File size: 16,201 Bytes
54e8a79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import streamlit as st
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import pandas as pd
import os
from evaluate import MisinformationPredictor
from src.evidence.im2im_retrieval import ImageCorpus
from src.evidence.text2text_retrieval import SemanticSimilarity
from src.utils.path_utils import get_project_root
from typing import List, Optional, Tuple
from dataclasses import dataclass
# Initialize BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large"
)
PROJECT_ROOT = get_project_root()
@dataclass
class Evidence:
evidence_id: str
dataset: str
text: Optional[str]
image: Optional[Image.Image]
caption: Optional[str]
image_path: Optional[str]
classification_result_all: Optional[Tuple[str, str, str, str]] = None
classification_result_final: Optional[str] = None
CLASSIFICATION_CATEGORIES = ["support", "refute", "not_enough_information"]
def generate_caption(image: Image.Image) -> str:
"""Generates a caption for a given image."""
try:
with st.spinner("Generating caption..."):
inputs = processor(image, return_tensors="pt")
output = model.generate(**inputs)
return processor.decode(output[0], skip_special_tokens=True)
except Exception as e:
st.error(f"Error generating caption: {e}")
return ""
def enrich_text_with_caption(text: str, image_caption: str) -> str:
"""Appends the image caption to the given text."""
if image_caption:
return f"{text}. {image_caption}"
return text
@st.cache_data
def get_train_df():
data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
train_csv_path = os.path.join(data_dir, "train_enriched.csv")
return pd.read_csv(train_csv_path)
@st.cache_data
def get_test_df():
data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
train_csv_path = os.path.join(data_dir, "test_enriched.csv")
return pd.read_csv(train_csv_path)
@st.cache_data
def get_semantic_similarity(
train_embeddings_file: str,
test_embeddings_file: str,
train_df: pd.DataFrame,
test_df: pd.DataFrame,
):
return SemanticSimilarity(
train_embeddings_file=train_embeddings_file,
test_embeddings_file=test_embeddings_file,
train_df=train_df,
test_df=test_df,
)
def retrieve_evidences_by_text(
query: str,
top_k: int = 5,
) -> List[Evidence]:
"""
Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.
Args:
query (str): The query text to perform the search.
top_k (int): Number of top results to retrieve.
Returns:
List[Evidence]: A list of retrieved evidence objects.
"""
train_embeddings_file = os.path.join(PROJECT_ROOT, "train_embeddings.h5")
test_embeddings_file = os.path.join(PROJECT_ROOT, "test_embeddings.h5")
similarity = get_semantic_similarity(
train_embeddings_file=train_embeddings_file,
test_embeddings_file=test_embeddings_file,
train_df=get_train_df(),
test_df=get_test_df(),
)
evidences = []
try:
# Perform semantic search across both train and test datasets
results = similarity.search(query=query, top_k=top_k)
# Retrieve evidence rows based on the search results
for evidence_id, score in results:
# Determine whether the ID belongs to train or test set
if evidence_id.startswith("train_"):
df = similarity.train_csv
elif evidence_id.startswith("test_"):
df = similarity.test_csv
else:
continue # Skip invalid IDs
# Extract the row by ID
row = df[df["id"] == int(evidence_id.split("_")[1])].iloc[0]
evidence_text = row.get("evidence_enriched")
evidence_image_caption = row.get("evidence_image_caption")
evidence_image_path = row.get("evidence_image")
evidence_image = None
full_image_path = None
# Load the image if a valid path is provided
if pd.notna(evidence_image_path):
full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
try:
evidence_image = Image.open(full_image_path).convert("RGB")
except Exception as e:
st.error(f"Failed to load image {evidence_image_path}: {e}")
evidence_id_number = evidence_id.split("_")[1]
evidence_dataset = evidence_id.split("_")[0]
# Create an Evidence object
evidences.append(
Evidence(
text=evidence_text,
image=evidence_image,
caption=evidence_image_caption,
evidence_id=evidence_id_number,
dataset=evidence_dataset,
image_path=full_image_path,
)
)
except Exception as e:
st.error(f"Error performing semantic search: {e}")
return evidences
@st.cache_data
def get_image_corpus(image_features):
return ImageCorpus(image_features)
def retrieve_evidences_by_image(
image_path: str,
top_k: int = 5,
) -> List[Evidence]:
"""
Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.
