Spaces:
Sleeping
Sleeping
Full graph works. Now frontend and finetuning
Browse files- notebooks/transcript_rag.ipynb +0 -0
- pstuts_rag/pstuts_rag/datastore.py +1 -1
- pstuts_rag/pstuts_rag/graph.py +1 -1
- pstuts_rag/pstuts_rag/nodes.py +191 -41
- pstuts_rag/pstuts_rag/prompts.py +64 -0
- pstuts_rag/pstuts_rag/rag_for_transcripts.py +4 -4
- pyproject.toml +1 -0
- temp_function.txt +6 -0
- uv.lock +18 -0
notebooks/transcript_rag.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pstuts_rag/pstuts_rag/datastore.py
CHANGED
|
@@ -231,7 +231,7 @@ class DatastoreManager:
|
|
| 231 |
VectorStoreRetriever: The configured retriever
|
| 232 |
"""
|
| 233 |
return self.vector_store.as_retriever(
|
| 234 |
-
search_kwargs={"k": n_context_docs}
|
| 235 |
)
|
| 236 |
|
| 237 |
def is_ready(self) -> bool:
|
|
|
|
| 231 |
VectorStoreRetriever: The configured retriever
|
| 232 |
"""
|
| 233 |
return self.vector_store.as_retriever(
|
| 234 |
+
search_kwargs={"k": int(n_context_docs)}
|
| 235 |
)
|
| 236 |
|
| 237 |
def is_ready(self) -> bool:
|
pstuts_rag/pstuts_rag/graph.py
CHANGED
|
@@ -118,7 +118,7 @@ def create_agent(
|
|
| 118 |
|
| 119 |
|
| 120 |
def create_tavily_node(
|
| 121 |
-
name: str = "AdobeHelp", config: Configuration = Configuration() ) -> Callable
|
| 122 |
"""Initialize tool, agent, and node for Tavily search of helpx.adobe.com.
|
| 123 |
|
| 124 |
This function sets up a search agent that can query Adobe Photoshop help topics
|
|
|
|
| 118 |
|
| 119 |
|
| 120 |
def create_tavily_node(
|
| 121 |
+
name: str = "AdobeHelp", config: Configuration = Configuration() ) -> Callable:
|
| 122 |
"""Initialize tool, agent, and node for Tavily search of helpx.adobe.com.
|
| 123 |
|
| 124 |
This function sets up a search agent that can query Adobe Photoshop help topics
|
pstuts_rag/pstuts_rag/nodes.py
CHANGED
|
@@ -1,21 +1,29 @@
|
|
| 1 |
# nodes.py
|
|
|
|
|
|
|
| 2 |
|
|
|
|
|
|
|
|
|
|
| 3 |
from langchain_openai import ChatOpenAI
|
| 4 |
from langgraph.graph import StateGraph, MessagesState, START, END
|
| 5 |
from langgraph.types import Command
|
| 6 |
-
|
| 7 |
from langchain_core.runnables import RunnableConfig
|
| 8 |
-
from langchain_core.messages import
|
| 9 |
from langgraph.checkpoint.memory import InMemorySaver
|
| 10 |
-
from
|
| 11 |
-
from
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
from pstuts_rag.utils import ChatAPISelector
|
| 15 |
from pstuts_rag.configuration import Configuration
|
| 16 |
-
|
| 17 |
-
from
|
| 18 |
-
from
|
| 19 |
|
| 20 |
|
| 21 |
class TutorialState(MessagesState):
|
|
@@ -23,37 +31,97 @@ class TutorialState(MessagesState):
|
|
| 23 |
|
| 24 |
# next: str
|
| 25 |
query: str
|
| 26 |
-
video_references:
|
| 27 |
-
url_references:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
|
| 30 |
def research(state: TutorialState, config: RunnableConfig):
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
# llm = cls(model=configurable.llm_tool_model)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
# if getattr(msg, "role", "") == "ai"
|
| 44 |
-
# ]
|
| 45 |
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
-
def search_help(
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def join(state: TutorialState, config: RunnableConfig):
|
|
@@ -71,6 +139,11 @@ class YesNoDecision(BaseModel):
|
|
| 71 |
decision: Literal["yes", "no"] = Field(description="Yes or no decision.")
