from flask import Flask, request, jsonify import tiktoken import os app = Flask(__name__) # OpenAI模型映射 MODEL_MAPPINGS = { # GPT-4系列 "gpt-4o": "o200k_base", "gpt-4-turbo": "cl100k_base", "gpt-4": "cl100k_base", # GPT-3.5系列 "gpt-3.5-turbo": "cl100k_base", "gpt-35-turbo": "cl100k_base", # 旧模型 "text-davinci-003": "p50k_base", "text-davinci-002": "p50k_base", "davinci": "r50k_base", # 嵌入模型 "text-embedding-ada-002": "cl100k_base", } @app.route('/count_tokens', methods=['POST']) def count_tokens(): try: data = request.json messages = data.get('messages', []) system = data.get('system') model = data.get('model', 'gpt-3.5-turbo') # 根据模型名称选择合适的编码器 model_key = model.lower() encoding_name = None # 查找完全匹配 if model_key in MODEL_MAPPINGS: encoding_name = MODEL_MAPPINGS[model_key] else: # 查找部分匹配 for key in MODEL_MAPPINGS: if key in model_key: encoding_name = MODEL_MAPPINGS[key] break # 如果没有找到匹配,使用默认的cl100k_base编码器 if not encoding_name: encoding_name = "cl100k_base" # 最常用的编码器 # 获取编码器 try: encoding = tiktoken.get_encoding(encoding_name) except KeyError: # 如果找不到编码器,使用gpt-3.5-turbo的编码器 encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # 计算tokens total_tokens = 0 # 按照OpenAI的格式计算tokens # 参考: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb # 对于ChatGPT模型,每个请求都有3个隐藏tokens if encoding_name in ["cl100k_base", "o200k_base"]: # 每条消息开头有3个token,结尾有1个token total_tokens += 3 # 每个请求的起始tokens # 计算每条消息的tokens for message in messages: total_tokens += 4 # 每条消息增加4个token (包括角色) for key, value in message.items(): total_tokens += len(encoding.encode(value)) # 名称字段比较少见,但也计入 if key == "name": total_tokens -= 1 # 角色名称单独token计算减免 # 计算system消息的token if system: total_tokens += 4 # system消息也视为一条消息 total_tokens += len(encoding.encode(system)) else: # 对于旧模型,只计算文本的token数量 all_text = "" if system: all_text += system + "\n\n" for message in messages: role = message.get('role', '') content = message.get('content', '') all_text += f"{role}: {content}\n" total_tokens = len(encoding.encode(all_text)) return jsonify({ 'input_tokens': total_tokens, 'model': model, 'encoding': encoding_name }) except Exception as e: return jsonify({ 'error': str(e) }), 400 @app.route('/health', methods=['GET']) def health(): return jsonify({ 'status': 'healthy', 'tokenizer': 'openai-tiktoken', 'supported_models': list(MODEL_MAPPINGS.keys()) }) if __name__ == '__main__': app.run(host='127.0.0.1', port=7862)