m-ric HF staff commited on
Commit
6620ef1
Β·
1 Parent(s): 4617aaa

Update message format and llama version

Browse files
Files changed (5) hide show
  1. app.py +28 -22
  2. figures/.DS_Store +0 -0
  3. figures/mascot.png +0 -0
  4. requirements.txt +0 -1
  5. streaming.py +64 -0
app.py CHANGED
@@ -4,18 +4,14 @@ import gradio as gr
4
  from transformers import ReactCodeAgent, HfEngine, Tool
5
  import pandas as pd
6
 
7
- from gradio_agentchatbot import (
8
- AgentChatbot,
9
- stream_from_transformers_agent,
10
- ChatMessage,
11
- ChatFileMessage,
12
- )
13
  from huggingface_hub import login
14
  from gradio.data_classes import FileData
15
 
16
  login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
17
 
18
- llm_engine = HfEngine("meta-llama/Meta-Llama-3-70B-Instruct")
19
 
20
  agent = ReactCodeAgent(
21
  tools=[],
@@ -25,7 +21,6 @@ agent = ReactCodeAgent(
25
  )
26
 
27
  base_prompt = """You are an expert data analyst.
28
- Please load the source file with pandas (you cannot use 'os' module).
29
  According to the features you have and the dta structure given below, determine which feature should be the target.
30
  Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
31
  Then answer these questions one by one, by finding the relevant numbers.
@@ -35,9 +30,11 @@ In your final answer: summarize these correlations and trends
35
  After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
36
  Your final answer should be a long string with at least 3 numbered and detailed parts.
37
 
38
- Source file for the data = {source_file}
39
  Structure of the data:
40
  {structure_notes}
 
 
 
41
  """
42
 
43
  example_notes="""This data is about the Titanic wreck in 1912.
@@ -69,34 +66,36 @@ def interact_with_agent(file_input, additional_notes):
69
  shutil.rmtree("./figures")
70
  os.makedirs("./figures")
71
 
72
- read_file = pd.read_csv(file_input)
73
  data_structure_notes = f"""- Description (output of .describe()):
74
- {read_file.describe()}
75
  - Columns with dtypes:
76
- {read_file.dtypes}"""
77
 
78
- prompt = base_prompt.format(source_file=file_input, structure_notes=data_structure_notes)
79
 
80
  if additional_notes and len(additional_notes) > 0:
81
  prompt += "\nAdditional notes on the data:\n" + additional_notes
82
 
83
- messages = [ChatMessage(role="user", content=prompt, thought=True)]
84
- yield messages
 
 
85
 
86
  plot_image_paths = {}
87
- for msg in stream_from_transformers_agent(agent, prompt):
88
  messages.append(msg)
89
  for image_path in get_images_in_directory("./figures"):
90
  if image_path not in plot_image_paths:
91
- image_message = ChatFileMessage(
92
  role="assistant",
93
- file=FileData(path=image_path, mime_type="image/png"),
94
- content="",
95
- thought=True,
96
  )
97
  plot_image_paths[image_path] = True
98
  messages.append(image_message)
99
- yield messages
 
 
100
  yield messages
101
 
102
 
@@ -109,7 +108,14 @@ Drop a `.csv` file below, add notes to describe this data if needed, and **Llama
109
  label="Additional notes to support the analysis"
110
  )
111
  submit = gr.Button("Run analysis!")
112
- chatbot = AgentChatbot(label="Agent")
 
 
 
 
 
 
 
113
  gr.Examples(
114
  examples=[["./example/titanic.csv", example_notes]],
115
  inputs=[file_input, text_input],
 
4
  from transformers import ReactCodeAgent, HfEngine, Tool
5
  import pandas as pd
6
 
7
+ from gradio import Chatbot
8
+ from streaming import stream_to_gradio
 
 
 
 
9
  from huggingface_hub import login
10
  from gradio.data_classes import FileData
11
 
12
  login(os.getenv("HUGGINGFACEHUB_API_TOKEN"))
13
 
14
+ llm_engine = HfEngine("meta-llama/Meta-Llama-3.1-70B-Instruct")
15
 
16
  agent = ReactCodeAgent(
17
  tools=[],
 
21
  )
22
 
23
  base_prompt = """You are an expert data analyst.
 
24
  According to the features you have and the dta structure given below, determine which feature should be the target.
25
  Then list 3 interesting questions that could be asked on this data, for instance about specific correlations with target variable.
26
  Then answer these questions one by one, by finding the relevant numbers.
 
30
  After each number derive real worlds insights, for instance: "Correlation between is_december and boredness is 1.3453, which suggest people are more bored in winter".
31
  Your final answer should be a long string with at least 3 numbered and detailed parts.
32
 
 
33
  Structure of the data:
34
  {structure_notes}
35
+
36
+ The data file is passed to you as the variable data_file, it is a pandas dataframe, you can use it directly.
37
+ DO NOT try to load data_file, it is already a dataframe pre-loaded in your python interpreter!
38
  """
39
 
40
  example_notes="""This data is about the Titanic wreck in 1912.
 
