Spaces:
Sleeping
Sleeping
refactor: Moved JSON loading functions and video transcript loaders from loader.py to datastore.py for better organization
Browse files- app.py +1 -1
- app_simple_rag.py +1 -1
- pstuts_rag/pstuts_rag/datastore.py +186 -1
- pstuts_rag/pstuts_rag/loader.py +0 -193
app.py
CHANGED
|
@@ -29,7 +29,7 @@ import pstuts_rag.rag
|
|
| 29 |
|
| 30 |
from pstuts_rag.graph import create_rag_node
|
| 31 |
|
| 32 |
-
from pstuts_rag.
|
| 33 |
from pstuts_rag.prompts import SUPERVISOR_SYSTEM
|
| 34 |
|
| 35 |
import nest_asyncio
|
|
|
|
| 29 |
|
| 30 |
from pstuts_rag.graph import create_rag_node
|
| 31 |
|
| 32 |
+
from pstuts_rag.datastore import load_json_files
|
| 33 |
from pstuts_rag.prompts import SUPERVISOR_SYSTEM
|
| 34 |
|
| 35 |
import nest_asyncio
|
app_simple_rag.py
CHANGED
|
@@ -16,7 +16,7 @@ from qdrant_client import QdrantClient
|
|
| 16 |
|
| 17 |
import pstuts_rag.datastore
|
| 18 |
import pstuts_rag.rag
|
| 19 |
-
from pstuts_rag.
|
| 20 |
|
| 21 |
|
| 22 |
@dataclass
|
|
|
|
| 16 |
|
| 17 |
import pstuts_rag.datastore
|
| 18 |
import pstuts_rag.rag
|
| 19 |
+
from pstuts_rag.datastore import load_json_files
|
| 20 |
|
| 21 |
|
| 22 |
@dataclass
|
pstuts_rag/pstuts_rag/datastore.py
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
import asyncio
|
|
|
|
| 2 |
from typing import List, Dict, Iterator, Any
|
| 3 |
import uuid
|
| 4 |
|
| 5 |
|
|
|
|
| 6 |
from langchain_experimental.text_splitter import SemanticChunker
|
| 7 |
from langchain_openai.embeddings import OpenAIEmbeddings
|
| 8 |
from langchain_core.documents import Document
|
| 9 |
from langchain_core.embeddings import Embeddings
|
| 10 |
-
from .loader import VideoTranscriptBulkLoader, VideoTranscriptChunkLoader
|
| 11 |
|
| 12 |
from langchain_core.vectorstores import VectorStoreRetriever
|
| 13 |
|
|
@@ -22,6 +23,119 @@ def batch(iterable: List[Any], size: int = 16) -> Iterator[List[Any]]:
|
|
| 22 |
yield iterable[i : i + size]
|
| 23 |
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
async def chunk_transcripts(
|
| 26 |
json_transcripts: List[Dict[str, Any]],
|
| 27 |
semantic_chunker_embedding_model: Embeddings = OpenAIEmbeddings(
|
|
@@ -236,3 +350,74 @@ class DatastoreManager:
|
|
| 236 |
return self.vector_store.as_retriever(
|
| 237 |
search_kwargs={"k": n_context_docs}
|
| 238 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import asyncio
|
| 2 |
+
from pathlib import Path
|
| 3 |
from typing import List, Dict, Iterator, Any
|
| 4 |
import uuid
|
| 5 |
|
| 6 |
|
| 7 |
+
from langchain_core.document_loaders import BaseLoader
|
| 8 |
from langchain_experimental.text_splitter import SemanticChunker
|
| 9 |
from langchain_openai.embeddings import OpenAIEmbeddings
|
| 10 |
from langchain_core.documents import Document
|
| 11 |
from langchain_core.embeddings import Embeddings
|
|
|
|
| 12 |
|
| 13 |
from langchain_core.vectorstores import VectorStoreRetriever
|
| 14 |
|
|
|
|
| 23 |
yield iterable[i : i + size]
|
| 24 |
|
| 25 |
|
| 26 |
+
class VideoTranscriptBulkLoader(BaseLoader):
|
| 27 |
+
"""
|
| 28 |
+
Loads video transcripts as bulk documents for document processing pipelines.
|
| 29 |
+
|
| 30 |
+
Each video becomes a single document with all transcript sentences concatenated.
|
| 31 |
+
Useful for semantic search across entire video content.
|
| 32 |
+
|
| 33 |
+
Inherits from LangChain's BaseLoader for compatibility with document processing chains.