|
| 72 |
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
def route_is_relevant(
|
| 75 |
state: TutorialState, config: RunnableConfig
|
| 76 |
) -> Command[Literal["research", "write_answer"]]:
|
|
@@ -82,25 +155,103 @@ def route_is_relevant(
|
|
| 82 |
YesNoDecision
|
| 83 |
)
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
# format the prompt
|
| 86 |
-
prompt = NODE_PROMPTS["relevance"].format(query=
|
| 87 |
|
| 88 |
relevance = llm.invoke([HumanMessage(content=prompt)])
|
| 89 |
where = "research" if relevance.decision == "yes" else "write_answer"
|
| 90 |
-
answer =
|
|
|
|
|
|
|
|
|
|
| 91 |
return Command(
|
| 92 |
-
update={"messages":
|
| 93 |
goto=where,
|
| 94 |
)
|
| 95 |
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
def route_is_complete(
|
| 98 |
state: TutorialState, config: RunnableConfig
|
| 99 |
-
) -> Literal["
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
|
| 106 |
graph_builder = StateGraph(TutorialState)
|
|
@@ -119,17 +270,16 @@ graph_builder.add_node(write_answer)
|
|
| 119 |
# {"yes": research.__name__, "no": write_answer.__name__},
|
| 120 |
# )
|
| 121 |
graph_builder.add_node(route_is_relevant)
|
|
|
|
|
|
|
| 122 |
graph_builder.add_edge(START, route_is_relevant.__name__)
|
| 123 |
graph_builder.add_edge(research.__name__, search_help.__name__)
|
| 124 |
graph_builder.add_edge(research.__name__, search_rag.__name__)
|
| 125 |
-
graph_builder.add_edge(search_help.__name__,
|
| 126 |
-
graph_builder.add_edge(search_rag.__name__,
|
| 127 |
-
|
| 128 |
-
join.__name__,
|
| 129 |
-
route_is_complete,
|
| 130 |
-
{"no": research.__name__, "yes": write_answer.__name__},
|
| 131 |
-
)
|
| 132 |
graph_builder.add_edge(write_answer.__name__, END)
|
| 133 |
|
| 134 |
|
| 135 |
graph = graph_builder.compile()
|
|
|
|
|
|
| 1 |
# nodes.py
|
| 2 |
+
from enum import Enum
|
| 3 |
+
from typing import Annotated, Any, Callable, Dict, Literal
|
| 4 |
|
| 5 |
+
import asyncio
|
| 6 |
+
import logging
|
| 7 |
+
import operator
|
| 8 |
from langchain_openai import ChatOpenAI
|
| 9 |
from langgraph.graph import StateGraph, MessagesState, START, END
|
| 10 |
from langgraph.types import Command
|
| 11 |
+
from langchain_core.documents import Document
|
| 12 |
from langchain_core.runnables import RunnableConfig
|
| 13 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
| 14 |
from langgraph.checkpoint.memory import InMemorySaver
|
| 15 |
+
from numpy import add
|
| 16 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 17 |
+
from langchain_tavily import TavilyExtract
|
| 18 |
+
|
| 19 |
+
from pydantic import BaseModel, Field, HttpUrl
|
| 20 |
|
| 21 |
|
| 22 |
from pstuts_rag.utils import ChatAPISelector
|
| 23 |
from pstuts_rag.configuration import Configuration
|
| 24 |
+
from pstuts_rag.datastore import DatastoreManager
|
| 25 |
+
from pstuts_rag.prompts import NODE_PROMPTS
|
| 26 |
+
from pstuts_rag.rag_for_transcripts import create_transcript_rag_chain
|
| 27 |
|
| 28 |
|
| 29 |
class TutorialState(MessagesState):
|
|
|
|
| 31 |
|
| 32 |
# next: str
|
| 33 |
query: str
|
| 34 |
+
video_references: Annotated[list[Document], operator.add]
|
| 35 |
+
url_references: Annotated[list[Dict], operator.add]
|
| 36 |
+
loop_count: int
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
datastore = DatastoreManager()
|
| 40 |
+
datastore.add_completion_callback(lambda: logging.warning("Loading complete."))
