Spaces:
Runtime error
Runtime error
| # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # | |
| # NVIDIA CORPORATION and its licensors retain all intellectual property | |
| # and proprietary rights in and to this software, related documentation | |
| # and any modifications thereto. Any use, reproduction, disclosure or | |
| # distribution of this software and related documentation without an express | |
| # license agreement from NVIDIA CORPORATION is strictly prohibited. | |
| """Converting legacy network pickle into the new format.""" | |
| import click | |
| import pickle | |
| import re | |
| import copy | |
| import numpy as np | |
| import torch | |
| import dnnlib | |
| from torch_utils import misc | |
| #---------------------------------------------------------------------------- | |
| def load_network_pkl(f, force_fp16=False): | |
| data = _LegacyUnpickler(f).load() | |
| # Legacy TensorFlow pickle => convert. | |
| if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data): | |
| tf_G, tf_D, tf_Gs = data | |
| G = convert_tf_generator(tf_G) | |
| D = convert_tf_discriminator(tf_D) | |
| G_ema = convert_tf_generator(tf_Gs) | |
| data = dict(G=G, D=D, G_ema=G_ema) | |
| # Add missing fields. | |
| if 'training_set_kwargs' not in data: | |
| data['training_set_kwargs'] = None | |
| if 'augment_pipe' not in data: | |
| data['augment_pipe'] = None | |
| # Validate contents. | |
| assert isinstance(data['G'], torch.nn.Module) | |
| assert isinstance(data['D'], torch.nn.Module) | |
| assert isinstance(data['G_ema'], torch.nn.Module) | |
| assert isinstance(data['training_set_kwargs'], (dict, type(None))) | |
| assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None))) | |
| # Force FP16. | |
| if force_fp16: | |
| for key in ['G', 'D', 'G_ema']: | |
| old = data[key] | |
| kwargs = copy.deepcopy(old.init_kwargs) | |
| fp16_kwargs = kwargs.get('synthesis_kwargs', kwargs) | |
| fp16_kwargs.num_fp16_res = 4 | |
| fp16_kwargs.conv_clamp = 256 | |
| if kwargs != old.init_kwargs: | |
| new = type(old)(**kwargs).eval().requires_grad_(False) | |
| misc.copy_params_and_buffers(old, new, require_all=True) | |
| data[key] = new | |
| return data | |
| #---------------------------------------------------------------------------- | |
| class _TFNetworkStub(dnnlib.EasyDict): | |
| pass | |
| class _LegacyUnpickler(pickle.Unpickler): | |
| def find_class(self, module, name): | |
| if module == 'dnnlib.tflib.network' and name == 'Network': | |
| return _TFNetworkStub | |
| return super().find_class(module, name) | |
| #---------------------------------------------------------------------------- | |
| def _collect_tf_params(tf_net): | |
| # pylint: disable=protected-access | |
| tf_params = dict() | |
| def recurse(prefix, tf_net): | |
| for name, value in tf_net.variables: | |
| tf_params[prefix + name] = value | |
| for name, comp in tf_net.components.items(): | |
| recurse(prefix + name + '/', comp) | |
| recurse('', tf_net) | |
| return tf_params | |
| #---------------------------------------------------------------------------- | |
| def _populate_module_params(module, *patterns): | |
| for name, tensor in misc.named_params_and_buffers(module): | |
| found = False | |
| value = None | |
| for pattern, value_fn in zip(patterns[0::2], patterns[1::2]): | |
| match = re.fullmatch(pattern, name) | |
| if match: | |
| found = True | |
| if value_fn is not None: | |
| value = value_fn(*match.groups()) | |
| break | |
| try: | |
| assert found | |
| if value is not None: | |