|
| 34 |
+
|
| 35 |
+
Attributes:
|
| 36 |
+
json_payload (List[Dict]): List of video dictionaries containing transcript data
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(self, json_payload: List[Dict]):
|
| 40 |
+
"""
|
| 41 |
+
Initialize the bulk loader with video transcript data.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
json_payload (List[Dict]): List of video dictionaries, each containing:
|
| 45 |
+
- transcripts: List of transcript segments
|
| 46 |
+
- qa: Q&A data (optional)
|
| 47 |
+
- url: Video URL
|
| 48 |
+
- other metadata fields
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
self.json_payload = json_payload
|
| 52 |
+
|
| 53 |
+
def lazy_load(self) -> Iterator[Document]:
|
| 54 |
+
"""
|
| 55 |
+
Lazy loader that yields Document objects with concatenated transcripts.
|
| 56 |
+
|
| 57 |
+
Creates one Document per video with all transcript sentences joined by newlines.
|
| 58 |
+
Metadata includes all video fields except 'transcripts' and 'qa'.
|
| 59 |
+
The 'url' field is renamed to 'source' for LangChain compatibility.
|
| 60 |
+
|
| 61 |
+
Yields:
|
| 62 |
+
Document: LangChain Document with page_content as concatenated transcript
|
| 63 |
+
and metadata containing video information
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
for video in self.json_payload:
|
| 67 |
+
metadata = dict(video)
|
| 68 |
+
metadata.pop("transcripts", None)
|
| 69 |
+
metadata.pop("qa", None)
|
| 70 |
+
# Rename 'url' key to 'source' in metadata if it exists
|
| 71 |
+
if "url" in metadata:
|
| 72 |
+
metadata["source"] = metadata.pop("url")
|
| 73 |
+
yield Document(
|
| 74 |
+
page_content="\n".join(
|
| 75 |
+
t["sent"] for t in video["transcripts"]
|
| 76 |
+
),
|
| 77 |
+
metadata=metadata,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class VideoTranscriptChunkLoader(BaseLoader):
|
| 82 |
+
"""
|
| 83 |
+
Loads video transcripts as individual chunk documents for fine-grained processing.
|
| 84 |
+
|
| 85 |
+
Each transcript segment becomes a separate document with timing information.
|
| 86 |
+
Useful for precise timestamp-based retrieval and time-sensitive queries.
|
| 87 |
+
|
| 88 |
+
Inherits from LangChain's BaseLoader for compatibility with document processing chains.
|
| 89 |
+
|
| 90 |
+
Attributes:
|
| 91 |
+
json_payload (List[Dict]): List of video dictionaries containing transcript data
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
def __init__(self, json_payload: List[Dict]):
|
| 95 |
+
"""
|
| 96 |
+
Initialize the chunk loader with video transcript data.
|
| 97 |
+
|
| 98 |
+
Args:
|
| 99 |
+
json_payload (List[Dict]): List of video dictionaries, each containing:
|
| 100 |
+
- transcripts: List of transcript segments with timing
|
| 101 |
+
- qa: Q&A data (optional)
|
| 102 |
+
- url: Video URL
|
| 103 |
+
- other metadata fields
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
self.json_payload = json_payload
|
| 107 |
+
|
| 108 |
+
def lazy_load(self) -> Iterator[Document]:
|
| 109 |
+
"""
|
| 110 |
+
Lazy loader that yields individual Document objects for each transcript segment.
|
| 111 |
+
|
| 112 |
+
Creates one Document per transcript segment with timing metadata.
|
| 113 |
+
Each document contains a single transcript sentence with precise start/end times.
|
| 114 |
+
The 'url' field is renamed to 'source' for LangChain compatibility.
|
| 115 |
+
|
| 116 |
+
Yields:
|
| 117 |
+
Document: LangChain Document with page_content as single transcript sentence
|
| 118 |
+
and metadata containing video info plus time_start and time_end
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
for video in self.json_payload:
|
| 122 |
+
metadata = dict(video)
|
| 123 |
+
transcripts = metadata.pop("transcripts", None)
|
| 124 |
+
metadata.pop("qa", None)
|
| 125 |
+
# Rename 'url' key to 'source' in metadata if it exists
|
| 126 |
+
if "url" in metadata:
|
| 127 |
+
metadata["source"] = metadata.pop("url")
|
| 128 |
+
for transcript in transcripts:
|
| 129 |
+
yield Document(
|
| 130 |
+
page_content=transcript["sent"],
|
| 131 |
+
metadata=metadata
|
| 132 |
+
| {
|
| 133 |
+
"time_start": transcript["begin"],
|
| 134 |
+
"time_end": transcript["end"],
|
| 135 |
+
},
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
async def chunk_transcripts(
|
| 140 |
json_transcripts: List[Dict[str, Any]],
|
| 141 |
semantic_chunker_embedding_model: Embeddings = OpenAIEmbeddings(
|
|
|
|
| 350 |
return self.vector_store.as_retriever(
|
| 351 |
search_kwargs={"k": n_context_docs}
|
| 352 |
)
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def load_json_string(content: str, group: str):
|
| 356 |
+
"""
|
| 357 |
+
Parse JSON string content and add group metadata to each video entry.