|
| 41 |
|
| 42 |
|
| 43 |
def research(state: TutorialState, config: RunnableConfig):
|
| 44 |
|
| 45 |
+
configurable = Configuration.from_runnable_config(config)
|
| 46 |
+
cls = ChatAPISelector.get(configurable.llm_api, ChatOpenAI)
|
| 47 |
+
llm = cls(model=configurable.llm_tool_model, temperature=0)
|
|
|
|
| 48 |
|
| 49 |
+
history = [
|
| 50 |
+
msg.content
|
| 51 |
+
for msg in state["messages"]
|
| 52 |
+
if getattr(msg, "role", "") == "ai"
|
| 53 |
+
]
|
| 54 |
|
| 55 |
+
prompt = NODE_PROMPTS["research"].format(
|
| 56 |
+
history=history, query=state["query"]
|
| 57 |
+
)
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
search_query = llm.invoke([HumanMessage(content=prompt)])
|
| 60 |
|
| 61 |
+
return {
|
| 62 |
+
"messages": [search_query],
|
| 63 |
+
"loop_count": state.get("loop_count", 0) + 1,
|
| 64 |
+
}
|
| 65 |
|
| 66 |
|
| 67 |
+
async def search_help(
|
| 68 |
+
state: TutorialState, config: RunnableConfig | None = None
|
| 69 |
+
):
|
| 70 |
+
|
| 71 |
+
configurable = (
|
| 72 |
+
Configuration()
|
| 73 |
+
if not config
|
| 74 |
+
else Configuration.from_runnable_config(config)
|
| 75 |
+
)
|
| 76 |
|
| 77 |
+
cls = ChatAPISelector.get(configurable.llm_api, ChatOpenAI)
|
| 78 |
+
llm = cls(model=configurable.llm_tool_model, temperature=0)
|
| 79 |
+
prompt = NODE_PROMPTS["search_summary"]
|
| 80 |
+
|
| 81 |
+
adobe_help_search = TavilySearchResults(
|
| 82 |
+
max_results=2,
|
| 83 |
+
include_domains=["helpx.adobe.com"],
|
| 84 |
+
include_answer=True,
|
| 85 |
+
include_raw_content=True,
|
| 86 |
+
include_images=True,
|
| 87 |
+
response_format="content_and_artifact", # Always returns artifacts
|
| 88 |
+
)
|
| 89 |
+
query = state["messages"][-1].content
|
| 90 |
+
results = await adobe_help_search.ainvoke(query)
|
| 91 |
|
| 92 |
+
urls = list(r["url"] for r in results)
|
| 93 |
+
tool = TavilyExtract(
|
| 94 |
+
extract_depth="basic",
|
| 95 |
+
include_images=False,
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
results = await tool.ainvoke({"urls": urls})
|
| 99 |
+
|
| 100 |
+
if "results" in results:
|
| 101 |
+
all_text = list(r["raw_content"] for r in results["results"])
|
| 102 |
+
else:
|
| 103 |
+
all_text = []
|
| 104 |
+
|
| 105 |
+
prompt = prompt.format(
|
| 106 |
+
query=query,
|
| 107 |
+
text="\n***\n".join(all_text),
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
url_summary = await llm.ainvoke([HumanMessage(content=prompt)])
|
| 111 |
+
|
| 112 |
+
return {"messages": [url_summary], "url_references": results["results"]}
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
async def search_rag(state: TutorialState, config: RunnableConfig):
|
| 116 |
+
|
| 117 |
+
chain = create_transcript_rag_chain(datastore, config)
|
| 118 |
+
|
| 119 |
+
response = await chain.ainvoke({"question": state["messages"][-1].content})
|
| 120 |
+
|
| 121 |
+
return {
|
| 122 |
+
"messages": [response],
|
| 123 |
+
"video_references": response.additional_kwargs["context"],
|
| 124 |
+
}
|
| 125 |
|
| 126 |
|
| 127 |
def join(state: TutorialState, config: RunnableConfig):
|
|
|
|
| 139 |
decision: Literal["yes", "no"] = Field(description="Yes or no decision.")
