File size: 16,201 Bytes
54e8a79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import streamlit as st
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
import pandas as pd
import os

from evaluate import MisinformationPredictor
from src.evidence.im2im_retrieval import ImageCorpus
from src.evidence.text2text_retrieval import SemanticSimilarity
from src.utils.path_utils import get_project_root
from typing import List, Optional, Tuple
from dataclasses import dataclass

# Initialize BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained(
    "Salesforce/blip-image-captioning-large"
)

PROJECT_ROOT = get_project_root()


@dataclass
class Evidence:
    evidence_id: str
    dataset: str
    text: Optional[str]
    image: Optional[Image.Image]
    caption: Optional[str]
    image_path: Optional[str]
    classification_result_all: Optional[Tuple[str, str, str, str]] = None
    classification_result_final: Optional[str] = None


CLASSIFICATION_CATEGORIES = ["support", "refute", "not_enough_information"]


def generate_caption(image: Image.Image) -> str:
    """Generates a caption for a given image."""
    try:
        with st.spinner("Generating caption..."):
            inputs = processor(image, return_tensors="pt")
            output = model.generate(**inputs)
            return processor.decode(output[0], skip_special_tokens=True)
    except Exception as e:
        st.error(f"Error generating caption: {e}")
        return ""


def enrich_text_with_caption(text: str, image_caption: str) -> str:
    """Appends the image caption to the given text."""
    if image_caption:
        return f"{text}. {image_caption}"
    return text


@st.cache_data
def get_train_df():
    data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
    train_csv_path = os.path.join(data_dir, "train_enriched.csv")
    return pd.read_csv(train_csv_path)


@st.cache_data
def get_test_df():
    data_dir = os.path.join(PROJECT_ROOT, "data", "preprocessed")
    train_csv_path = os.path.join(data_dir, "test_enriched.csv")
    return pd.read_csv(train_csv_path)


@st.cache_data
def get_semantic_similarity(
    train_embeddings_file: str,
    test_embeddings_file: str,
    train_df: pd.DataFrame,
    test_df: pd.DataFrame,
):
    return SemanticSimilarity(
        train_embeddings_file=train_embeddings_file,
        test_embeddings_file=test_embeddings_file,
        train_df=train_df,
        test_df=test_df,
    )


def retrieve_evidences_by_text(
    query: str,
    top_k: int = 5,
) -> List[Evidence]:
    """
    Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.

    Args:
        query (str): The query text to perform the search.
        top_k (int): Number of top results to retrieve.

    Returns:
        List[Evidence]: A list of retrieved evidence objects.
    """
    train_embeddings_file = os.path.join(PROJECT_ROOT, "train_embeddings.h5")
    test_embeddings_file = os.path.join(PROJECT_ROOT, "test_embeddings.h5")
    similarity = get_semantic_similarity(
        train_embeddings_file=train_embeddings_file,
        test_embeddings_file=test_embeddings_file,
        train_df=get_train_df(),
        test_df=get_test_df(),
    )
    evidences = []
    try:
        # Perform semantic search across both train and test datasets
        results = similarity.search(query=query, top_k=top_k)

        # Retrieve evidence rows based on the search results
        for evidence_id, score in results:
            # Determine whether the ID belongs to train or test set
            if evidence_id.startswith("train_"):
                df = similarity.train_csv
            elif evidence_id.startswith("test_"):
                df = similarity.test_csv
            else:
                continue  # Skip invalid IDs

            # Extract the row by ID
            row = df[df["id"] == int(evidence_id.split("_")[1])].iloc[0]
            evidence_text = row.get("evidence_enriched")
            evidence_image_caption = row.get("evidence_image_caption")
            evidence_image_path = row.get("evidence_image")
            evidence_image = None
            full_image_path = None

            # Load the image if a valid path is provided
            if pd.notna(evidence_image_path):
                full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
                try:
                    evidence_image = Image.open(full_image_path).convert("RGB")
                except Exception as e:
                    st.error(f"Failed to load image {evidence_image_path}: {e}")

            evidence_id_number = evidence_id.split("_")[1]
            evidence_dataset = evidence_id.split("_")[0]

            # Create an Evidence object
            evidences.append(
                Evidence(
                    text=evidence_text,
                    image=evidence_image,
                    caption=evidence_image_caption,
                    evidence_id=evidence_id_number,
                    dataset=evidence_dataset,
                    image_path=full_image_path,
                )
            )
    except Exception as e:
        st.error(f"Error performing semantic search: {e}")

    return evidences


@st.cache_data
def get_image_corpus(image_features):
    return ImageCorpus(image_features)


def retrieve_evidences_by_image(
    image_path: str,
    top_k: int = 5,
) -> List[Evidence]:
    """
    Retrieves evidence rows from preloaded embeddings and CSV data using semantic similarity.

