|
import gradio as gr |
|
import requests |
|
import io |
|
import random |
|
import os |
|
import time |
|
from PIL import Image |
|
from deep_translator import GoogleTranslator |
|
|
|
|
|
|
|
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" |
|
API_TOKEN = os.getenv("HF_READ_TOKEN") |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
timeout = 100 |
|
|
|
def convert_to_png(image): |
|
"""Convert any image format to true PNG format""" |
|
png_buffer = io.BytesIO() |
|
if image.mode == 'RGBA': |
|
|
|
image.save(png_buffer, format='PNG', optimize=True) |
|
else: |
|
|
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
image.save(png_buffer, format='PNG', optimize=True) |
|
png_buffer.seek(0) |
|
return Image.open(png_buffer) |
|
|
|
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", |
|
seed=-1, strength=0.7, width=1024, height=1024): |
|
if not prompt: |
|
return None |
|
|
|
key = random.randint(0, 999) |
|
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
|
|
|
|
try: |
|
prompt = GoogleTranslator(source='id', target='en').translate(prompt) |
|
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') |
|
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." |
|
except Exception as e: |
|
print(f"Translation error: {e}") |
|
|
|
print(f'\033[1mGeneration {key}:\033[0m {prompt}') |
|
|
|
payload = { |
|
"inputs": prompt, |
|
"is_negative": is_negative, |
|
"steps": steps, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed if seed != -1 else random.randint(1, 1000000000), |
|
"strength": strength, |
|
"parameters": {"width": width, "height": height} |
|
} |
|
|
|
try: |
|
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) |
|
response.raise_for_status() |
|
|
|
|
|
img = Image.open(io.BytesIO(response.content)) |
|
png_img = convert_to_png(img) |
|
|
|
print(f'\033[1mGeneration {key} completed as PNG!\033[0m') |
|
return png_img |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"API Error: {e}") |
|
if hasattr(e, 'response') and e.response: |
|
if e.response.status_code == 503: |
|
raise gr.Error("503: Model is loading, please try again later") |
|
raise gr.Error(f"{e.response.status_code}: {e.response.text}") |
|
raise gr.Error("Network error occurred") |
|
except Exception as e: |
|
print(f"Image processing error: {e}") |
|
raise gr.Error(f"Image processing failed: {str(e)}") |
|
|
|
|
|
css = """ |
|
#app-container { |
|
max-width: 800px; |
|
margin: 0 auto; |
|
padding: 20px; |
|
background: #ffffff; |
|
} |
|
#prompt-text-input, #negative-prompt-text-input { |
|
font-size: 14px; |
|
background: #f9f9f9; |
|
} |
|
#gallery { |
|
min-height: 512px; |
|
background: #ffffff; |
|
border: 1px solid #e0e0e0; |
|
} |
|
#gen-button { |
|
margin: 10px 0; |
|
background: #4CAF50; |
|
color: white; |
|
} |
|
.accordion { |
|
background: #f5f5f5; |
|
border: 1px solid #e0e0e0; |
|
} |
|
h1 { |
|
color: #333333; |
|
} |
|
""" |
|
|
|
with gr.Blocks(theme=gr.themes.Default(primary_hue="green"), css=css) as app: |
|
gr.HTML("<center><h1>FLUX.1-Dev (PNG Output)</h1></center>") |
|
|
|
with gr.Column(elem_id="app-container"): |
|
with gr.Row(): |
|
with gr.Column(elem_id="prompt-container"): |
|
with gr.Row(): |
|
text_prompt = gr.Textbox( |
|
label="Prompt", |
|
placeholder="Masukkan prompt dalam Bahasa Indonesia", |
|
lines=2, |
|
elem_id="prompt-text-input" |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Textbox( |
|
label="Negative Prompt", |
|
value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", |
|
lines=3 |
|
) |
|
with gr.Row(): |
|
width = gr.Slider(1024, label="Width", minimum=512, maximum=1536, step=64) |
|
height = gr.Slider(1024, label="Height", minimum=512, maximum=1536, step=64) |
|
with gr.Row(): |
|
steps = gr.Slider(35, label="Steps", minimum=10, maximum=100, step=1) |
|
cfg = gr.Slider(7.0, label="CFG Scale", minimum=1.0, maximum=20.0, step=0.5) |
|
with gr.Row(): |
|
strength = gr.Slider(0.7, label="Strength", minimum=0.1, maximum=1.0, step=0.01) |
|
seed = gr.Number(-1, label="Seed (-1 for random)") |
|
method = gr.Radio( |
|
["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"], |
|
value="DPM++ 2M Karras", |
|
label="Sampling Method" |
|
) |
|
|
|
generate_btn = gr.Button("Generate Image", variant="primary") |
|
|
|
with gr.Row(): |
|
output_image = gr.Image( |
|
type="pil", |
|
label="Generated PNG Image", |
|
format="png", |
|
elem_id="gallery" |
|
) |
|
|
|
generate_btn.click( |
|
fn=query, |
|
inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], |
|
outputs=output_image |
|
) |
|
|
|
app.launch(server_name="0.0.0.0", server_port=7860, share=True) |