|
import gradio as gr |
|
from transformers import TextIteratorStreamer |
|
from threading import Thread |
|
from transformers import StoppingCriteria, StoppingCriteriaList |
|
import torch |
|
import spaces |
|
import os |
|
|
|
model_name = "microsoft/Phi-3-medium-128k-instruct" |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', torch_dtype=torch.float16, trust_remote_code=True |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
class StopOnTokens(StoppingCriteria): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
stop_ids = [29, 0] |
|
for stop_id in stop_ids: |
|
if input_ids[0][-1] == stop_id: |
|
return True |
|
return False |
|
model.to('cuda') |
|
@spaces.GPU(duration=195) |
|
def predict(message, history, temperature, max_tokens, top_p, top_k): |
|
history_transformer_format = history + [[message, ""]] |
|
stop = StopOnTokens() |
|
messages = "".join(["".join(["\n<|end|>\n<|user|>\n"+item[0], "\n<|end|>\n<|assistant|>\n"+item[1]]) for item in history_transformer_format]) |
|
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") |
|
streamer = TextIteratorStreamer(tokenizer, timeout=300., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
stopping_criteria=StoppingCriteriaList([stop]) |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
partial_message = "" |
|
for new_token in streamer: |
|
if new_token != '<': |
|
partial_message += new_token |
|
yield partial_message |
|
|
|
demo = gr.ChatInterface( |
|
fn=predict, |
|
title="Phi-3-medium-128k-instruct", |
|
additional_inputs=[ |
|
gr.Slider(0.1, 0.9, value=0.7, label="Temperature"), |
|
gr.Slider(512, 128000, value=16440, label="Max Tokens"), |
|
gr.Slider(0.1, 0.9, value=0.7, label="top_p" |
|
), |
|
gr.Slider(10, 90, value=40, label="top_k"), |
|
] |
|
) |
|
demo.launch(share=True) |
|
|