66
  shutil.rmtree("./figures")
67
  os.makedirs("./figures")
68
 
69
+ data_file = pd.read_csv(file_input)
70
  data_structure_notes = f"""- Description (output of .describe()):
71
+ {data_file.describe()}
72
  - Columns with dtypes:
73
+ {data_file.dtypes}"""
74
 
75
+ prompt = base_prompt.format(structure_notes=data_structure_notes)
76
 
77
  if additional_notes and len(additional_notes) > 0:
78
  prompt += "\nAdditional notes on the data:\n" + additional_notes
79
 
80
+ messages = [gr.ChatMessage(role="user", content=prompt)]
81
+ yield messages + [
82
+ gr.ChatMessage(role="assistant", content="⏳ _Task not finished yet!_")
83
+ ]
84
 
85
  plot_image_paths = {}
86
+ for msg in stream_to_gradio(agent, prompt, data_file=data_file):
87
  messages.append(msg)
88
  for image_path in get_images_in_directory("./figures"):
89
  if image_path not in plot_image_paths:
90
+ image_message = gr.ChatMessage(
91
  role="assistant",
92
+ content=FileData(path=image_path, mime_type="image/png"),
 
 
93
  )
94
  plot_image_paths[image_path] = True
95
  messages.append(image_message)
96
+ yield messages + [
97
+ gr.ChatMessage(role="assistant", content="⏳ _Task not finished yet!_")
98
+ ]
99
  yield messages
100
 
101
 
 
108
  label="Additional notes to support the analysis"
109
  )
110
  submit = gr.Button("Run analysis!")
111
+ chatbot = gr.Chatbot(
112
+ label="Agent",
113
+ type="messages",
114
+ avatar_images=(
115
+ None,
116
+ "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png",
117
+ ),
118
+ )
119
  gr.Examples(
120
  examples=[["./example/titanic.csv", example_notes]],
121
  inputs=[file_input, text_input],
figures/.DS_Store DELETED
Binary file (6.15 kB)
 
figures/mascot.png DELETED
Binary file (58.1 kB)
 
requirements.txt CHANGED
@@ -1,4 +1,3 @@
1
- gradio_agentchatbot
2
  git+https://github.com/huggingface/transformers.git#egg=transformers[agents]
3
  matplotlib
4
  seaborn
 
 
1
  git+https://github.com/huggingface/transformers.git#egg=transformers[agents]
2
  matplotlib
3
  seaborn
streaming.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.agents.agent_types import AgentAudio, AgentImage, AgentText, AgentType
2
+ from transformers.agents import ReactAgent
3
+
4
+
5
+ def pull_message(step_log: dict):
6
+ try:
7
+ from gradio import ChatMessage
8
+ except ImportError:
9
+ raise ImportError("Gradio should be installed in order to launch a gradio demo.")
10
+
11
+ if step_log.get("rationale"):
12
+ yield ChatMessage(role="assistant", content=step_log["rationale"])
13
+ if step_log.get("tool_call"):
14
+ used_code = step_log["tool_call"]["tool_name"] == "code interpreter"
15
+ content = step_log["tool_call"]["tool_arguments"]
16
+ if used_code:
17
+ content = f"```py\n{content}\n```"
18
+ yield ChatMessage(
19
+ role="assistant",
20
+ metadata={"title": f"πŸ› οΈ Used tool {step_log['tool_call']['tool_name']}"},
21
+ content=content,
22
+ )
23
+ if step_log.get("observation"):
24
+ yield ChatMessage(role="assistant", content=f"```\n{step_log['observation']}\n```")
25
+ if step_log.get("error"):
26
+ yield ChatMessage(
27
+ role="assistant",
28
+ content=str(step_log["error"]),
29
+ metadata={"title": "πŸ’₯ Error"},
30
+ )
31
+
32
+
33
+ def stream_to_gradio(agent: ReactAgent, task: str, **kwargs):
34
+ """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
35
+
36
+ try:
37
+ from gradio import ChatMessage
38
+ except ImportError:
39
+ raise ImportError("Gradio should be installed in order to launch a gradio demo.")
40
+
41
+ class Output:
42
+ output: AgentType | str = None
43
+
44
+ for step_log in agent.run(task, stream=True, **kwargs):
45
+ if isinstance(step_log, dict):
46
+ for message in pull_message(step_log):
47
+ print("message", message)
48
+ yield message
49
+
50
+ Output.output = step_log
51
+ if isinstance(Output.output, AgentText):
52
+ yield ChatMessage(role="assistant", content=f"**Final answer:**\n```\n{Output.output.to_string()}\n```")
53
+ elif isinstance(Output.output, AgentImage):
54
+ yield ChatMessage(
55
+ role="assistant",
56
+ content={"path": Output.output.to_string(), "mime_type": "image/png"},
57
+ )
58
+ elif isinstance(Output.output, AgentAudio):
59
+ yield ChatMessage(
60
+ role="assistant",
61
+ content={"path": Output.output.to_string(), "mime_type": "audio/wav"},
62
+ )
63
+ else:
64
+ yield ChatMessage(role="assistant", content=Output.output)