|
| 358 |
+
|
| 359 |
+
Args:
|
| 360 |
+
content (str): JSON string containing a list of video objects
|
| 361 |
+
group (str): Group identifier to be added to each video entry
|
| 362 |
+
|
| 363 |
+
Returns:
|
| 364 |
+
List[Dict]: List of video dictionaries with added 'group' field
|
| 365 |
+
|
| 366 |
+
Raises:
|
| 367 |
+
json.JSONDecodeError: If content is not valid JSON
|
| 368 |
+
"""
|
| 369 |
+
payload: List[Dict] = json.loads(content)
|
| 370 |
+
[video.update({"group": group}) for video in payload]
|
| 371 |
+
return payload
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
async def load_single_json(filepath):
|
| 375 |
+
"""
|
| 376 |
+
Asynchronously load and parse a single JSON file containing video data.
|
| 377 |
+
|
| 378 |
+
Args:
|
| 379 |
+
filepath (str | Path): Path to the JSON file to load
|
| 380 |
+
|
| 381 |
+
Returns:
|
| 382 |
+
List[Dict]: List of video dictionaries with group field set to filename
|
| 383 |
+
|
| 384 |
+
Raises:
|
| 385 |
+
FileNotFoundError: If the specified file doesn't exist
|
| 386 |
+
json.JSONDecodeError: If file content is not valid JSON
|
| 387 |
+
PermissionError: If file cannot be read due to permissions
|
| 388 |
+
"""
|
| 389 |
+
my_path = Path(filepath)
|
| 390 |
+
|
| 391 |
+
async with aiofiles.open(my_path, mode="r", encoding="utf-8") as f:
|
| 392 |
+
content = await f.read()
|
| 393 |
+
payload = load_json_string(content, my_path.name)
|
| 394 |
+
|
| 395 |
+
return payload
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
async def load_json_files(path_pattern: List[str]):
|
| 399 |
+
"""
|
| 400 |
+
Asynchronously load and parse multiple JSON files matching given patterns.
|
| 401 |
+
|
| 402 |
+
Uses glob patterns to find files and loads them concurrently for better performance.
|
| 403 |
+
All results are flattened into a single list.
|
| 404 |
+
|
| 405 |
+
Args:
|
| 406 |
+
path_pattern (List[str]): List of glob patterns to match JSON files
|
| 407 |
+
(supports recursive patterns with **)
|
| 408 |
+
|
| 409 |
+
Returns:
|
| 410 |
+
List[Dict]: Flattened list of all video dictionaries from matched files
|
| 411 |
+
|
| 412 |
+
Raises:
|
| 413 |
+
FileNotFoundError: If any matched file doesn't exist during loading
|
| 414 |
+
json.JSONDecodeError: If any file content is not valid JSON
|
| 415 |
+
PermissionError: If any file cannot be read due to permissions
|
| 416 |
+
"""
|
| 417 |
+
files = []
|
| 418 |
+
for f in path_pattern:
|
| 419 |
+
(files.extend(glob.glob(f, recursive=True)))
|
| 420 |
+
|
| 421 |
+
tasks = [load_single_json(f) for f in files]
|
| 422 |
+
results = await asyncio.gather(*tasks)
|
| 423 |
+
return [item for sublist in results for item in sublist] # flatten
|
pstuts_rag/pstuts_rag/loader.py
DELETED
|
@@ -1,193 +0,0 @@
|
|
| 1 |
-
import glob
|
| 2 |
-
import json
|
| 3 |
-
from langchain_core.document_loaders import BaseLoader
|
| 4 |
-
from typing import List, Dict, Iterator
|
| 5 |
-
from langchain_core.documents import Document
|
| 6 |
-
|
| 7 |
-
import aiofiles
|
| 8 |
-
import asyncio
|
| 9 |
-
from pathlib import Path
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
def load_json_string(content: str, group: str):
|
| 13 |
-
"""
|
| 14 |
-
Parse JSON string content and add group metadata to each video entry.
