Commit
·
30918aa
1
Parent(s):
6c8936b
implement script and add languages from Spain
Browse files- datasets_cache.pkl +3 -0
- hub_datasets_by_language.ipynb → explore.ipynb +0 -0
- hub_datasets_by_language.py +368 -0
- plots/bar_plot_horizontal.png +0 -0
- plots/bar_plot_vertical.png +0 -0
- plots/pie_chart.png +0 -0
- plots/stack_area.png +0 -0
- plots/stack_area_en_es.png +0 -0
- plots/stack_area_es.png +0 -0
- plots/stack_area_es_ca_gl_eu.png +0 -0
- plots/time_series.png +0 -0
datasets_cache.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a139fa06dfe21c909136c004dc91e0dc0a92e81ffb7ca68fc6c1353d8717851c
|
3 |
+
size 33831411
|
hub_datasets_by_language.ipynb → explore.ipynb
RENAMED
File without changes
|
hub_datasets_by_language.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pickle
|
3 |
+
from collections import Counter
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
from huggingface_hub import HfApi
|
10 |
+
|
11 |
+
# Define colors for each language
|
12 |
+
LANGUAGE_COLORS = {
|
13 |
+
"english": "orange",
|
14 |
+
"spanish": "blue",
|
15 |
+
"catalan": "red",
|
16 |
+
"galician": "green",
|
17 |
+
"basque": "purple",
|
18 |
+
}
|
19 |
+
|
20 |
+
GRID = False
|
21 |
+
|
22 |
+
|
23 |
+
def fetch_datasets(cache_file="datasets_cache.pkl"):
|
24 |
+
"""Fetch and filter datasets from HuggingFace Hub with caching"""
|
25 |
+
# Check if cached data exists and is less than 24 hours old
|
26 |
+
if os.path.exists(cache_file):
|
27 |
+
cache_age = datetime.now().timestamp() - os.path.getmtime(cache_file)
|
28 |
+
if cache_age < 24 * 3600: # 24 hours in seconds
|
29 |
+
print("Loading datasets from cache...")
|
30 |
+
with open(cache_file, "rb") as f:
|
31 |
+
return pickle.load(f)
|
32 |
+
else:
|
33 |
+
print("Cache is older than 24 hours, fetching fresh data...")
|
34 |
+
else:
|
35 |
+
print("No cache found, fetching datasets from Hugging Face Hub...")
|
36 |
+
|
37 |
+
hf_api = HfApi()
|
38 |
+
all_datasets = list(hf_api.list_datasets(full=True))
|
39 |
+
|
40 |
+
# Filter datasets by language
|
41 |
+
english_filter = filter(
|
42 |
+
lambda d: "language:en" in d.tags
|
43 |
+
and not any(
|
44 |
+
tag.startswith("language:") and tag != "language:en" for tag in d.tags
|
45 |
+
),
|
46 |
+
all_datasets,
|
47 |
+
)
|
48 |
+
spanish_filter = filter(
|
49 |
+
lambda d: "language:es" in d.tags
|
50 |
+
and not any(
|
51 |
+
tag.startswith("language:") and tag != "language:es" for tag in d.tags
|
52 |
+
),
|
53 |
+
all_datasets,
|
54 |
+
)
|
55 |
+
catalan_filter = filter(
|
56 |
+
lambda d: "language:ca" in d.tags
|
57 |
+
and not any(
|
58 |
+
tag.startswith("language:") and tag != "language:ca" for tag in d.tags
|
59 |
+
),
|
60 |
+
all_datasets,
|
61 |
+
)
|
62 |
+
galician_filter = filter(
|
63 |
+
lambda d: "language:gl" in d.tags
|
64 |
+
and not any(
|
65 |
+
tag.startswith("language:") and tag != "language:gl" for tag in d.tags
|
66 |
+
),
|
67 |
+
all_datasets,
|
68 |
+
)
|
69 |
+
basque_filter = filter(
|
70 |
+
lambda d: "language:eu" in d.tags
|
71 |
+
and not any(
|
72 |
+
tag.startswith("language:") and tag != "language:eu" for tag in d.tags
|
73 |
+
),
|
74 |
+
all_datasets,
|
75 |
+
)
|
76 |
+
filtered_datasets = {
|
77 |
+
"english": list(english_filter),
|
78 |
+
"spanish": list(spanish_filter),
|
79 |
+
"catalan": list(catalan_filter),
|
80 |
+
"galician": list(galician_filter),
|
81 |
+
"basque": list(basque_filter),
|
82 |
+
}
|
83 |
+
|
84 |
+
# Cache the filtered datasets
|
85 |
+
print("Saving datasets to cache...")