| tensor.copy_(torch.from_numpy(np.array(value))) | |
| except: | |
| print(name, list(tensor.shape)) | |
| raise | |
| #---------------------------------------------------------------------------- | |
| def convert_tf_generator(tf_G): | |
| if tf_G.version < 4: | |
| raise ValueError('TensorFlow pickle version too low') | |
| # Collect kwargs. | |
| tf_kwargs = tf_G.static_kwargs | |
| known_kwargs = set() | |
| def kwarg(tf_name, default=None, none=None): | |
| known_kwargs.add(tf_name) | |
| val = tf_kwargs.get(tf_name, default) | |
| return val if val is not None else none | |
| # Convert kwargs. | |
| from training import networks_stylegan2 | |
| network_class = networks_stylegan2.Generator | |
| kwargs = dnnlib.EasyDict( | |
| z_dim = kwarg('latent_size', 512), | |
| c_dim = kwarg('label_size', 0), | |
| w_dim = kwarg('dlatent_size', 512), | |
| img_resolution = kwarg('resolution', 1024), | |
| img_channels = kwarg('num_channels', 3), | |
| channel_base = kwarg('fmap_base', 16384) * 2, | |
| channel_max = kwarg('fmap_max', 512), | |
| num_fp16_res = kwarg('num_fp16_res', 0), | |
| conv_clamp = kwarg('conv_clamp', None), | |
| architecture = kwarg('architecture', 'skip'), | |
| resample_filter = kwarg('resample_kernel', [1,3,3,1]), | |
| use_noise = kwarg('use_noise', True), | |
| activation = kwarg('nonlinearity', 'lrelu'), | |
| mapping_kwargs = dnnlib.EasyDict( | |
| num_layers = kwarg('mapping_layers', 8), | |
| embed_features = kwarg('label_fmaps', None), | |
| layer_features = kwarg('mapping_fmaps', None), | |
| activation = kwarg('mapping_nonlinearity', 'lrelu'), | |
| lr_multiplier = kwarg('mapping_lrmul', 0.01), | |
| w_avg_beta = kwarg('w_avg_beta', 0.995, none=1), | |
| ), | |
| ) | |
| # Check for unknown kwargs. | |
| kwarg('truncation_psi') | |
| kwarg('truncation_cutoff') | |
| kwarg('style_mixing_prob') | |
| kwarg('structure') | |
| kwarg('conditioning') | |
| kwarg('fused_modconv') | |
| unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) | |
| if len(unknown_kwargs) > 0: | |
| raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0]) | |
| # Collect params. | |
| tf_params = _collect_tf_params(tf_G) | |
| for name, value in list(tf_params.items()): | |
| match = re.fullmatch(r'ToRGB_lod(\d+)/(.*)', name) | |
| if match: | |
| r = kwargs.img_resolution // (2 ** int(match.group(1))) | |
| tf_params[f'{r}x{r}/ToRGB/{match.group(2)}'] = value | |
| kwargs.synthesis.kwargs.architecture = 'orig' | |
| #for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}') | |
| # Convert params. | |
| G = network_class(**kwargs).eval().requires_grad_(False) | |
| # pylint: disable=unnecessary-lambda | |
| # pylint: disable=f-string-without-interpolation | |
| _populate_module_params(G, | |
| r'mapping\.w_avg', lambda: tf_params[f'dlatent_avg'], | |
| r'mapping\.embed\.weight', lambda: tf_params[f'mapping/LabelEmbed/weight'].transpose(), | |
| r'mapping\.embed\.bias', lambda: tf_params[f'mapping/LabelEmbed/bias'], | |
| r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'mapping/Dense{i}/weight'].transpose(), | |
| r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'mapping/Dense{i}/bias'], | |
| r'synthesis\.b4\.const', lambda: tf_params[f'synthesis/4x4/Const/const'][0], | |
| r'synthesis\.b4\.conv1\.weight', lambda: tf_params[f'synthesis/4x4/Conv/weight'].transpose(3, 2, 0, 1), | |
| r'synthesis\.b4\.conv1\.bias', lambda: tf_params[f'synthesis/4x4/Conv/bias'], | |
| r'synthesis\.b4\.conv1\.noise_const', lambda: tf_params[f'synthesis/noise0'][0, 0], | |