|
| 140 |
|
| 141 |
|
| 142 |
+
class URLReference(BaseModel):
|
| 143 |
+
summary: str
|
| 144 |
+
url: HttpUrl
|
| 145 |
+
|
| 146 |
+
|
| 147 |
def route_is_relevant(
|
| 148 |
state: TutorialState, config: RunnableConfig
|
| 149 |
) -> Command[Literal["research", "write_answer"]]:
|
|
|
|
| 155 |
YesNoDecision
|
| 156 |
)
|
| 157 |
|
| 158 |
+
human_messages = [
|
| 159 |
+
msg.content
|
| 160 |
+
for msg in state["messages"]
|
| 161 |
+
if isinstance(msg, HumanMessage)
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
if len(human_messages) > 0:
|
| 165 |
+
query = human_messages[-1]
|
| 166 |
+
else:
|
| 167 |
+
query = state["query"]
|
| 168 |
+
|
| 169 |
# format the prompt
|
| 170 |
+
prompt = NODE_PROMPTS["relevance"].format(query=query)
|
| 171 |
|
| 172 |
relevance = llm.invoke([HumanMessage(content=prompt)])
|
| 173 |
where = "research" if relevance.decision == "yes" else "write_answer"
|
| 174 |
+
answer = (
|
| 175 |
+
f"Query is {'not' if relevance.decision == 'no' else ''} "
|
| 176 |
+
"relevant to Photoshop."
|
| 177 |
+
)
|
| 178 |
return Command(
|
| 179 |
+
update={"messages": [AIMessage(content=answer)], "query": query},
|
| 180 |
goto=where,
|
| 181 |
)
|
| 182 |
|
| 183 |
|
| 184 |
+
class IsComplete(BaseModel):
|
| 185 |
+
decision: Literal["yes", "no"] = Field(description="Yes or no decision.")
|
| 186 |
+
new_query: str = Field(description="Query for additional research.")
|
| 187 |
+
|
| 188 |
+
|
| 189 |
def route_is_complete(
|
| 190 |
state: TutorialState, config: RunnableConfig
|
| 191 |
+
) -> Command[Literal["research", "write_answer"]]:
|
| 192 |
+
|
| 193 |
+
# retrieve the LLM
|
| 194 |
+
configurable = Configuration.from_runnable_config(config)
|
| 195 |
+
|
| 196 |
+
if state["loop_count"] >= int(configurable.max_research_loops):
|
| 197 |
+
return Command(
|
| 198 |
+
update={
|
| 199 |
+
"messages": [
|
| 200 |
+
AIMessage(
|
| 201 |
+
content="Research loop count is too large. Do your best with what you have."
|
| 202 |
+
)
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
goto="write_answer",
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
cls = ChatAPISelector.get(configurable.llm_api, ChatOpenAI)
|
| 209 |
+
llm = cls(model=configurable.llm_tool_model).with_structured_output(
|
| 210 |
+
YesNoDecision
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
ai_messages = list(
|
| 214 |
+
msg.content for msg in state["messages"] if isinstance(msg, AIMessage)
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
# format the prompt
|
| 218 |
+
prompt = NODE_PROMPTS["completeness"].format(
|
| 219 |
+
query=state["query"], responses="\n\n".join(ai_messages)
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
completeness = llm.invoke([HumanMessage(content=prompt)])
|
| 223 |
+
where = "write_answer" if "yes" in completeness.decision else "research"
|
| 224 |
+
|
| 225 |
+
# Convert YesNoDecision to AIMessage
|
| 226 |
+
decision_message = AIMessage(
|
| 227 |
+
content=f"Research completeness: {completeness.decision}"
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
return Command(
|
| 231 |
+
update={"messages": [decision_message]},
|
| 232 |
+
goto=where,
