Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,19 @@ import fitz # PyMuPDF
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
-
from transformers import
|
7 |
import os
|
8 |
import tempfile
|
|
|
9 |
|
10 |
-
# Initialize
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def pdf_to_images(pdf_path):
|
14 |
"""Convert PDF to high-res images using PyMuPDF"""
|
@@ -28,11 +35,9 @@ def highlight_differences(img1, img2):
|
|
28 |
gray1 = cv2.cvtColor(img1_np, cv2.COLOR_RGB2GRAY)
|
29 |
gray2 = cv2.cvtColor(img2_np, cv2.COLOR_RGB2GRAY)
|
30 |
|
31 |
-
# Compute absolute difference
|
32 |
diff = cv2.absdiff(gray1, gray2)
|
33 |
_, thresh = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)
|
34 |
|
35 |
-
# Highlight differences
|
36 |
highlighted = img2_np.copy()
|
37 |
highlighted[thresh == 255] = [255, 0, 0] # Red highlights
|
38 |
|
@@ -44,16 +49,16 @@ def extract_text_with_layout(img):
|
|
44 |
custom_config = r'--oem 3 --psm 6 -c preserve_interword_spaces=1'
|
45 |
return pytesseract.image_to_string(img, config=custom_config)
|
46 |
|
47 |
-
def
|
48 |
-
"""Generate report using free
|
49 |
prompt = f"""
|
50 |
-
|
51 |
|
52 |
BEFORE VERSION:
|
53 |
-
{before_text[:
|
54 |
|
55 |
AFTER VERSION:
|
56 |
-
{after_text[:
|
57 |
|
58 |
VISUAL ANALYSIS NOTES:
|
59 |
{visual_desc}
|
@@ -62,21 +67,20 @@ def generate_free_ai_report(before_text, after_text, visual_desc):
|
|
62 |
1. SUMMARY: 2-3 sentence overview
|
63 |
2. KEY CHANGES: Bullet points of specific changes
|
64 |
3. ANALYSIS: Potential implications
|
65 |
-
|
66 |
-
Use clear, concise language. [/INST]
|
67 |
"""
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
temperature=0.7,
|
73 |
do_sample=True
|
74 |
)
|
75 |
|
76 |
-
return
|
77 |
|
78 |
def main():
|
79 |
-
st.title("Free
|
80 |
|
81 |
col1, col2 = st.columns(2)
|
82 |
with col1:
|
@@ -108,15 +112,15 @@ def main():
|
|
108 |
# Visual diff
|
109 |
highlighted, diff_score = highlight_differences(img1, img2)
|
110 |
|
111 |
-
# Only analyze if significant differences
|
112 |
if diff_score > 5: # Threshold for meaningful changes
|
113 |
# Text extraction
|
114 |
before_text = extract_text_with_layout(img1)
|
115 |
after_text = extract_text_with_layout(img2)
|
116 |
|
117 |
# Generate report
|
118 |
-
visual_desc = f"Page {i+1}
|
119 |
-
|
|
|
120 |
|
121 |
reports.append((i+1, report, highlighted))
|
122 |
|
@@ -132,7 +136,7 @@ def main():
|
|
132 |
st.image(img, use_column_width=True)
|
133 |
with col2:
|
134 |
st.markdown(f"**Page {page_num} Report**")
|
135 |
-
st.write(report)
|
136 |
else:
|
137 |
st.warning("Please upload both PDF files")
|
138 |
|
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
import os
|
8 |
import tempfile
|
9 |
+
import torch
|
10 |
|
11 |
+
# Initialize free OpenLLaMA model (no auth needed)
|
12 |
+
model_name = "openlm-research/open_llama_7b_v2"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(
|
15 |
+
model_name,
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
device_map="auto"
|
18 |
+
)
|
19 |
|
20 |
def pdf_to_images(pdf_path):
|
21 |
"""Convert PDF to high-res images using PyMuPDF"""
|
|
|
35 |
gray1 = cv2.cvtColor(img1_np, cv2.COLOR_RGB2GRAY)
|
36 |
gray2 = cv2.cvtColor(img2_np, cv2.COLOR_RGB2GRAY)
|
37 |
|
|
|
38 |
diff = cv2.absdiff(gray1, gray2)
|
39 |
_, thresh = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)
|
40 |
|
|
|
41 |
highlighted = img2_np.copy()
|
42 |
highlighted[thresh == 255] = [255, 0, 0] # Red highlights
|
43 |
|
|
|
49 |
custom_config = r'--oem 3 --psm 6 -c preserve_interword_spaces=1'
|
50 |
return pytesseract.image_to_string(img, config=custom_config)
|
51 |
|
52 |
+
def generate_free_report(before_text, after_text, visual_desc):
|
53 |
+
"""Generate report using free OpenLLaMA model"""
|
54 |
prompt = f"""
|
55 |
+
Compare these document versions and provide a professional difference report:
|
56 |
|
57 |
BEFORE VERSION:
|
58 |
+
{before_text[:1500]}... [truncated]
|
59 |
|
60 |
AFTER VERSION:
|
61 |
+
{after_text[:1500]}... [truncated]
|
62 |
|
63 |
VISUAL ANALYSIS NOTES:
|
64 |
{visual_desc}
|
|
|
67 |
1. SUMMARY: 2-3 sentence overview
|
68 |
2. KEY CHANGES: Bullet points of specific changes
|
69 |
3. ANALYSIS: Potential implications
|
|
|
|
|
70 |
"""
|
71 |
|
72 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
73 |
+
outputs = model.generate(
|
74 |
+
**inputs,
|
75 |
+
max_new_tokens=512,
|
76 |
temperature=0.7,
|
77 |
do_sample=True
|
78 |
)
|
79 |
|
80 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
81 |
|
82 |
def main():
|
83 |
+
st.title("Free PDF Comparator")
|
84 |
|
85 |
col1, col2 = st.columns(2)
|
86 |
with col1:
|
|
|
112 |
# Visual diff
|
113 |
highlighted, diff_score = highlight_differences(img1, img2)
|
114 |
|
|
|
115 |
if diff_score > 5: # Threshold for meaningful changes
|
116 |
# Text extraction
|
117 |
before_text = extract_text_with_layout(img1)
|
118 |
after_text = extract_text_with_layout(img2)
|
119 |
|
120 |
# Generate report
|
121 |
+
visual_desc = f"Page {i+1} changes detected (score: {diff_score:.1f})"
|
122 |
+
with st.spinner(f"Analyzing page {i+1}..."):
|
123 |
+
report = generate_free_report(before_text, after_text, visual_desc)
|
124 |
|
125 |
reports.append((i+1, report, highlighted))
|
126 |
|
|
|
136 |
st.image(img, use_column_width=True)
|
137 |
with col2:
|
138 |
st.markdown(f"**Page {page_num} Report**")
|
139 |
+
st.write(report.split("ANALYSIS:")[-1]) # Show just the analysis part
|
140 |
else:
|
141 |
st.warning("Please upload both PDF files")
|
142 |
|