| r'synthesis\.b4\.conv1\.noise_strength', lambda: tf_params[f'synthesis/4x4/Conv/noise_strength'], | |
| r'synthesis\.b4\.conv1\.affine\.weight', lambda: tf_params[f'synthesis/4x4/Conv/mod_weight'].transpose(), | |
| r'synthesis\.b4\.conv1\.affine\.bias', lambda: tf_params[f'synthesis/4x4/Conv/mod_bias'] + 1, | |
| r'synthesis\.b(\d+)\.conv0\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/weight'][::-1, ::-1].transpose(3, 2, 0, 1), | |
| r'synthesis\.b(\d+)\.conv0\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/bias'], | |
| r'synthesis\.b(\d+)\.conv0\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-5}'][0, 0], | |
| r'synthesis\.b(\d+)\.conv0\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/noise_strength'], | |
| r'synthesis\.b(\d+)\.conv0\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_weight'].transpose(), | |
| r'synthesis\.b(\d+)\.conv0\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_bias'] + 1, | |
| r'synthesis\.b(\d+)\.conv1\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/weight'].transpose(3, 2, 0, 1), | |
| r'synthesis\.b(\d+)\.conv1\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/bias'], | |
| r'synthesis\.b(\d+)\.conv1\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-4}'][0, 0], | |
| r'synthesis\.b(\d+)\.conv1\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/noise_strength'], | |
| r'synthesis\.b(\d+)\.conv1\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_weight'].transpose(), | |
| r'synthesis\.b(\d+)\.conv1\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_bias'] + 1, | |
| r'synthesis\.b(\d+)\.torgb\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/weight'].transpose(3, 2, 0, 1), | |
| r'synthesis\.b(\d+)\.torgb\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/bias'], | |
| r'synthesis\.b(\d+)\.torgb\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_weight'].transpose(), | |
| r'synthesis\.b(\d+)\.torgb\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_bias'] + 1, | |
| r'synthesis\.b(\d+)\.skip\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Skip/weight'][::-1, ::-1].transpose(3, 2, 0, 1), | |
| r'.*\.resample_filter', None, | |
| r'.*\.act_filter', None, | |
| ) | |
| return G | |
| #---------------------------------------------------------------------------- | |
| def convert_tf_discriminator(tf_D): | |
| if tf_D.version < 4: | |
| raise ValueError('TensorFlow pickle version too low') | |
| # Collect kwargs. | |
| tf_kwargs = tf_D.static_kwargs | |
| known_kwargs = set() | |
| def kwarg(tf_name, default=None): | |
| known_kwargs.add(tf_name) | |
| return tf_kwargs.get(tf_name, default) | |
| # Convert kwargs. | |
| kwargs = dnnlib.EasyDict( | |
| c_dim = kwarg('label_size', 0), | |
| img_resolution = kwarg('resolution', 1024), | |
| img_channels = kwarg('num_channels', 3), | |
| architecture = kwarg('architecture', 'resnet'), | |
| channel_base = kwarg('fmap_base', 16384) * 2, | |
| channel_max = kwarg('fmap_max', 512), | |
| num_fp16_res = kwarg('num_fp16_res', 0), | |
| conv_clamp = kwarg('conv_clamp', None), | |
| cmap_dim = kwarg('mapping_fmaps', None), | |
| block_kwargs = dnnlib.EasyDict( | |
| activation = kwarg('nonlinearity', 'lrelu'), | |
| resample_filter = kwarg('resample_kernel', [1,3,3,1]), | |
| freeze_layers = kwarg('freeze_layers', 0), | |
| ), | |
| mapping_kwargs = dnnlib.EasyDict( | |
| num_layers = kwarg('mapping_layers', 0), | |
| embed_features = kwarg('mapping_fmaps', None), | |
| layer_features = kwarg('mapping_fmaps', None), | |
| activation = kwarg('nonlinearity', 'lrelu'), | |