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def write_answer(state: TutorialState, config: RunnableConfig):
|
| 237 |
+
|
| 238 |
+
# retrieve the LLM
|
| 239 |
+
configurable = Configuration.from_runnable_config(config)
|
| 240 |
+
cls = ChatAPISelector.get(configurable.llm_api, ChatOpenAI)
|
| 241 |
+
llm = cls(model=configurable.llm_tool_model)
|
| 242 |
+
|
| 243 |
+
ai_messages = list(
|
| 244 |
+
msg.content for msg in state["messages"] if isinstance(msg, AIMessage)
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
# format the prompt
|
| 248 |
+
prompt = NODE_PROMPTS["final_answer"].format(
|
| 249 |
+
query=state["query"], responses="\n\n".join(ai_messages)
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
final_answer = llm.invoke([HumanMessage(content=prompt)])
|
| 253 |
+
|
| 254 |
+
return {"messages": [final_answer]}
|
| 255 |
|
| 256 |
|
| 257 |
graph_builder = StateGraph(TutorialState)
|
|
|
|
| 270 |
# {"yes": research.__name__, "no": write_answer.__name__},
|
| 271 |
# )
|
| 272 |
graph_builder.add_node(route_is_relevant)
|
| 273 |
+
graph_builder.add_node(route_is_complete, defer=True)
|
| 274 |
+
|
| 275 |
graph_builder.add_edge(START, route_is_relevant.__name__)
|
| 276 |
graph_builder.add_edge(research.__name__, search_help.__name__)
|
| 277 |
graph_builder.add_edge(research.__name__, search_rag.__name__)
|
| 278 |
+
graph_builder.add_edge(search_help.__name__, route_is_complete.__name__)
|
| 279 |
+
graph_builder.add_edge(search_rag.__name__, route_is_complete.__name__)
|
| 280 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
graph_builder.add_edge(write_answer.__name__, END)
|
| 282 |
|
| 283 |
|
| 284 |
graph = graph_builder.compile()
|
| 285 |
+
asyncio.run(datastore.from_json_globs(Configuration().transcript_glob))
|
pstuts_rag/pstuts_rag/prompts.py
CHANGED
|
@@ -164,3 +164,67 @@ is relevant to Adobe Photoshop, otherwise no.
|
|
| 164 |
|
| 165 |
Relevant?
|
| 166 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
Relevant?
|
| 166 |
"""
|
| 167 |
+
|
| 168 |
+
NODE_PROMPTS[
|
| 169 |
+
"search_summary"
|
| 170 |
+
] = """
|
| 171 |
+
<QUERY>
|
| 172 |
+
{query}
|
| 173 |
+
</QUERY>
|
| 174 |
+
<WEBSITE_TEXT>
|
| 175 |
+
{text}
|
| 176 |
+
</WEBSITE_TEXT>
|
| 177 |
+
|
| 178 |
+
<TASK>
|
| 179 |
+
Use WEBSITE_TEXT to produce a summarized
|
| 180 |
+
answer to the QUERY.
|
| 181 |
+
|
| 182 |
+
Aim for the audience at a level of an advanced high school student.
|
| 183 |
+
Do not invent material that is not in the text.
|
| 184 |
+
|
| 185 |
+
Your output should be at most 200 words long.
|
| 186 |
+
</TASK>
|
| 187 |
+
"""
|
| 188 |
+
|
| 189 |
+
NODE_PROMPTS[
|
| 190 |
+
"completeness"
|
| 191 |
+
] = """
|
| 192 |
+
<QUERY>
|
| 193 |
+
{query}
|
| 194 |
+
</QUERY>
|
| 195 |
+
<RESEARCH>
|
| 196 |
+
{responses}
|
| 197 |
+
</RESEARCH>
|
| 198 |
+
|
| 199 |
+
<TASK>
|
| 200 |
+
Your goal is to evaluate if RESEARCH is sufficiently detailed to provide a comprehensive
|
| 201 |
+
and clear answer for QUERY.
|
| 202 |
+
|
| 203 |
+
If the RESEARCH is sufficiently complete, state "yes" as your decision.
|
| 204 |
+
|
| 205 |
+
If new terms were introduced in RESEARCH that are not sufficiently explained,
|
| 206 |
+
or the QUERY is not sufficiently addressed, response as "no".