|
| 15 |
-
|
| 16 |
-
Args:
|
| 17 |
-
content (str): JSON string containing a list of video objects
|
| 18 |
-
group (str): Group identifier to be added to each video entry
|
| 19 |
-
|
| 20 |
-
Returns:
|
| 21 |
-
List[Dict]: List of video dictionaries with added 'group' field
|
| 22 |
-
|
| 23 |
-
Raises:
|
| 24 |
-
json.JSONDecodeError: If content is not valid JSON
|
| 25 |
-
"""
|
| 26 |
-
payload: List[Dict] = json.loads(content)
|
| 27 |
-
[video.update({"group": group}) for video in payload]
|
| 28 |
-
return payload
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
async def load_single_json(filepath):
|
| 32 |
-
"""
|
| 33 |
-
Asynchronously load and parse a single JSON file containing video data.
|
| 34 |
-
|
| 35 |
-
Args:
|
| 36 |
-
filepath (str | Path): Path to the JSON file to load
|
| 37 |
-
|
| 38 |
-
Returns:
|
| 39 |
-
List[Dict]: List of video dictionaries with group field set to filename
|
| 40 |
-
|
| 41 |
-
Raises:
|
| 42 |
-
FileNotFoundError: If the specified file doesn't exist
|
| 43 |
-
json.JSONDecodeError: If file content is not valid JSON
|
| 44 |
-
PermissionError: If file cannot be read due to permissions
|
| 45 |
-
"""
|
| 46 |
-
my_path = Path(filepath)
|
| 47 |
-
|
| 48 |
-
async with aiofiles.open(my_path, mode="r", encoding="utf-8") as f:
|
| 49 |
-
content = await f.read()
|
| 50 |
-
payload = load_json_string(content, my_path.name)
|
| 51 |
-
|
| 52 |
-
return payload
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
async def load_json_files(path_pattern: List[str]):
|
| 56 |
-
"""
|
| 57 |
-
Asynchronously load and parse multiple JSON files matching given patterns.
|
| 58 |
-
|
| 59 |
-
Uses glob patterns to find files and loads them concurrently for better performance.
|
| 60 |
-
All results are flattened into a single list.
|
| 61 |
-
|
| 62 |
-
Args:
|
| 63 |
-
path_pattern (List[str]): List of glob patterns to match JSON files
|
| 64 |
-
(supports recursive patterns with **)
|
| 65 |
-
|
| 66 |
-
Returns:
|
| 67 |
-
List[Dict]: Flattened list of all video dictionaries from matched files
|
| 68 |
-
|
| 69 |
-
Raises:
|
| 70 |
-
FileNotFoundError: If any matched file doesn't exist during loading
|
| 71 |
-
json.JSONDecodeError: If any file content is not valid JSON
|
| 72 |
-
PermissionError: If any file cannot be read due to permissions
|
| 73 |
-
"""
|
| 74 |
-
files = []
|
| 75 |
-
for f in path_pattern:
|
| 76 |
-
(files.extend(glob.glob(f, recursive=True)))
|
| 77 |
-
|
| 78 |
-
tasks = [load_single_json(f) for f in files]
|
| 79 |
-
results = await asyncio.gather(*tasks)
|
| 80 |
-
return [item for sublist in results for item in sublist] # flatten
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
class VideoTranscriptBulkLoader(BaseLoader):
|
| 84 |
-
"""
|
| 85 |
-
Loads video transcripts as bulk documents for document processing pipelines.
|
| 86 |
-
|
| 87 |
-
Each video becomes a single document with all transcript sentences concatenated.
|
| 88 |
-
Useful for semantic search across entire video content.
|
| 89 |
-
|
| 90 |
-
Inherits from LangChain's BaseLoader for compatibility with document processing chains.
|
| 91 |
-
|
| 92 |
-
Attributes:
|
| 93 |
-
json_payload (List[Dict]): List of video dictionaries containing transcript data
|
| 94 |
-
"""
|
| 95 |
-
|
| 96 |
-
def __init__(self, json_payload: List[Dict]):
|
| 97 |
-
"""
|
| 98 |
-
Initialize the bulk loader with video transcript data.