| lr_multiplier = kwarg('mapping_lrmul', 0.1), | |
| ), | |
| epilogue_kwargs = dnnlib.EasyDict( | |
| mbstd_group_size = kwarg('mbstd_group_size', None), | |
| mbstd_num_channels = kwarg('mbstd_num_features', 1), | |
| activation = kwarg('nonlinearity', 'lrelu'), | |
| ), | |
| ) | |
| # Check for unknown kwargs. | |
| kwarg('structure') | |
| kwarg('conditioning') | |
| unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) | |
| if len(unknown_kwargs) > 0: | |
| raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0]) | |
| # Collect params. | |
| tf_params = _collect_tf_params(tf_D) | |
| for name, value in list(tf_params.items()): | |
| match = re.fullmatch(r'FromRGB_lod(\d+)/(.*)', name) | |
| if match: | |
| r = kwargs.img_resolution // (2 ** int(match.group(1))) | |
| tf_params[f'{r}x{r}/FromRGB/{match.group(2)}'] = value | |
| kwargs.architecture = 'orig' | |
| #for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}') | |
| # Convert params. | |
| from training import networks_stylegan2 | |
| D = networks_stylegan2.Discriminator(**kwargs).eval().requires_grad_(False) | |
| # pylint: disable=unnecessary-lambda | |
| # pylint: disable=f-string-without-interpolation | |
| _populate_module_params(D, | |
| r'b(\d+)\.fromrgb\.weight', lambda r: tf_params[f'{r}x{r}/FromRGB/weight'].transpose(3, 2, 0, 1), | |
| r'b(\d+)\.fromrgb\.bias', lambda r: tf_params[f'{r}x{r}/FromRGB/bias'], | |
| r'b(\d+)\.conv(\d+)\.weight', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'].transpose(3, 2, 0, 1), | |
| r'b(\d+)\.conv(\d+)\.bias', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'], | |
| r'b(\d+)\.skip\.weight', lambda r: tf_params[f'{r}x{r}/Skip/weight'].transpose(3, 2, 0, 1), | |
| r'mapping\.embed\.weight', lambda: tf_params[f'LabelEmbed/weight'].transpose(), | |
| r'mapping\.embed\.bias', lambda: tf_params[f'LabelEmbed/bias'], | |
| r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'Mapping{i}/weight'].transpose(), | |
| r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'Mapping{i}/bias'], | |
| r'b4\.conv\.weight', lambda: tf_params[f'4x4/Conv/weight'].transpose(3, 2, 0, 1), | |
| r'b4\.conv\.bias', lambda: tf_params[f'4x4/Conv/bias'], | |
| r'b4\.fc\.weight', lambda: tf_params[f'4x4/Dense0/weight'].transpose(), | |
| r'b4\.fc\.bias', lambda: tf_params[f'4x4/Dense0/bias'], | |
| r'b4\.out\.weight', lambda: tf_params[f'Output/weight'].transpose(), | |
| r'b4\.out\.bias', lambda: tf_params[f'Output/bias'], | |
| r'.*\.resample_filter', None, | |
| ) | |
| return D | |
| #---------------------------------------------------------------------------- | |
| def convert_network_pickle(source, dest, force_fp16): | |
| """Convert legacy network pickle into the native PyTorch format. | |
| The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA. | |
| It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks. | |
| Example: | |
| \b | |
| python legacy.py \\ | |
| --source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\ | |
| --dest=stylegan2-cat-config-f.pkl | |
| """ | |
| print(f'Loading "{source}"...') | |
| with dnnlib.util.open_url(source) as f: | |
| data = load_network_pkl(f, force_fp16=force_fp16) | |
| print(f'Saving "{dest}"...') | |
| with open(dest, 'wb') as f: | |
| pickle.dump(data, f) | |
| print('Done.') | |
| #---------------------------------------------------------------------------- | |
| if __name__ == "__main__": | |
| convert_network_pickle() # pylint: disable=no-value-for-parameter | |
| #---------------------------------------------------------------------------- | |