File size: 10,005 Bytes
c7c30cc
a6e310c
 
098d586
 
 
 
c7c30cc
 
 
a6e310c
 
d4bacf6
a6e310c
 
 
 
 
098d586
 
 
 
 
 
a6e310c
 
 
098d586
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e310c
098d586
 
 
a6e310c
098d586
 
 
 
 
 
 
 
 
 
 
 
 
a6e310c
 
 
 
098d586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e310c
098d586
 
45c11ea
098d586
 
 
 
 
 
 
 
 
 
a6e310c
c7c30cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e310c
 
c7c30cc
1ebe266
c7c30cc
a6e310c
c7c30cc
098d586
1ebe266
a6e310c
098d586
 
 
 
 
 
 
 
 
 
a6e310c
c7c30cc
 
 
 
 
 
 
 
098d586
 
 
 
 
 
 
 
 
 
 
a6e310c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import io
import torch
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from PIL import Image
from transformers import AutoTokenizer
from lxt.models.llama import LlamaForCausalLM, attnlrp
from lxt.utils import clean_tokens

# Load model and tokenizer
model = LlamaForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")

# Apply AttnLRP rules
attnlrp.register(model)

def really_clean_tokens(tokens):
    tokens = clean_tokens(tokens)
    tokens = [token.replace("_", " ").replace("▁", " ").replace("<s>", "") for token in tokens]
    return tokens

def generate_and_visualize(prompt, num_tokens=10):
    input_ids = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).input_ids.to(model.device)
    input_embeds = model.get_input_embeddings()(input_ids)

    generated_tokens_ids = []
    all_relevances = []

    for _ in range(num_tokens):
        output_logits = model(inputs_embeds=input_embeds.requires_grad_(), use_cache=False).logits
        max_logits, max_indices = torch.max(output_logits[0, -1, :], dim=-1)

        max_logits.backward(max_logits)
        relevance = input_embeds.grad.float().sum(-1).cpu()[0]
        all_relevances.append(relevance)

        # Generate next token
        next_token = max_indices.unsqueeze(0)
        generated_tokens_ids.append(next_token.item())

        # Prepare for next iteration
        input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
        input_embeds = model.get_input_embeddings()(input_ids)

    # Process tokens and relevances
    input_tokens = tokenizer.convert_ids_to_tokens(input_ids[0])

    input_tokens = really_clean_tokens(input_tokens)
    generated_tokens = really_clean_tokens(tokenizer.convert_ids_to_tokens(generated_tokens_ids))
    generated_text = tokenizer.decode(generated_tokens_ids)
    print(f"Generated text: {generated_text}")

    return input_tokens, all_relevances, generated_text, len(generated_tokens_ids), generated_tokens

def update_visualization_step(input_tokens, all_relevances, output_tokens, step):
    relevance = all_relevances[step]
    
    # Normalize relevance between [0, 1] for highlighting
    relevance = (relevance - relevance.min()) / (relevance.max() - relevance.min())

    # Create list of (token, score) tuples for HighlightedText
    highlighted_tokens = [(token, max(float(score), 0.05)-0.05) for token, score in zip(input_tokens, relevance)]

    return highlighted_tokens, output_tokens[:step+1]

def generate_heatmap(input_tokens, all_relevances, output_tokens):
    # Create a matrix of attention scores
    attention_matrix = np.array([el[:len(all_relevances[0])] for el in all_relevances])
    
    # Find columns with non-zero values (including adjacent columns)
    non_zero_cols = np.where(np.abs(attention_matrix).sum(axis=0) > 1.)[0]
    for col in range(5):
        non_zero_cols = np.union1d(non_zero_cols, non_zero_cols + col)
        non_zero_cols = np.union1d(non_zero_cols, non_zero_cols - col)
    non_zero_cols = np.sort(non_zero_cols)
    non_zero_cols = non_zero_cols[(non_zero_cols >= 0) & (non_zero_cols < attention_matrix.shape[1])]

    # Filter the matrix and input tokens
    filtered_matrix = attention_matrix[:, non_zero_cols]
    filtered_input_tokens = [input_tokens[i] for i in non_zero_cols]
    
    # Create the heatmap
    plt.figure(figsize=(20, 7))
    sns.heatmap(filtered_matrix, xticklabels=filtered_input_tokens, yticklabels=output_tokens, cmap="YlOrRd")
    plt.title("Attention Heatmap (shows only input tokens where there was strong enough attention)")
    plt.xlabel("Input Tokens")
    plt.ylabel("Output Tokens")
    plt.xticks(rotation=90)
    plt.yticks(rotation=0)
    
    # Save the plot to a bytes buffer
    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight')
    buf.seek(0)
    plt.close()
    
    # Return the image as a numpy array
    return np.array(Image.open(buf))

def on_generate(input_text, num_tokens):
    input_tokens, relevances, generated_text, generated_length, output_tokens = generate_and_visualize(input_text, num_tokens)
    heatmap = generate_heatmap(input_tokens, relevances.fillna(0), output_tokens)
    return (
        input_tokens, 
        relevances, 
        update_visualization_step(input_tokens, relevances, output_tokens, 0)[0], 
        output_tokens, 
        output_tokens[:1], 
        generated_text, 
        gr.Slider(maximum=generated_length-1, value=0),
        heatmap
    )

