otf
ADDED
|
Binary file (36.6 kB). View file
|
|
|
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance
|
| 5 |
+
from quanto import qfloat8, quantize, freeze
|
| 6 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 7 |
+
from diffusers.utils import make_image_grid
|
| 8 |
+
|
| 9 |
+
atkbold = ImageFont.truetype("Atkinson-Hyperlegible-Bold-102.otf",50)
|
| 10 |
+
|
| 11 |
+
default_width = 1024
|
| 12 |
+
default_height = 768
|
| 13 |
+
default_timesteps = 8
|
| 14 |
+
|
| 15 |
+
def mask_image_factory(mask_text="ASK FOR\nA SNACK", width=default_width, height=default_height):
|
| 16 |
+
img = Image.new("L", (width, height), (0,))
|
| 17 |
+
draw = ImageDraw.Draw(img)
|
| 18 |
+
draw.multiline_text(
|
| 19 |
+
xy=(0,0),
|
| 20 |
+
text=mask_text,
|
| 21 |
+
fill=(255,),
|
| 22 |
+
font=atkbold,
|
| 23 |
+
align="center",
|
| 24 |
+
spacing=0,
|
| 25 |
+
)
|
| 26 |
+
cropped = img.crop(img.getbbox())
|
| 27 |
+
# Calculate aspect ratios
|
| 28 |
+
image_aspect_ratio = width / height
|
| 29 |
+
cropped_aspect_ratio = cropped.size[0] / cropped.size[1]
|
| 30 |
+
|
| 31 |
+
# Determine which dimension of cropped.size is larger
|
| 32 |
+
if cropped_aspect_ratio > image_aspect_ratio:
|
| 33 |
+
# Calculate new dimensions for padding
|
| 34 |
+
new_width = int(cropped.size[1] * image_aspect_ratio)
|
| 35 |
+
new_height = cropped.size[1]
|
| 36 |
+
else:
|
| 37 |
+
new_width = cropped.size[0]
|
| 38 |
+
new_height = int(cropped.size[0] / image_aspect_ratio)
|
| 39 |
+
|
| 40 |
+
# Pad the image to the desired aspect ratio
|
| 41 |
+
padded = ImageOps.pad(cropped, (new_width, new_height))
|
| 42 |
+
|
| 43 |
+
resized = padded.resize((width, height), resample=Image.Resampling.LANCZOS)
|
| 44 |
+
return resized
|
| 45 |
+
|
| 46 |
+
preferred_device = "cuda" if torch.cuda.is_available() else ("mps" if torch.backends.mps.is_available() else "cpu")
|
| 47 |
+
preferred_device = "cpu"
|
| 48 |
+
preferred_dtype = torch.float32
|
| 49 |
+
|
| 50 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 51 |
+
"monster-labs/control_v1p_sd15_qrcode_monster",
|
| 52 |
+
# "monster-labs/control_v1p_sdxl_qrcode_monster",
|
| 53 |
+
subfolder="v2",
|
| 54 |
+
torch_dtype=preferred_dtype,
|
| 55 |
+
#torch_dtype=unet_preferred_dtype
|
| 56 |
+
).to(preferred_device)
|
| 57 |
+
|
| 58 |
+
#quantize(controlnet, weights=qfloat8)
|
| 59 |
+
#freeze(controlnet)
|
| 60 |
+
|
| 61 |
+
ctlpipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 62 |
+
"SimianLuo/LCM_Dreamshaper_v7",
|
| 63 |
+
controlnet=controlnet,
|
| 64 |
+
torch_dtype=preferred_dtype,
|
| 65 |
+
safety_checker=None,
|
| 66 |
+
).to(preferred_device)
|
| 67 |
+
|
| 68 |
+
#quantize(ctlpipe.unet, weights=qfloat8)
|
| 69 |
+
#freeze(ctlpipe.unet)
|
| 70 |
+
#quantize(ctlpipe.text_encoder, weights=qfloat8)
|
| 71 |
+
#freeze(ctlpipe.text_encoder)
|
| 72 |
+
|
| 73 |
+
def app(prompt, negative_prompt, mask_text, num_inference_steps, controlnet_conditioning_scale, width, height, seed, count):
|
| 74 |
+
all_images = [ctlpipe(
|
| 75 |
+
prompt=prompt,
|
| 76 |
+
negative_prompt=negative_prompt,
|
| 77 |
+
image=mask_image_factory(mask_text=mask_text, width=width, height=height),
|
| 78 |
+
num_inference_steps=int(num_inference_steps),
|
| 79 |
+
guidance_scale=8.0,
|
| 80 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 81 |
+
generator=torch.manual_seed(int(seed + i)),
|
| 82 |
+
height=height,
|
| 83 |
+
width=width,
|
| 84 |
+
).images[0] for i in range(count)]
|
| 85 |
+
if count == 1:
|
| 86 |
+
cols = 1
|
| 87 |
+
rows = 1
|
| 88 |
+
elif count == 2:
|
| 89 |
+
cols = 1
|
| 90 |
+
rows = 2
|
| 91 |
+
else:
|
| 92 |
+
cols = 2 if count % 2 == 0 else 1
|
| 93 |
+
rows = count // cols
|
| 94 |
+
return make_image_grid(all_images, cols=cols, rows=rows)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
app("corgis running in the park", "ugly, wrong", "ASK FOR\nA SNACK", 1, 1.0, default_height, default_width, 42, 1)
|
| 98 |
+
|
| 99 |
+
iface = gr.Interface(
|
| 100 |
+
app,
|
| 101 |
+
[
|
| 102 |
+
gr.Textbox(label="Prompt", value="corgis running in a flower-filled meadow at golden hour"),
|
| 103 |
+
gr.Textbox(label="Negative Prompt", value="ugly, wrong"),
|
| 104 |
+
gr.Textbox(label="Mask Text", value="ASK FOR\nA SNACK"),
|
| 105 |
+
gr.Number(label="Number of Inference Steps", value=default_timesteps, minimum=1, maximum=50, step=1),
|
| 106 |
+
gr.Slider(label="ControlNet Conditioning Scale", value=0.5, minimum=-1.0, maximum=2.0, step=0.01),
|
| 107 |
+
gr.Number(label="Width", value=default_width, minimum=256, maximum=2048, precision=0),
|
| 108 |
+
gr.Number(label="Height", value=default_height, minimum=256, maximum=2048, precision=0),
|
| 109 |
+
gr.Number(label="Random Number Seed", value=42, minimum=0, maximum=2**32-1, precision=0),
|
| 110 |
+
gr.Radio(label="Number of Images to Generate with Subsequent Consecutive Seeds", choices=[1, 2, 4, 6, 10], value=2),
|
| 111 |
+
],
|
| 112 |
+
"image",
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
iface.launch()
|
| 116 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
diffusers
|
| 3 |
+
accelerate
|
| 4 |
+
optimum
|
| 5 |
+
quanto
|