|
| 207 |
+
</TASK>
|
| 208 |
+
|
| 209 |
+
<FINAL_CHECK>
|
| 210 |
+
Your response must be either "yes" or "no".
|
| 211 |
+
</FINAL_CHECK>
|
| 212 |
+
"""
|
| 213 |
+
|
| 214 |
+
NODE_PROMPTS[
|
| 215 |
+
"final_answer"
|
| 216 |
+
] = """
|
| 217 |
+
<QUERY>
|
| 218 |
+
{query}
|
| 219 |
+
</QUERY>
|
| 220 |
+
<RESEARCH>
|
| 221 |
+
{responses}
|
| 222 |
+
</RESEARCH>
|
| 223 |
+
|
| 224 |
+
<TASK>
|
| 225 |
+
Use the content in RESEARCH to provide a detailed answer to the QUERY.
|
| 226 |
+
Do not add the material, fully ground yourself in the research context.
|
| 227 |
+
|
| 228 |
+
End your response with "I hope you're happy!".
|
| 229 |
+
</TASK>
|
| 230 |
+
"""
|
pstuts_rag/pstuts_rag/rag_for_transcripts.py
CHANGED
|
@@ -58,10 +58,10 @@ def post_process_response(
|
|
| 58 |
else answer.content
|
| 59 |
)
|
| 60 |
# Only append references if the model provided a substantive answer
|
| 61 |
-
if "I don't know" not in answer.content:
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
|
| 66 |
# Create new message with references and preserve original context metadata
|
| 67 |
output: AIMessage = answer.model_copy(
|
|
|
|
| 58 |
else answer.content
|
| 59 |
)
|
| 60 |
# Only append references if the model provided a substantive answer
|
| 61 |
+
# if "I don't know" not in answer.content:
|
| 62 |
+
# text_w_references = "\n".join(
|
| 63 |
+
# [str(text_w_references), "**REFERENCES**", references]
|
| 64 |
+
# )
|
| 65 |
|
| 66 |
# Create new message with references and preserve original context metadata
|
| 67 |
output: AIMessage = answer.model_copy(
|
pyproject.toml
CHANGED
|
@@ -49,6 +49,7 @@ dependencies = [
|
|
| 49 |
"langchain-ollama>=0.3.2",
|
| 50 |
"simsimd>=6.2.1",
|
| 51 |
"langgraph-cli[inmem]>=0.1.55",
|
|
|
|
| 52 |
]
|
| 53 |
authors = [{ name = "Marko Budisic", email = "[email protected]" }]
|
| 54 |
license = "MIT"
|
|
|
|
| 49 |
"langchain-ollama>=0.3.2",
|
| 50 |
"simsimd>=6.2.1",
|
| 51 |
"langgraph-cli[inmem]>=0.1.55",
|
| 52 |
+
"langchain-tavily>=0.2.0",
|
| 53 |
]
|
| 54 |
authors = [{ name = "Marko Budisic", email = "[email protected]" }]
|
| 55 |
license = "MIT"
|
temp_function.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def enter_chain(message: str):
|
| 2 |
+
results = {
|
| 3 |
+
"messages": [HumanMessage(content=message)],
|
| 4 |
+
"team_members": ["VideoArchiveSearch", "AdobeHelp"],
|
| 5 |
+
}
|
| 6 |
+
return results
|
uv.lock
CHANGED
|
@@ -1879,6 +1879,22 @@ wheels = [
|
|
| 1879 |
{ url = "https://files.pythonhosted.org/packages/68/01/22dad84373ba282237a3351547443c9c94c39fe75f71a1759f97cfa89725/langchain_qdrant-0.2.0-py3-none-any.whl", hash = "sha256:8eab5b8a553204ddb809d8183a6f1bc12fc265688592d9d897388f6939c79bf8", size = 23406 },
|
| 1880 |
]
|
| 1881 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1882 |
[[package]]
|
| 1883 |
name = "langchain-text-splitters"
