Spaces:
Running
on
Zero
Running
on
Zero
Ink
commited on
Fix realtime entropy patching (#26)
Browse files* allow loading of the entropy model directly
* remove unused argument
* remove spammy warning
* allow patch_batch_size to be adjusted in the forward() method
* revert to original patcher style, fix warning
* allow grads when calculating entropies
* fix grad flow
* return preds from calculate_entropies()
* remove legacy arg
* fix an error with monotonicity and small sequence lengths
* ensure patcher is serializable
* revert patcher to original
* remove unused import
bytelatent/data/patcher.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
import math
|
3 |
import time
|
4 |
from collections import defaultdict
|
|
|
5 |
from enum import Enum
|
6 |
|
7 |
import torch
|
@@ -58,7 +59,11 @@ def entropy(scores):
|
|
58 |
|
59 |
|
60 |
def calculate_entropies(
|
61 |
-
tokens: torch.tensor,
|
|
|
|
|
|
|
|
|
62 |
):
|
63 |
"""
|
64 |
tokens: 2D tensor of shape [batch_size, seq_len]
|
@@ -67,8 +72,12 @@ def calculate_entropies(
|
|
67 |
Splits the tokens into chunks of size max_length and calculates entropies for each chunk.
|
68 |
Entropy model can be executed on cpu or gpu, specify either 'cuda' or 'cpu' in the device argument.
|
69 |
"""
|
70 |
-
|
|
|
|
|
|
|
71 |
entropies = []
|
|
|
72 |
max_length = getattr(entropy_model, "max_length", 8192)
|
73 |
batch_numel = max_length * patching_batch_size
|
74 |
splits = torch.split(tokens.flatten(), batch_numel)
|
@@ -86,12 +95,15 @@ def calculate_entropies(
|
|
86 |
pred = pred.reshape(-1, pred.shape[-1])[
|
87 |
: split.numel() - pad_size, :
|
88 |
] # [batch_size * seq_len, vocab]
|
|
|
89 |
pred_entropies = entropy(pred)
|
90 |
entropies.append(pred_entropies)
|
91 |
|
92 |
concat_entropies = torch.cat(entropies, dim=0)
|
93 |
concat_entropies = concat_entropies.reshape(tokens.shape)
|
94 |
-
|
|
|
|
|
95 |
|
96 |
|
97 |
def patch_start_mask_from_entropy_with_monotonicity(entropies, t):
|
@@ -101,6 +113,10 @@ def patch_start_mask_from_entropy_with_monotonicity(entropies, t):
|
|
101 |
returns [bs, seq_len] mask where True indicates the start of a patch
|
102 |
"""
|
103 |
bs, seq_len = entropies.shape
|
|
|
|
|
|
|
|
|
104 |
mask = torch.zeros_like(entropies, dtype=torch.bool)
|
105 |
mask[:, 0] = True
|
106 |
|
@@ -123,6 +139,10 @@ def patch_start_mask_global_and_monotonicity(entropies, t, t_add=0):
|
|
123 |
returns [bs, seq_len] mask where True indicates the start of a patch
|
124 |
"""
|
125 |
bs, seq_len = entropies.shape
|
|
|
|
|
|
|
|
|
126 |
mask = torch.zeros_like(entropies, dtype=torch.bool)
|
127 |
mask[:, 0] = True
|
128 |
|
@@ -521,12 +541,12 @@ class Patcher:
|
|
521 |
if self.log_time:
|
522 |
s = time.time()
|
523 |
if entropies is not None:
|
524 |
-
scores =
|
525 |
elif preds is not None:
|
526 |
scores = entropy(preds)
|
527 |
else:
|
528 |
start_entropies = time.time()
|
529 |
-
scores = calculate_entropies(
|
530 |
tokens,
|
531 |
self.entropy_model,
|
532 |
self.patching_batch_size,
|
|
|
2 |
import math
|
3 |
import time
|
4 |
from collections import defaultdict
|
5 |
+
from contextlib import nullcontext
|
6 |
from enum import Enum
|
7 |
|
8 |
import torch
|
|
|
59 |
|
60 |
|
61 |
def calculate_entropies(
|
62 |
+
tokens: torch.tensor,
|
63 |
+
entropy_model,
|
64 |
+
patching_batch_size,
|
65 |
+
device: str | None = None,
|
66 |
+
enable_grad: bool = False,
|
67 |
):
|
68 |
"""
|
69 |
tokens: 2D tensor of shape [batch_size, seq_len]
|
|
|
72 |
Splits the tokens into chunks of size max_length and calculates entropies for each chunk.
|
73 |
Entropy model can be executed on cpu or gpu, specify either 'cuda' or 'cpu' in the device argument.