|
86 |
+
with open(cache_file, "wb") as f:
|
87 |
+
pickle.dump(filtered_datasets, f)
|
88 |
+
|
89 |
+
return filtered_datasets
|
90 |
+
|
91 |
+
|
92 |
+
def create_bar_plots(datasets, output_dir):
|
93 |
+
"""Create horizontal and vertical bar plots"""
|
94 |
+
# Extract creation dates and counts
|
95 |
+
years = sorted(
|
96 |
+
set(
|
97 |
+
date.year
|
98 |
+
for date in [
|
99 |
+
d.created_at.date() for d in datasets["english"] + datasets["spanish"]
|
100 |
+
]
|
101 |
+
)
|
102 |
+
)
|
103 |
+
english_counts = Counter(
|
104 |
+
date.year for date in [d.created_at.date() for d in datasets["english"]]
|
105 |
+
)
|
106 |
+
spanish_counts = Counter(
|
107 |
+
date.year for date in [d.created_at.date() for d in datasets["spanish"]]
|
108 |
+
)
|
109 |
+
|
110 |
+
# Horizontal bar plot
|
111 |
+
plt.figure(figsize=(8, 5))
|
112 |
+
bar_width = 0.4
|
113 |
+
years_index = np.arange(len(years))
|
114 |
+
|
115 |
+
plt.bar(
|
116 |
+
years_index - bar_width / 2,
|
117 |
+
[english_counts[year] for year in years],
|
118 |
+
width=bar_width,
|
119 |
+
label="English",
|
120 |
+
color=LANGUAGE_COLORS["english"],
|
121 |
+
)
|
122 |
+
plt.bar(
|
123 |
+
years_index + bar_width / 2,
|
124 |
+
[spanish_counts[year] for year in years],
|
125 |
+
width=bar_width,
|
126 |
+
label="Spanish",
|
127 |
+
color=LANGUAGE_COLORS["spanish"],
|
128 |
+
)
|
129 |
+
|
130 |
+
plt.xlabel("Year", fontsize=10)
|
131 |
+
plt.ylabel("Number of Datasets", fontsize=10)
|
132 |
+
plt.xticks(years_index, years, fontsize=10)
|
133 |
+
plt.legend()
|
134 |
+
plt.grid(GRID)
|
135 |
+
plt.tight_layout()
|
136 |
+
plt.savefig(f"{output_dir}/bar_plot_horizontal.png")
|
137 |
+
plt.close()
|
138 |
+
|
139 |
+
# Vertical bar plot
|
140 |
+
plt.figure(figsize=(8, 5))
|
141 |
+
plt.bar(
|
142 |
+
years,
|
143 |
+
[english_counts[year] for year in years],
|
144 |
+
width=0.4,
|
145 |
+
label="English",
|
146 |
+
color=LANGUAGE_COLORS["english"],
|
147 |
+
)
|
148 |
+
plt.bar(
|
149 |
+
years,
|
150 |
+
[spanish_counts[year] for year in years],
|
151 |
+
width=0.4,
|
152 |
+
label="Spanish",
|
153 |
+
color=LANGUAGE_COLORS["spanish"],
|
154 |
+
bottom=[english_counts[year] for year in years],
|
155 |
+
)
|
156 |
+
|
157 |
+
plt.xlabel("Year", fontsize=10)
|
158 |
+
plt.ylabel("Number of Datasets", fontsize=10)
|
159 |
+
plt.xticks(years, fontsize=10)
|
160 |
+
plt.legend()
|
161 |
+
plt.tight_layout()
|
162 |
+
plt.grid(GRID)
|
163 |
+
plt.savefig(f"{output_dir}/bar_plot_vertical.png")
|
164 |
+
plt.close()
|
165 |
+
|
166 |
+
|
167 |
+
def create_pie_chart(datasets, output_dir):
|
168 |
+
"""Create pie chart showing distribution of datasets by language"""
|
169 |
+
# Calculate counts
|
170 |
+
counts = {
|
171 |
+
lang.capitalize(): len(datasets[lang])
|
172 |
+
for lang in ["english", "spanish", "catalan", "galician", "basque"]
|
173 |
+
}
|
174 |
+
|
175 |
+
plt.figure(figsize=(8, 8))
|
176 |
+
plt.pie(
|
177 |
+
counts.values(),
|
178 |
+
labels=counts.keys(),
|
179 |
+
autopct="%1.1f%%",
|
180 |
+
startangle=180,
|
181 |
+
colors=[
|
182 |
+
LANGUAGE_COLORS[lang]
|
183 |
+
for lang in ["english", "spanish", "catalan", "galician", "basque"]
|
184 |
+
],
|
185 |
+
)
|
186 |
+
plt.axis("equal")
|
187 |
+
plt.savefig(f"{output_dir}/pie_chart.png")
|
188 |
+
plt.close()
|
189 |
+
|
190 |
+
|
191 |
+
def create_time_series(datasets, output_dir):
|
192 |
+
"""Create time series plots"""
|