Args:
query (str): The query text to perform the search.
top_k (int): Number of top results to retrieve.
Returns:
List[Evidence]: A list of retrieved evidence objects.
"""
image_features = os.path.join(PROJECT_ROOT, "evidence_features.pkl")
image_corpus = get_image_corpus(image_features)
evidences = []
try:
# Perform semantic search across both train and test datasets
results = image_corpus.retrieve_similar_images(image_path, top_k=top_k)
# Retrieve evidence rows based on the search results
for evidence_path, score in results:
evidence_id = evidence_path.split("/")[-1]
evidence_id_number = evidence_id.split("_")[0]
# Determine whether the ID belongs to train or test set
if "train" in evidence_path:
df = get_train_df()
elif "test" in evidence_path:
df = get_test_df()
else:
continue # Skip invalid IDs
# Extract the row by ID
row = df[df["id"] == int(evidence_id_number)].iloc[0]
evidence_text = row.get("evidence_enriched")
evidence_image_caption = row.get("evidence_image_caption")
evidence_image_path = row.get("evidence_image")
evidence_image = None
full_image_path = None
# Load the image if a valid path is provided
if pd.notna(evidence_image_path):
full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
try:
evidence_image = Image.open(full_image_path).convert("RGB")
except Exception as e:
st.error(f"Failed to load image {evidence_image_path}: {e}")
# Create an Evidence object
evidences.append(
Evidence(
text=evidence_text,
image=evidence_image,
caption=evidence_image_caption,
dataset=evidence_path.split("/")[-2],
evidence_id=evidence_id_number,
image_path=full_image_path,
)
)
except Exception as e:
st.error(f"Error performing semantic search: {e}")
return evidences
@st.cache_resource
def get_predictor():
return MisinformationPredictor(model_path="ckpts/model.pt", device="cpu")
def classify_evidence(
claim_text: str, claim_image_path: str, evidence_text: str, evidence_image_path: str
) -> Tuple[str, str, str, str]:
"""Assigns a random classification to each evidence."""
predictor = get_predictor()
predictions = predictor.evaluate(
claim_text, claim_image_path, evidence_text, evidence_image_path
)
if predictions:
return (
predictions.get("text_text", "not_enough_information"),
predictions.get("text_image", "not_enough_information"),
predictions.get("image_text", "not_enough_information"),
predictions.get("image_image", "not_enough_information"),
)
else:
return (
"not_enough_information",
"not_enough_information",
"not_enough_information",
"not_enough_information",
)
def display_evidence_tab(evidences: List[Evidence], tab_label: str):
"""Displays evidence in a tabbed format."""
with st.container():
for index, evidence in enumerate(evidences):
with st.container():
st.subheader(f"Evidence {index + 1}")
st.write(f"Evidence Dataset: {evidence.dataset}")
st.write(f"Evidence ID: {evidence.evidence_id}")
if evidence.image:
st.image(
evidence.image,
caption="Evidence Image",
use_container_width=True,
)
st.text_area(
"Evidence Caption",
value=evidence.caption or "No caption available.",
height=100,
key=f"caption_{tab_label}_{index}",
disabled=True,
)
st.text_area(
"Evidence Text",
value=evidence.text or "No text available.",
height=100,
key=f"text_{tab_label}_{index}",
disabled=True,
)
if evidence.classification_result_all:
st.write("**Classification:**")
st.write(f"**text|text:** {evidence.classification_result_all[0]}")
st.write(f"**text|image:** {evidence.classification_result_all[1]}")
st.write(f"**image|text:** {evidence.classification_result_all[2]}")
st.write(
f"**image|image:** {evidence.classification_result_all[3]}"
)
st.write(
f"**Final classification result:** {evidence.classification_result_final}"
)
def get_final_classification(results: Tuple[str, str, str, str]) -> str:
text_text = results[0]
text_image = results[1]
image_text = results[2]
image_image = results[3]
# Helper function to determine the final classification based on two inputs
def resolve_classification(val1: str, val2: str) -> str:
if val1 == val2 and val1 in {"support", "refute"}:
return val1
if (val1 in {"support", "refute"} and val2 == "not_enough_information") or (
val2 in {"support", "refute"} and val1 == "not_enough_information"
):
return val1 if val1 != "not_enough_information" else val2
return "not_enough_information"
# Step 1: Check text_text and image_image
final_result = resolve_classification(text_text, image_image)
if final_result != "not_enough_information":
return final_result
# Step 2: Check text_image and image_text
final_result = resolve_classification(text_image, image_text)
if final_result != "not_enough_information":
return final_result
# Step 3: If still undetermined, return "not_enough_information"
return "not_enough_information"
def main():
st.title("Multimodal Evidence-Based Misinformation Classification")
st.write("Upload claims that have image and/or text content to verify.")