# Define example inputs
examples = [
    [
        """Context: Mount Everest attracts many climbers, including highly experienced mountaineers.
There are two main climbing routes, one approaching the summit from the southeast in Nepal (known as the standard route) and the other from the north in Tibet. While not posing substantial technical climbing challenges on the standard route, Everest presents dangers such as altitude sickness, weather, and wind, as well as hazards from avalanches and the Khumbu Icefall. As of November 2022, 310 people have died on Everest.
Over 200 bodies remain on the mountain and have not been removed due to the dangerous conditions. The first recorded efforts to reach Everest's summit were made by British mountaineers.
As Nepal did not allow foreigners to enter the country at the time, the British made several attempts on the north ridge route from the Tibetan side. After the first reconnaissance expedition by the British in 1921 reached 7,000 m (22,970 ft) on the North Col, the 1922 expedition pushed the north ridge route up to 8,320 m (27,300 ft), marking the first time a human had climbed above 8,000 m (26,247 ft).
The 1924 expedition resulted in one of the greatest mysteries on Everest to this day: George Mallory and Andrew Irvine made a final summit attempt on 8 June but never returned, sparking debate as to whether they were the first to reach the top.
Tenzing Norgay and Edmund Hillary made the first documented ascent of Everest in 1953, using the southeast ridge route. Norgay had reached 8,595 m (28,199 ft) the previous year as a member of the 1952 Swiss expedition. The Chinese mountaineering team of Wang Fuzhou, Gonpo, and Qu Yinhua made the first reported ascent of the peak from the north ridge on 25 May 1960. \nQuestion: How high did they climb in 1922? According to the text, the 1922 expedition reached 8,""",
        10
    ],
    [
        """Hurricane Katrina killed hundreds of people as it made landfall on New Orleans in 2005 - many of these deaths could have been avoided if alerts had been given one day earlier. Accurate weather forecasts are really life-saving.

πŸ”₯ Now, NASA and IBM just dropped a game-changing new model: the first ever foundation model for weather! This means, it's the first time we have a generalist model not restricted to one task, but able to predict 160 weather variables!

Prithvi WxC (Prithvi, β€œΰ€ͺΰ₯ƒΰ€₯ΰ₯ΰ€΅ΰ₯€β€, is the Sanskrit name for Earth) - is a 2.3 billion parameter model, with an architecture close to previous vision transformers like Hiera.

πŸ’‘ But it comes with some important tweaks: under the hood, Prithvi WxC uses a clever transformer-based architecture with 25 encoder and 5 decoder blocks. It alternates between "local" and "global" attention to capture both regional and global weather patterns. How many weather variables can Prithvi predict? Prithvi can""",
        15
    ],
    [
        """Transformers v4.45.0 released: includes a lightning-fast method to build tools! ⚑️

During user research with colleagues @MoritzLaurer and @Jofthomas , we discovered that the class definition currently in used to define a Tool in
transformers.agents is a bit tedious to use, because it goes in great detail.

➑️ So I’ve made an easier way to build tools: just make a function with type hints + a docstring, and add a @tool decorator in front.

βœ… VoilΓ , you’re good to go!

How can you build tools simply in transformers? Just use the decorator""",
        20
    ]
]

# Define Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("""# Attribution Visualization Demo

This demo uses the library [LXT](https://lxt.readthedocs.io/en/latest/quickstart.html#tinyllama) to attribute the output tokens to some input tokens.""")
    
    input_text = gr.Textbox(label="Input Prompt", lines=5, value=examples[0][0])
    num_tokens = gr.Slider(minimum=1, maximum=50, step=1, value=10, label="Number of tokens to generate")
    generate_button = gr.Button("Generate and Visualize")
    
    generated_output = gr.Textbox(label="Generated Text")
    heatmap_output = gr.Image(label="Attention Heatmap")

    step_slider = gr.Slider(minimum=0, maximum=1, step=1, value=0, label="Visualization Step")
    attention_on_inputs = gr.HighlightedText(label="Attention Visualization", adjacent_separator="", combine_adjacent=True)
    current_tokens = gr.Textbox(label="Current Token")

    input_tokens_state = gr.State([])
    output_tokens_state = gr.State([])
    relevances_state = gr.State([])
    
    gr.Examples(
        examples=examples,
        inputs=[input_text, num_tokens],
        outputs=[input_tokens_state, relevances_state, attention_on_inputs, output_tokens_state, current_tokens, generated_output, step_slider, heatmap_output],
        fn=on_generate,
        cache_examples=True
    )
    
    generate_button.click(
        on_generate,
        inputs=[input_text, num_tokens],
        outputs=[input_tokens_state, relevances_state, attention_on_inputs, output_tokens_state, current_tokens, generated_output, step_slider, heatmap_output]
    )

    step_slider.change(
        update_visualization_step,
        inputs=[input_tokens_state, relevances_state, output_tokens_state, step_slider],
        outputs=[attention_on_inputs, current_tokens]
    )

# Launch the demo
if __name__ == "__main__":
    demo.launch()