193 |
+
# Prepare data
|
194 |
+
creation_dates_english = [d.created_at.date() for d in datasets["english"]]
|
195 |
+
creation_dates_spanish = [d.created_at.date() for d in datasets["spanish"]]
|
196 |
+
|
197 |
+
df_english = pd.DataFrame(creation_dates_english, columns=["Date"])
|
198 |
+
df_spanish = pd.DataFrame(creation_dates_spanish, columns=["Date"])
|
199 |
+
|
200 |
+
df_english["Count"] = 1
|
201 |
+
df_spanish["Count"] = 1
|
202 |
+
|
203 |
+
df_english["Date"] = pd.to_datetime(df_english["Date"])
|
204 |
+
df_spanish["Date"] = pd.to_datetime(df_spanish["Date"])
|
205 |
+
|
206 |
+
# Cumulative plots
|
207 |
+
df_english_cum = (
|
208 |
+
df_english.groupby(pd.Grouper(key="Date", freq="MS")).sum().cumsum()
|
209 |
+
)
|
210 |
+
df_spanish_cum = (
|
211 |
+
df_spanish.groupby(pd.Grouper(key="Date", freq="MS")).sum().cumsum()
|
212 |
+
)
|
213 |
+
|
214 |
+
plt.figure(figsize=(10, 6))
|
215 |
+
plt.plot(
|
216 |
+
df_english_cum.index,
|
217 |
+
df_english_cum["Count"],
|
218 |
+
label="English",
|
219 |
+
color=LANGUAGE_COLORS["english"],
|
220 |
+
)
|
221 |
+
plt.plot(
|
222 |
+
df_spanish_cum.index,
|
223 |
+
df_spanish_cum["Count"],
|
224 |
+
label="Spanish",
|
225 |
+
color=LANGUAGE_COLORS["spanish"],
|
226 |
+
)
|
227 |
+
|
228 |
+
plt.xlabel("Date", fontsize=10)
|
229 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
230 |
+
plt.xticks(rotation=45, fontsize=10)
|
231 |
+
plt.legend(loc="upper left")
|
232 |
+
plt.tight_layout()
|
233 |
+
plt.grid(GRID)
|
234 |
+
plt.savefig(f"{output_dir}/time_series.png")
|
235 |
+
plt.close()
|
236 |
+
|
237 |
+
|
238 |
+
def create_stack_area_plots(datasets, output_dir):
|
239 |
+
"""Create stacked area plots"""
|
240 |
+
# Prepare data for all languages
|
241 |
+
all_dates = []
|
242 |
+
languages = ["english", "spanish", "catalan", "galician", "basque"]
|
243 |
+
for lang in languages:
|
244 |
+
all_dates.extend([d.created_at.date() for d in datasets[lang]])
|
245 |
+
|
246 |
+
# Create a common date range for all languages
|
247 |
+
min_date = min(all_dates)
|
248 |
+
max_date = max(all_dates)
|
249 |
+
date_range = pd.date_range(start=min_date, end=max_date, freq="MS")
|
250 |
+
|
251 |
+
# Create separate DataFrames for each language
|
252 |
+
dfs = {}
|
253 |
+
for lang in languages:
|
254 |
+
dates = [d.created_at.date() for d in datasets[lang]]
|
255 |
+
df = pd.DataFrame({"Date": dates})
|
256 |
+
df["Count"] = 1
|
257 |
+
df["Date"] = pd.to_datetime(df["Date"])
|
258 |
+
# Reindex to common date range and fill missing values with 0
|
259 |
+
df_grouped = df.groupby(pd.Grouper(key="Date", freq="MS")).sum()
|
260 |
+
df_grouped = df_grouped.reindex(date_range, fill_value=0)
|
261 |
+
dfs[lang] = df_grouped.cumsum()
|
262 |
+
|
263 |
+
# Plot stacked area for all languages
|
264 |
+
plt.figure(figsize=(10, 6))
|
265 |
+
plt.stackplot(
|
266 |
+
date_range,
|
267 |
+
[dfs[lang]["Count"].values for lang in languages],
|
268 |
+
labels=[lang.capitalize() for lang in languages],
|
269 |
+
colors=[LANGUAGE_COLORS[lang] for lang in languages],
|
270 |
+
)
|
271 |
+
|
272 |
+
plt.xlabel("Date", fontsize=10)
|
273 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
274 |
+
plt.xticks(rotation=45, fontsize=10)
|
275 |
+
plt.legend(loc="upper left")
|
276 |
+
plt.tight_layout()
|
277 |
+
plt.grid(GRID)
|
278 |
+
plt.savefig(f"{output_dir}/stack_area.png")
|
279 |
+
plt.close()
|
280 |
+
|
281 |
