mahee12345 commited on
Commit
0d9b543
·
1 Parent(s): 83f48c6

Upload 4 files

Browse files
Files changed (4) hide show
  1. best_new_v2.pt +3 -0
  2. packages.txt +2 -0
  3. requirements.txt +0 -0
  4. web.py +52 -0
best_new_v2.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75b7fee7b255144dd980793d9083f8194396a43075963818159491607a09e885
3
+ size 546150559
packages.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ python-opencv-headless
2
+ libgl1
requirements.txt ADDED
Binary file (2.43 kB). View file
 
web.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ from ultralytics import YOLO
4
+ import time
5
+
6
+ st.title('Aloe Vera Plant Disease Analyser')
7
+
8
+ col1,col2=st.columns(2)
9
+ upload_stat=0
10
+ with col1:
11
+
12
+ input_image=st.file_uploader('Upload The Image File Here',type=['jpg','png'])
13
+
14
+ confirmation=st.button('Submit')
15
+ if confirmation==True:
16
+ st.image(input_image)
17
+ upload_stat=1
18
+
19
+ with col2:
20
+ st.subheader('Detection:')
21
+ if upload_stat==1:
22
+ image_new=Image.open(input_image)
23
+ model1 = YOLO('git_weight.pt')
24
+ model2=YOLO('best.pt')
25
+ model3=YOLO('best_new_v2.pt')
26
+ model4=YOLO('best_v4.pt')
27
+
28
+ results1 = model1(image_new)
29
+ results2= model2(image_new)
30
+ results3= model3(image_new)
31
+ result4=model4(image_new)
32
+ st.subheader('Model 1')
33
+ for r in results1:
34
+ im_array = r.plot() # plot a BGR numpy array of predictions
35
+ im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
36
+ st.image(im) # show image
37
+ st.subheader('Model 2')
38
+ for r in results2:
39
+ im_array = r.plot() # plot a BGR numpy array of predictions
40
+ im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
41
+ st.image(im) # show image
42
+ st.subheader('Model 3')
43
+ for r in results3:
44
+ im_array = r.plot() # plot a BGR numpy array of predictions
45
+ im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
46
+ st.image(im) # show image
47
+ for r in result4:
48
+ im_array = r.plot() # plot a BGR numpy array of predictions
49
+ im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
50
+ st.image(im) # show image
51
+
52
+