Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +60 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms, models
|
4 |
+
from PIL import Image
|
5 |
+
from datasets import load_dataset
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Vérification du GPU
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
# Charger le modèle MobileNetV2
|
12 |
+
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.DEFAULT)
|
13 |
+
model.classifier = torch.nn.Sequential(
|
14 |
+
torch.nn.Dropout(0.2),
|
15 |
+
torch.nn.Linear(1280, 113) # 113 classes pour Fruits-360
|
16 |
+
)
|
17 |
+
|
18 |
+
# Charger le modèle avec un chemin correct
|
19 |
+
model_path = "model_fruits360.pth"
|
20 |
+
model.load_state_dict(torch.load(model_path, map_location=device), strict=False)
|
21 |
+
model.to(device)
|
22 |
+
model.eval()
|
23 |
+
|
24 |
+
# Charger le dataset Fruits-360 pour les labels
|
25 |
+
dataset = load_dataset("PedroSampaio/fruits-360")
|
26 |
+
labels = dataset['train'].features['label'].names
|
27 |
+
|
28 |
+
# Transformations pour MobileNetV2
|
29 |
+
transform = transforms.Compose([
|
30 |
+
transforms.Resize((224, 224)),
|
31 |
+
transforms.ToTensor(),
|
32 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
33 |
+
])
|
34 |
+
|
35 |
+
# Fonction pour prétraiter l'image
|
36 |
+
def preprocess_image(image):
|
37 |
+
image = transform(image).unsqueeze(0).to(device)
|
38 |
+
return image
|
39 |
+
|
40 |
+
# Interface Streamlit
|
41 |
+
st.title("Prédiction des Fruits 🍎🍌🍊")
|
42 |
+
|
43 |
+
# Upload d'image
|
44 |
+
uploaded_file = st.file_uploader("Choisir une image...", type=["jpg", "png", "jpeg"])
|
45 |
+
|
46 |
+
if uploaded_file is not None:
|
47 |
+
# Affichage de l'image
|
48 |
+
image = Image.open(uploaded_file).convert("RGB")
|
49 |
+
st.image(image, caption="Image sélectionnée", use_column_width=True)
|
50 |
+
|
51 |
+
# Prédiction
|
52 |
+
image_tensor = preprocess_image(image)
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = model(image_tensor)
|
55 |
+
_, predicted_class = torch.max(outputs, 1)
|
56 |
+
|
57 |
+
fruit_name = labels[int(predicted_class.item())]
|
58 |
+
|
59 |
+
# Affichage du résultat
|
60 |
+
st.success(f"✅ Classe prédite : **{fruit_name}**")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
streamlit
|
4 |
+
datasets
|
5 |
+
Pillow
|