# File uploader for images
uploaded_image = st.file_uploader(
"Upload an image (1 max)", type=["jpg", "jpeg", "png"], key="image_uploader"
)
if uploaded_image:
try:
image = Image.open(uploaded_image).convert("RGB")
st.image(image, caption="Uploaded Image", use_container_width=True)
except Exception as e:
st.error(f"Failed to display the image: {e}")
# Text input field
input_text = st.text_area("Enter text (max 4096 characters)", "", max_chars=4096)
# Sliders for top_k values
col1, col2 = st.columns(2)
with col1:
top_k_text = st.slider(
"Top-k Text Evidences", min_value=1, max_value=5, value=2, key="top_k_text"
)
with col2:
top_k_image = st.slider(
"Top-k Image Evidences",
min_value=1,
max_value=5,
value=2,
key="top_k_image",
)
# Generate Enriched Text button
if st.button("Verify Claim"):
if not uploaded_image and not input_text:
st.warning("Please upload an image or enter text.")
return
progress = st.progress(0)
# Step 1: Generate caption
progress.progress(10)
st.write("### Step 1: Generating caption...")
image_caption = ""
if uploaded_image:
image_caption = generate_caption(image)
st.write("**Generated Image Caption:**", image_caption)
# Step 2: Enrich text
progress.progress(40)
st.write("### Step 2: Enriching text...")
enriched_text = enrich_text_with_caption(input_text, image_caption)
st.write("**Enriched Text:**")
st.write(enriched_text)
# Step 3: Retrieve evidences by text
progress.progress(50)
st.write("### Step 3: Retrieving evidences by text...")
if input_text:
text_evidences = retrieve_evidences_by_text(enriched_text, top_k=top_k_text)
st.write(f"Retrieved {len(text_evidences)} text evidences.")
else:
text_evidences = None
st.write("Text modality is missing from the input claim!")
# Step 4: Retrieve evidences by image
progress.progress(70)
st.write("### Step 4: Retrieving evidences by image...")
if uploaded_image:
image_evidences = retrieve_evidences_by_image(
uploaded_image, top_k=top_k_image
)
st.write(f"Retrieved {len(image_evidences)} image evidences.")
else:
image_evidences = None
st.write("Image modality is missing from the input claim!")
# Step 5: Classify evidences
progress.progress(90)
st.write("### Step 5: Verifying claim with retrieved evidences...")
for evidence in (text_evidences or []) + (image_evidences or []):
a, b, c, d = classify_evidence(
claim_text=enriched_text,
claim_image_path=uploaded_image,
evidence_text=evidence.text,
evidence_image_path=evidence.image_path,
)
evidence.classification_result_all = a, b, c, d
evidence.classification_result_final = get_final_classification(
evidence.classification_result_all
)
# Step 6: Display evidences
progress.progress(100)
if text_evidences or image_evidences:
st.write("## Results")
tabs = st.tabs(["Text Evidences", "Image Evidences"])
with tabs[0]:
if text_evidences:
st.write("### Text Evidences")
display_evidence_tab(text_evidences, "text")
else:
st.write("Text modality is missing from the input claim!")
with tabs[1]:
if image_evidences:
st.write("### Image Evidences")
display_evidence_tab(image_evidences, "image")
else:
st.write("Image modality is missing from the input claim!")
if __name__ == "__main__":
main()
|