|
74 |
"""
|
75 |
+
|
76 |
+
grad_context = nullcontext() if enable_grad else torch.no_grad()
|
77 |
+
|
78 |
+
with grad_context:
|
79 |
entropies = []
|
80 |
+
preds = []
|
81 |
max_length = getattr(entropy_model, "max_length", 8192)
|
82 |
batch_numel = max_length * patching_batch_size
|
83 |
splits = torch.split(tokens.flatten(), batch_numel)
|
|
|
95 |
pred = pred.reshape(-1, pred.shape[-1])[
|
96 |
: split.numel() - pad_size, :
|
97 |
] # [batch_size * seq_len, vocab]
|
98 |
+
preds.append(pred)
|
99 |
pred_entropies = entropy(pred)
|
100 |
entropies.append(pred_entropies)
|
101 |
|
102 |
concat_entropies = torch.cat(entropies, dim=0)
|
103 |
concat_entropies = concat_entropies.reshape(tokens.shape)
|
104 |
+
concat_preds = torch.cat(preds, dim=0)
|
105 |
+
concat_preds = concat_preds.reshape(tokens.shape[0], tokens.shape[1], -1)
|
106 |
+
return concat_entropies, concat_preds
|
107 |
|
108 |
|
109 |
def patch_start_mask_from_entropy_with_monotonicity(entropies, t):
|
|
|
113 |
returns [bs, seq_len] mask where True indicates the start of a patch
|
114 |
"""
|
115 |
bs, seq_len = entropies.shape
|
116 |
+
|
117 |
+
if seq_len == 0:
|
118 |
+
return entropies > t
|
119 |
+
|
120 |
mask = torch.zeros_like(entropies, dtype=torch.bool)
|
121 |
mask[:, 0] = True
|
122 |
|
|
|
139 |
returns [bs, seq_len] mask where True indicates the start of a patch
|
140 |
"""
|
141 |
bs, seq_len = entropies.shape
|
142 |
+
|
143 |
+
if seq_len == 0:
|
144 |
+
return entropies > t
|
145 |
+
|
146 |
mask = torch.zeros_like(entropies, dtype=torch.bool)
|
147 |
mask[:, 0] = True
|
148 |
|
|
|
541 |
if self.log_time:
|
542 |
s = time.time()
|
543 |
if entropies is not None:
|
544 |
+
scores = entropies.to(dtype=torch.float32)
|
545 |
elif preds is not None:
|
546 |
scores = entropy(preds)
|
547 |
else:
|
548 |
start_entropies = time.time()
|
549 |
+
scores, _ = calculate_entropies(
|
550 |
tokens,
|
551 |
self.entropy_model,
|
552 |
self.patching_batch_size,
|
bytelatent/model/local_models.py
CHANGED
@@ -199,9 +199,6 @@ class LocalModelBase(nn.Module):
|
|
199 |
class LocalEncoder(LocalModelBase):
|
200 |
def __init__(self, args: LocalModelArgs):
|
201 |
super().__init__(args)
|
202 |
-
self.output_proj = (
|
203 |
-
args.patching_mode in ["entropy", "probmax"]
|
204 |
-
) and args.entropy_model_checkpoint_dir is None
|
205 |
|
206 |
self.apply_transformer = args.use_local_encoder_transformer
|
207 |
self.downsampling_by_pooling = args.downsampling_by_pooling
|
|
|
199 |
class LocalEncoder(LocalModelBase):
|
200 |
def __init__(self, args: LocalModelArgs):
|
201 |
super().__init__(args)
|
|
|
|
|
|
|
202 |
|
203 |
self.apply_transformer = args.use_local_encoder_transformer
|
204 |
self.downsampling_by_pooling = args.downsampling_by_pooling
|
bytelatent/model/utils.py
CHANGED
@@ -162,9 +162,6 @@ def create_causal_mask(
|
|
162 |
return "causal"
|
163 |
|
164 |
if BLT_SUPPRESS_ATTN_ERROR == 1:
|
165 |
-
logging.warning(
|
166 |
-
"SDPA attention being used, which doesn't have specialized attention implementations for block_causal and local_block_causal attention. Allowing model to run since BLT_SUPPRESS_ATTN_ERROR=1"
|
167 |
-
)
|
168 |
return "causal"
|
169 |
else:
|
170 |
raise ValueError(
|
|
|
162 |
return "causal"
|
163 |
|
164 |
if BLT_SUPPRESS_ATTN_ERROR == 1:
|
|
|
|
|
|
|
165 |
return "causal"
|
166 |
else:
|
167 |
raise ValueError(
|
bytelatent/preprocess/preprocess_entropies.py
CHANGED
@@ -117,7 +117,7 @@ def main(
|
|
117 |
text = get_text(doc)
|
118 |
tokens = torch.tensor(tokenizer.encode(text))
|
119 |
patch_start = time.time()
|
120 |
-
scores = calculate_entropies(
|
121 |
tokens,
|
122 |
entropy_model,
|
123 |
patching_batch_size,
|
|
|
117 |
text = get_text(doc)
|
118 |
tokens = torch.tensor(tokenizer.encode(text))
|
119 |
patch_start = time.time()
|
120 |
+
scores, _ = calculate_entropies(
|
121 |
tokens,
|
122 |
entropy_model,
|
123 |
patching_batch_size,
|