mawady commited on
Commit
bc8a213
·
1 Parent(s): cf56f0d
Files changed (1) hide show
  1. app.py +15 -12
app.py CHANGED
@@ -12,12 +12,11 @@ import gradio as gr
12
  import torch
13
 
14
 
15
- from mmocr.apis import MMOCRInferencer
16
- ocr = MMOCRInferencer(det='TextSnake', rec='ABINet_Vision')
17
 
18
- url = (
19
- "https://upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg/1600px-Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg"
20
- )
21
  path_input = "./example1.jpg"
22
  urllib.request.urlretrieve(url, filename=path_input)
23
 
@@ -27,23 +26,25 @@ urllib.request.urlretrieve(url, filename=path_input)
27
 
28
 
29
  path_img_output_folder = "./demo-out"
30
- if not os.path.exists(path_img_output_folder):
31
- os.makedirs(path_img_output_folder)
32
 
33
  path_img_input_folder = "./demo-input"
34
- if not os.path.exists(path_img_input_folder):
35
- os.makedirs(path_img_input_folder)
 
36
 
37
  def do_process(img):
38
- img_name = 'tmp.jpg'
39
  path_input = os.path.join(path_img_input_folder, img_name)
40
- path_output = os.path.join(path_img_output_folder, 'vis',img_name)
41
  img.save(path_input)
42
  img.save(path_output)
43
  # result = ocr(path_input, out_dir=path_img_output_folder, save_vis=True)
44
  img_res = Image(filename=path_output)
45
  return img_res
46
 
 
47
  input_im = gr.inputs.Image(
48
  shape=None, image_mode="RGB", invert_colors=False, source="upload", type="pil"
49
  )
@@ -53,7 +54,9 @@ output_img = gr.outputs.Image(label="Output of Integrated Gradients", type="pil"
53
  # output_label = gr.outputs.Label(label="Classification results", num_top_classes=3)
54
 
55
  title = "Reading draught marks"
56
- description = "Playground: Reading draught marks using pre-trained models. Tools: MMOCR, Gradio."
 
 
57
  examples = [["./example1.jpg"], ["./example2.jpg"]]
58
  article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
59
  iface = gr.Interface(
 
12
  import torch
13
 
14
 
15
+ # from mmocr.apis import MMOCRInferencer
 
16
 
17
+ # ocr = MMOCRInferencer(det="TextSnake", rec="ABINet_Vision")
18
+
19
+ url = "https://upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg/1600px-Draft_Marks_on_the_Bow_of_Kruzenshtern_Port_of_Tallinn_16_July_2011.jpg"
20
  path_input = "./example1.jpg"
21
  urllib.request.urlretrieve(url, filename=path_input)
22
 
 
26
 
27
 
28
  path_img_output_folder = "./demo-out"
29
+ # if not os.path.exists(path_img_output_folder):
30
+ # os.makedirs(path_img_output_folder)
31
 
32
  path_img_input_folder = "./demo-input"
33
+ # if not os.path.exists(path_img_input_folder):
34
+ # os.makedirs(path_img_input_folder)
35
+
36
 
37
  def do_process(img):
38
+ img_name = "tmp.jpg"
39
  path_input = os.path.join(path_img_input_folder, img_name)
40
+ path_output = os.path.join(path_img_output_folder, "vis", img_name)
41
  img.save(path_input)
42
  img.save(path_output)
43
  # result = ocr(path_input, out_dir=path_img_output_folder, save_vis=True)
44
  img_res = Image(filename=path_output)
45
  return img_res
46
 
47
+
48
  input_im = gr.inputs.Image(
49
  shape=None, image_mode="RGB", invert_colors=False, source="upload", type="pil"
50
  )
 
54
  # output_label = gr.outputs.Label(label="Classification results", num_top_classes=3)
55
 
56
  title = "Reading draught marks"
57
+ description = (
58
+ "Playground: Reading draught marks using pre-trained models. Tools: MMOCR, Gradio."
59
+ )
60
  examples = [["./example1.jpg"], ["./example2.jpg"]]
61
  article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>"
62
  iface = gr.Interface(