Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	using csv now
Browse files
    	
        backend/disentangle_concepts.py
    CHANGED
    
    | @@ -4,8 +4,8 @@ from sklearn.model_selection import train_test_split | |
| 4 | 
             
            import torch
         | 
| 5 | 
             
            import PIL
         | 
| 6 |  | 
| 7 | 
            -
            def get_separation_space(type_bin, annotations):
         | 
| 8 | 
            -
                abstracts = np.array([ann | 
| 9 | 
             
                abstract_idxs = list(np.argsort(abstracts))[:200]
         | 
| 10 | 
             
                repr_idxs = list(np.argsort(abstracts))[-200:]
         | 
| 11 | 
             
                X = np.array([annotations['z_vectors'][i] for i in abstract_idxs+repr_idxs])
         | 
|  | |
| 4 | 
             
            import torch
         | 
| 5 | 
             
            import PIL
         | 
| 6 |  | 
| 7 | 
            +
            def get_separation_space(type_bin, annotations, df):
         | 
| 8 | 
            +
                abstracts = np.array([float(ann) for ann in df[type_bin]])
         | 
| 9 | 
             
                abstract_idxs = list(np.argsort(abstracts))[:200]
         | 
| 10 | 
             
                repr_idxs = list(np.argsort(abstracts))[-200:]
         | 
| 11 | 
             
                X = np.array([annotations['z_vectors'][i] for i in abstract_idxs+repr_idxs])
         | 
    	
        data/annotated_files/sim_seeds0000-10000.csv
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:4e82d206b3aa231c00176a24c8de33a6299e92e65b23013a40538146b8d24ff8
         | 
| 3 | 
            +
            size 5645518
         | 
    	
        pages/1_Disentanglement.py
    CHANGED
    
    | @@ -37,7 +37,8 @@ with st.expander("See more instruction", expanded=False): | |
| 37 | 
             
            annotations_file = './data/annotated_files/annotations_parallel_seeds0000-10000.pkl'
         | 
| 38 | 
             
            with open(annotations_file, 'rb') as f:
         | 
| 39 | 
             
                annotations = pickle.load(f)
         | 
| 40 | 
            -
             | 
|  | |
| 41 | 
             
            concepts = './data/concepts.txt'
         | 
| 42 | 
             
            with open(concepts) as f:
         | 
| 43 | 
             
                labels = [line.strip() for line in f.readlines()]
         | 
| @@ -94,7 +95,7 @@ smoothgrad_col_1, smoothgrad_col_2, smoothgrad_col_3, smoothgrad_col_4, smoothgr | |
| 94 |  | 
| 95 | 
             
            # ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
         | 
| 96 | 
             
            with output_col_1:
         | 
| 97 | 
            -
                separation_vector, number_important_features = get_separation_space(concept_id, annotations)
         | 
| 98 | 
             
                # st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
         | 
| 99 | 
             
                st.write('Separation vector', separation_vector)
         | 
| 100 | 
             
                header_col_1.write(f'Concept {concept_id} - Number of relevant nodes: {number_important_features}')
         | 
|  | |
| 37 | 
             
            annotations_file = './data/annotated_files/annotations_parallel_seeds0000-10000.pkl'
         | 
| 38 | 
             
            with open(annotations_file, 'rb') as f:
         | 
| 39 | 
             
                annotations = pickle.load(f)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            ann_df = pd.read_csv('./data/annotated_files/sim_seeds0000-10000.csv')
         | 
| 42 | 
             
            concepts = './data/concepts.txt'
         | 
| 43 | 
             
            with open(concepts) as f:
         | 
| 44 | 
             
                labels = [line.strip() for line in f.readlines()]
         | 
|  | |
| 95 |  | 
| 96 | 
             
            # ---------------------------- DISPLAY COL 1 ROW 1 ------------------------------
         | 
| 97 | 
             
            with output_col_1:
         | 
| 98 | 
            +
                separation_vector, number_important_features = get_separation_space(concept_id, annotations, ann_df)
         | 
| 99 | 
             
                # st.write(f'Class ID {input_id} - {input_label}: {pred_prob*100:.3f}% confidence')
         | 
| 100 | 
             
                st.write('Separation vector', separation_vector)
         | 
| 101 | 
             
                header_col_1.write(f'Concept {concept_id} - Number of relevant nodes: {number_important_features}')
         | 
