Spaces:
Sleeping
Sleeping
File size: 4,894 Bytes
09565b8 4e95c16 09565b8 4e95c16 09565b8 8ce80d5 09565b8 6ec55cf 09565b8 6ec55cf 09565b8 6ec55cf 8ce80d5 63f09ca 8ce80d5 09565b8 6ec55cf 8ce80d5 6ec55cf 09565b8 6ec55cf 8ce80d5 6ec55cf 09565b8 e2eb790 09565b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
# import required modules
import os
import time
import base64
import asyncio
import gradio as gr
from PIL import Image
from google import genai
from threading import Lock
from google.genai import types
# define which Gemini model version is going to be used
model_id = "gemini-2.0-flash-exp"
# Gemini model system instruction settings
system_instruction="""
"You always reply in the same language the user sent the question. It is mandatory.",
"You only change the response language if explicitly asked - otherwise, answer in the original language."
"You are an assistant who helps people with their questions.",
"You only provide answers in one paragraph or less.",
"Your answers are long enough to not miss any information.",
"You are always kind and use simple, pleasant language.",
"""
## helper functions
# convert image files to base64 data
def image_to_base64(image_path):
with open(image_path, 'rb') as img:
encoded_string = base64.b64encode(img.read())
return encoded_string.decode('utf-8')
# show user message at the chatbot history
def query_message(history,txt,img):
if not img:
history += [(txt,None)]
return history
if img:
base64 = image_to_base64(img)
data_url = f"data:image/jpeg;base64,{base64}"
history += [(f"{txt} ", None)]
return history
## gradio interface
# gradio page variables
TITLE = """<h1 align="center">Gemini 2.0 Chatbot 🤖</h1>"""
SUBTITLE = """<h2 align="center">A multimodal chatbot powered by Gradio and Gemini API</h2>"""
# gradio styles in css
css = """
.container {
max-width: 100%;
padding: 0 1rem;
}
.chatbot {
height: calc(100vh - 250px) !important;
overflow-y: auto;
}
.textbox {
margin-top: 0.5rem;
}
"""
# gradio chatbot main function
def registry(name, token, examples=None, **kwargs):
client = genai.Client(api_key=token)
chat_locks = {} # Dictionary to hold locks for each user's chat
chat_sessions = {} # Dictionary to hold each user chat
def create_chat():
return client.chats.create(
model=name,
config=types.GenerateContentConfig(
system_instruction=system_instruction,
temperature=0.5,
),
)
# send a user message to Gemini, streams the response back to the chatbot
# and updates the history
def stream_response(history, text, img, request: gr.Request):
user_id = request.client.host
if user_id not in chat_locks:
chat_locks[user_id] = Lock()
chat_sessions[user_id] = create_chat()
lock = chat_locks[user_id]
chat = chat_sessions[user_id]
try:
with lock:
if not img:
response_stream = chat.send_message_stream(
text
)
else:
try:
img = Image.open(img)
response_stream = chat.send_message_stream(
[text, img]
)
except Exception as e:
print(f"Error processing image: {str(e)}")
return
# Initialize response text
response_text = ""
# Stream the response
for chunk in response_stream:
if chunk.text:
response_text += chunk.text
# Update the last message in history with the new content
history[-1] = (history[-1][0], response_text)
yield history
except Exception as e:
print(f"Error in stream_response: {str(e)}")
return
print("Building the gradio app...")
with gr.Blocks(css=css) as app:
gr.HTML(TITLE)
gr.HTML(SUBTITLE)
with gr.Row():
image_box = gr.Image(type="filepath")
chatbot = gr.Chatbot(
scale=2,
height=500,
container=True
)
text_box = gr.Textbox(
placeholder="Type your message and press enter and optionally upload an image",
container=False,
)
btn = gr.Button("Send")
# Update the event handlers to use streaming
btn.click(
fn=query_message,
inputs=[chatbot, text_box, image_box],
outputs=[chatbot],
).then(
fn=stream_response,
inputs=[chatbot, text_box, image_box],
outputs=[chatbot],
api_name="stream_response"
).then(
fn=lambda: (None, ""), # Clear the image and text inputs after sending
inputs=None,
outputs=[image_box, text_box],
)
# Add enter key handler
text_box.submit(
fn=query_message,
inputs=[chatbot, text_box, image_box],
outputs=[chatbot],
).then(
fn=stream_response,
inputs=[chatbot, text_box, image_box],
outputs=[chatbot],
api_name="stream_response"
).then(
fn=lambda: (None, ""), # Clear the image and text inputs after sending
inputs=None,
outputs=[image_box, text_box],
)
return app
if __name__ == "__main__":
# launch the gradio chatbot
gr.load(
name=model_id,
src=registry,
accept_token=True
).launch()
|