|
| 99 |
-
|
| 100 |
-
Args:
|
| 101 |
-
json_payload (List[Dict]): List of video dictionaries, each containing:
|
| 102 |
-
- transcripts: List of transcript segments
|
| 103 |
-
- qa: Q&A data (optional)
|
| 104 |
-
- url: Video URL
|
| 105 |
-
- other metadata fields
|
| 106 |
-
"""
|
| 107 |
-
|
| 108 |
-
self.json_payload = json_payload
|
| 109 |
-
|
| 110 |
-
def lazy_load(self) -> Iterator[Document]:
|
| 111 |
-
"""
|
| 112 |
-
Lazy loader that yields Document objects with concatenated transcripts.
|
| 113 |
-
|
| 114 |
-
Creates one Document per video with all transcript sentences joined by newlines.
|
| 115 |
-
Metadata includes all video fields except 'transcripts' and 'qa'.
|
| 116 |
-
The 'url' field is renamed to 'source' for LangChain compatibility.
|
| 117 |
-
|
| 118 |
-
Yields:
|
| 119 |
-
Document: LangChain Document with page_content as concatenated transcript
|
| 120 |
-
and metadata containing video information
|
| 121 |
-
"""
|
| 122 |
-
|
| 123 |
-
for video in self.json_payload:
|
| 124 |
-
metadata = dict(video)
|
| 125 |
-
metadata.pop("transcripts", None)
|
| 126 |
-
metadata.pop("qa", None)
|
| 127 |
-
# Rename 'url' key to 'source' in metadata if it exists
|
| 128 |
-
if "url" in metadata:
|
| 129 |
-
metadata["source"] = metadata.pop("url")
|
| 130 |
-
yield Document(
|
| 131 |
-
page_content="\n".join(
|
| 132 |
-
t["sent"] for t in video["transcripts"]
|
| 133 |
-
),
|
| 134 |
-
metadata=metadata,
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
class VideoTranscriptChunkLoader(BaseLoader):
|
| 139 |
-
"""
|
| 140 |
-
Loads video transcripts as individual chunk documents for fine-grained processing.
|
| 141 |
-
|
| 142 |
-
Each transcript segment becomes a separate document with timing information.
|
| 143 |
-
Useful for precise timestamp-based retrieval and time-sensitive queries.
|
| 144 |
-
|
| 145 |
-
Inherits from LangChain's BaseLoader for compatibility with document processing chains.
|
| 146 |
-
|
| 147 |
-
Attributes:
|
| 148 |
-
json_payload (List[Dict]): List of video dictionaries containing transcript data
|
| 149 |
-
"""
|
| 150 |
-
|
| 151 |
-
def __init__(self, json_payload: List[Dict]):
|
| 152 |
-
"""
|
| 153 |
-
Initialize the chunk loader with video transcript data.
|
| 154 |
-
|
| 155 |
-
Args:
|
| 156 |
-
json_payload (List[Dict]): List of video dictionaries, each containing:
|
| 157 |
-
- transcripts: List of transcript segments with timing
|
| 158 |
-
- qa: Q&A data (optional)
|
| 159 |
-
- url: Video URL
|
| 160 |
-
- other metadata fields
|
| 161 |
-
"""
|
| 162 |
-
|
| 163 |
-
self.json_payload = json_payload
|
| 164 |
-
|
| 165 |
-
def lazy_load(self) -> Iterator[Document]:
|
| 166 |
-
"""
|
| 167 |
-
Lazy loader that yields individual Document objects for each transcript segment.
|
| 168 |
-
|
| 169 |
-
Creates one Document per transcript segment with timing metadata.
|
| 170 |
-
Each document contains a single transcript sentence with precise start/end times.
|
| 171 |
-
The 'url' field is renamed to 'source' for LangChain compatibility.
|
| 172 |
-
|
| 173 |
-
Yields:
|
| 174 |
-
Document: LangChain Document with page_content as single transcript sentence
|
| 175 |
-
and metadata containing video info plus time_start and time_end
|
| 176 |
-
"""
|
| 177 |
-
|
| 178 |
-
for video in self.json_payload:
|
| 179 |
-
metadata = dict(video)
|
| 180 |
-
transcripts = metadata.pop("transcripts", None)
|
| 181 |
-
metadata.pop("qa", None)
|
| 182 |
-
# Rename 'url' key to 'source' in metadata if it exists
|
| 183 |
-
if "url" in metadata:
|
| 184 |
-
metadata["source"] = metadata.pop("url")
|
| 185 |
-
for transcript in transcripts:
|
| 186 |
-
yield Document(
|
| 187 |
-
page_content=transcript["sent"],
|
| 188 |
-
metadata=metadata
|
| 189 |
-
| {
|
| 190 |
-
"time_start": transcript["begin"],
|
| 191 |
-
"time_end": transcript["end"],
|
| 192 |
-
},
|
| 193 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|