|
| 1884 |
version = "0.3.8"
|
|
@@ -3741,6 +3757,7 @@ dependencies = [
|
|
| 3741 |
{ name = "langchain-ollama" },
|
| 3742 |
{ name = "langchain-openai" },
|
| 3743 |
{ name = "langchain-qdrant" },
|
|
|
|
| 3744 |
{ name = "langgraph" },
|
| 3745 |
{ name = "langgraph-cli", extra = ["inmem"] },
|
| 3746 |
{ name = "langsmith" },
|
|
@@ -3810,6 +3827,7 @@ requires-dist = [
|
|
| 3810 |
{ name = "langchain-ollama", specifier = ">=0.3.2" },
|
| 3811 |
{ name = "langchain-openai" },
|
| 3812 |
{ name = "langchain-qdrant", specifier = ">=0.2.0" },
|
|
|
|
| 3813 |
{ name = "langgraph", specifier = ">=0.2.55" },
|
| 3814 |
{ name = "langgraph-cli", extras = ["inmem"], specifier = ">=0.1.55" },
|
| 3815 |
{ name = "langsmith", specifier = ">=0.0.50" },
|
|
|
|
| 1879 |
{ url = "https://files.pythonhosted.org/packages/68/01/22dad84373ba282237a3351547443c9c94c39fe75f71a1759f97cfa89725/langchain_qdrant-0.2.0-py3-none-any.whl", hash = "sha256:8eab5b8a553204ddb809d8183a6f1bc12fc265688592d9d897388f6939c79bf8", size = 23406 },
|
| 1880 |
]
|
| 1881 |
|
| 1882 |
+
[[package]]
|
| 1883 |
+
name = "langchain-tavily"
|
| 1884 |
+
version = "0.2.0"
|
| 1885 |
+
source = { registry = "https://pypi.org/simple" }
|
| 1886 |
+
dependencies = [
|
| 1887 |
+
{ name = "aiohttp" },
|
| 1888 |
+
{ name = "langchain" },
|
| 1889 |
+
{ name = "langchain-core" },
|
| 1890 |
+
{ name = "mypy" },
|
| 1891 |
+
{ name = "requests" },
|
| 1892 |
+
]
|
| 1893 |
+
sdist = { url = "https://files.pythonhosted.org/packages/df/63/e7c41f837914806b3c255c4c46d0948528101279656a523b7e11be740e06/langchain_tavily-0.2.0.tar.gz", hash = "sha256:b400525d6d2c28902d2acb25af28751aa1a9a1f99c7880eea4d701f3993736fb", size = 19813 }
|
| 1894 |
+
wheels = [
|
| 1895 |
+
{ url = "https://files.pythonhosted.org/packages/b5/a7/2e59086df6006ac09a8d8d8f43683ff2f84608d69984bf1593c92faeefb0/langchain_tavily-0.2.0-py3-none-any.whl", hash = "sha256:a5b780f96c80d5a3e7c933da2d603cb26ba94b10f7c1ac4b89ce5b123c7541b4", size = 23580 },
|
| 1896 |
+
]
|
| 1897 |
+
|
| 1898 |
[[package]]
|
| 1899 |
name = "langchain-text-splitters"
|
| 1900 |
version = "0.3.8"
|
|
|
|
| 3757 |
{ name = "langchain-ollama" },
|
| 3758 |
{ name = "langchain-openai" },
|
| 3759 |
{ name = "langchain-qdrant" },
|
| 3760 |
+
{ name = "langchain-tavily" },
|
| 3761 |
{ name = "langgraph" },
|
| 3762 |
{ name = "langgraph-cli", extra = ["inmem"] },
|
| 3763 |
{ name = "langsmith" },
|
|
|
|
| 3827 |
{ name = "langchain-ollama", specifier = ">=0.3.2" },
|
| 3828 |
{ name = "langchain-openai" },
|
| 3829 |
{ name = "langchain-qdrant", specifier = ">=0.2.0" },
|
| 3830 |
+
{ name = "langchain-tavily", specifier = ">=0.2.0" },
|
| 3831 |
{ name = "langgraph", specifier = ">=0.2.55" },
|
| 3832 |
{ name = "langgraph-cli", extras = ["inmem"], specifier = ">=0.1.55" },
|
| 3833 |
{ name = "langsmith", specifier = ">=0.0.50" },
|