Spaces:
Runtime error
Runtime error
yizhilll
commited on
Commit
·
5247bff
1
Parent(s):
1eaf59a
add demo loadin code
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +73 -4
__pycache__/app.cpython-310.pyc
ADDED
|
Binary file (1.76 kB). View file
|
|
|
app.py
CHANGED
|
@@ -1,7 +1,76 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import Wav2Vec2FeatureExtractor
|
| 3 |
+
from transformers import AutoModel
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
import torchaudio
|
| 7 |
+
import torchaudio.transforms as T
|
| 8 |
|
| 9 |
+
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
|
|
|
|
| 10 |
|
| 11 |
+
inputs = [gr.components.Audio(type="filepath", label="Add music audio file"),
|
| 12 |
+
gr.inputs.Audio(source="microphone",optional=True, type="filepath"),
|
| 13 |
+
]
|
| 14 |
+
outputs = [gr.components.Textbox()]
|
| 15 |
+
# outputs = [gr.components.Textbox(), transcription_df]
|
| 16 |
+
title = "Output the tags of a (music) audio"
|
| 17 |
+
description = "An example of using MERT-95M-public to conduct music tagging."
|
| 18 |
+
article = ""
|
| 19 |
+
audio_examples = [
|
| 20 |
+
["input/example-1.wav"],
|
| 21 |
+
["input/example-2.wav"],
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
# Load the model
|
| 25 |
+
model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True)
|
| 26 |
+
# loading the corresponding preprocessor config
|
| 27 |
+
processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def convert_audio(inputs, microphone):
|
| 31 |
+
if (microphone is not None):
|
| 32 |
+
inputs = microphone
|
| 33 |
+
|
| 34 |
+
waveform, sample_rate = torchaudio.load(inputs)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
resample_rate = processor.sampling_rate
|
| 38 |
+
|
| 39 |
+
# make sure the sample_rate aligned
|
| 40 |
+
if resample_rate != sample_rate:
|
| 41 |
+
print(f'setting rate from {sample_rate} to {resample_rate}')
|
| 42 |
+
resampler = T.Resample(sample_rate, resample_rate)
|
| 43 |
+
waveform = resampler(waveform)
|
| 44 |
+
|
| 45 |
+
inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
outputs = model(**inputs, output_hidden_states=True)
|
| 48 |
+
|
| 49 |
+
# take a look at the output shape, there are 13 layers of representation
|
| 50 |
+
# each layer performs differently in different downstream tasks, you should choose empirically
|
| 51 |
+
all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
|
| 52 |
+
# print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
|
| 53 |
+
return str(all_layer_hidden_states.shape)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# iface = gr.Interface(fn=convert_audio, inputs="audio", outputs="text")
|
| 57 |
+
# iface.launch()
|
| 58 |
+
|
| 59 |
+
audio_chunked = gr.Interface(
|
| 60 |
+
fn=convert_audio,
|
| 61 |
+
inputs=inputs,
|
| 62 |
+
outputs=outputs,
|
| 63 |
+
allow_flagging="never",
|
| 64 |
+
title=title,
|
| 65 |
+
description=description,
|
| 66 |
+
article=article,
|
| 67 |
+
examples=audio_examples,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
demo = gr.Blocks()
|
| 72 |
+
with demo:
|
| 73 |
+
gr.TabbedInterface([audio_chunked], [
|
| 74 |
+
"Audio File"])
|
| 75 |
+
# demo.queue(concurrency_count=1, max_size=5)
|
| 76 |
+
demo.launch(show_api=False)
|