+
# Plot stacked area for all except English
|
282 |
+
plt.figure(figsize=(10, 6))
|
283 |
+
plt.stackplot(
|
284 |
+
date_range,
|
285 |
+
[
|
286 |
+
dfs[lang]["Count"].values
|
287 |
+
for lang in ["spanish", "catalan", "galician", "basque"]
|
288 |
+
],
|
289 |
+
labels=["Spanish", "Catalan", "Galician", "Basque"],
|
290 |
+
colors=[
|
291 |
+
LANGUAGE_COLORS[lang]
|
292 |
+
for lang in ["spanish", "catalan", "galician", "basque"]
|
293 |
+
],
|
294 |
+
)
|
295 |
+
|
296 |
+
plt.xlabel("Date", fontsize=10)
|
297 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
298 |
+
plt.xticks(rotation=45, fontsize=10)
|
299 |
+
plt.legend(loc="upper left")
|
300 |
+
plt.tight_layout()
|
301 |
+
plt.grid(GRID)
|
302 |
+
plt.savefig(f"{output_dir}/stack_area_es_ca_gl_eu.png")
|
303 |
+
plt.close()
|
304 |
+
|
305 |
+
# Plot stacked area for English and Spanish
|
306 |
+
plt.figure(figsize=(10, 6))
|
307 |
+
plt.stackplot(
|
308 |
+
date_range,
|
309 |
+
[dfs[lang]["Count"].values for lang in ["english", "spanish"]],
|
310 |
+
labels=["English", "Spanish"],
|
311 |
+
colors=[LANGUAGE_COLORS[lang] for lang in ["english", "spanish"]],
|
312 |
+
)
|
313 |
+
|
314 |
+
plt.xlabel("Date", fontsize=10)
|
315 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
316 |
+
plt.xticks(rotation=45, fontsize=10)
|
317 |
+
plt.legend(loc="upper left")
|
318 |
+
plt.tight_layout()
|
319 |
+
plt.grid(GRID)
|
320 |
+
plt.savefig(f"{output_dir}/stack_area_en_es.png")
|
321 |
+
plt.close()
|
322 |
+
|
323 |
+
# Plot stacked area for Spanish only
|
324 |
+
plt.figure(figsize=(10, 6))
|
325 |
+
plt.stackplot(
|
326 |
+
date_range,
|
327 |
+
[dfs["spanish"]["Count"].values],
|
328 |
+
labels=["Spanish"],
|
329 |
+
colors=[LANGUAGE_COLORS["spanish"]],
|
330 |
+
)
|
331 |
+
|
332 |
+
plt.xlabel("Date", fontsize=10)
|
333 |
+
plt.ylabel("Cumulative Number of Datasets", fontsize=10)
|
334 |
+
plt.xticks(rotation=45, fontsize=10)
|
335 |
+
plt.legend(loc="upper left")
|
336 |
+
plt.tight_layout()
|
337 |
+
plt.grid(GRID)
|
338 |
+
plt.savefig(f"{output_dir}/stack_area_es.png")
|
339 |
+
plt.close()
|
340 |
+
|
341 |
+
|
342 |
+
def main():
|
343 |
+
# Create output directory if it doesn't exist
|
344 |
+
output_dir = "plots"
|
345 |
+
os.makedirs(output_dir, exist_ok=True)
|
346 |
+
|
347 |
+
# Fetch datasets
|
348 |
+
print("Fetching datasets from Hugging Face Hub...")
|
349 |
+
datasets = fetch_datasets()
|
350 |
+
|
351 |
+
# Create visualizations
|
352 |
+
print("Creating bar plots...")
|
353 |
+
create_bar_plots(datasets, output_dir)
|
354 |
+
|
355 |
+
print("Creating pie chart...")
|
356 |
+
create_pie_chart(datasets, output_dir)
|
357 |
+
|
358 |
+
print("Creating time series plots...")
|
359 |
+
create_time_series(datasets, output_dir)
|
360 |
+
|
361 |
+
print("Creating stack area plots...")
|
362 |
+
create_stack_area_plots(datasets, output_dir)
|
363 |
+
|
364 |
+
print(f"All visualizations have been saved to the '{output_dir}' directory")
|
365 |
+
|
366 |
+
|
367 |
+
if __name__ == "__main__":
|
368 |
+
main()
|
plots/bar_plot_horizontal.png
CHANGED
![]() |
![]() |
plots/bar_plot_vertical.png
CHANGED
![]() |
![]() |
plots/pie_chart.png
ADDED
![]() |
plots/stack_area.png
CHANGED
![]() |
![]() |
plots/stack_area_en_es.png
ADDED
![]() |
plots/stack_area_es.png
CHANGED
![]() |
![]() |
plots/stack_area_es_ca_gl_eu.png
ADDED
![]() |
plots/time_series.png
CHANGED
![]() |
![]() |