    Args:
        query (str): The query text to perform the search.
        top_k (int): Number of top results to retrieve.

    Returns:
        List[Evidence]: A list of retrieved evidence objects.
    """
    image_features = os.path.join(PROJECT_ROOT, "evidence_features.pkl")
    image_corpus = get_image_corpus(image_features)
    evidences = []
    try:
        # Perform semantic search across both train and test datasets
        results = image_corpus.retrieve_similar_images(image_path, top_k=top_k)

        # Retrieve evidence rows based on the search results
        for evidence_path, score in results:
            evidence_id = evidence_path.split("/")[-1]
            evidence_id_number = evidence_id.split("_")[0]
            # Determine whether the ID belongs to train or test set
            if "train" in evidence_path:
                df = get_train_df()
            elif "test" in evidence_path:
                df = get_test_df()
            else:
                continue  # Skip invalid IDs

            # Extract the row by ID
            row = df[df["id"] == int(evidence_id_number)].iloc[0]
            evidence_text = row.get("evidence_enriched")
            evidence_image_caption = row.get("evidence_image_caption")
            evidence_image_path = row.get("evidence_image")
            evidence_image = None
            full_image_path = None

            # Load the image if a valid path is provided
            if pd.notna(evidence_image_path):
                full_image_path = os.path.join(PROJECT_ROOT, evidence_image_path)
                try:
                    evidence_image = Image.open(full_image_path).convert("RGB")
                except Exception as e:
                    st.error(f"Failed to load image {evidence_image_path}: {e}")

            # Create an Evidence object
            evidences.append(
                Evidence(
                    text=evidence_text,
                    image=evidence_image,
                    caption=evidence_image_caption,
                    dataset=evidence_path.split("/")[-2],
                    evidence_id=evidence_id_number,
                    image_path=full_image_path,
                )
            )
    except Exception as e:
        st.error(f"Error performing semantic search: {e}")

    return evidences


@st.cache_resource
def get_predictor():
    return MisinformationPredictor(model_path="ckpts/model.pt", device="cpu")


def classify_evidence(
    claim_text: str, claim_image_path: str, evidence_text: str, evidence_image_path: str
) -> Tuple[str, str, str, str]:
    """Assigns a random classification to each evidence."""
    predictor = get_predictor()
    predictions = predictor.evaluate(
        claim_text, claim_image_path, evidence_text, evidence_image_path
    )
    if predictions:
        return (
            predictions.get("text_text", "not_enough_information"),
            predictions.get("text_image", "not_enough_information"),
            predictions.get("image_text", "not_enough_information"),
            predictions.get("image_image", "not_enough_information"),
        )
    else:
        return (
            "not_enough_information",
            "not_enough_information",
            "not_enough_information",
            "not_enough_information",
        )


def display_evidence_tab(evidences: List[Evidence], tab_label: str):
    """Displays evidence in a tabbed format."""
    with st.container():
        for index, evidence in enumerate(evidences):
            with st.container():
                st.subheader(f"Evidence {index + 1}")
                st.write(f"Evidence Dataset: {evidence.dataset}")
                st.write(f"Evidence ID: {evidence.evidence_id}")
                if evidence.image:
                    st.image(
                        evidence.image,
                        caption="Evidence Image",
                        use_container_width=True,
                    )
                st.text_area(
                    "Evidence Caption",
                    value=evidence.caption or "No caption available.",
                    height=100,
                    key=f"caption_{tab_label}_{index}",
                    disabled=True,
                )
                st.text_area(
                    "Evidence Text",
                    value=evidence.text or "No text available.",
                    height=100,
                    key=f"text_{tab_label}_{index}",
                    disabled=True,
                )
                if evidence.classification_result_all:
                    st.write("**Classification:**")
                    st.write(f"**text|text:** {evidence.classification_result_all[0]}")
                    st.write(f"**text|image:** {evidence.classification_result_all[1]}")
                    st.write(f"**image|text:** {evidence.classification_result_all[2]}")
                    st.write(
                        f"**image|image:** {evidence.classification_result_all[3]}"
                    )
                    st.write(
                        f"**Final classification result:** {evidence.classification_result_final}"
                    )


def get_final_classification(results: Tuple[str, str, str, str]) -> str:
    text_text = results[0]
    text_image = results[1]
    image_text = results[2]
    image_image = results[3]

    # Helper function to determine the final classification based on two inputs
    def resolve_classification(val1: str, val2: str) -> str:
        if val1 == val2 and val1 in {"support", "refute"}:
            return val1
        if (val1 in {"support", "refute"} and val2 == "not_enough_information") or (
            val2 in {"support", "refute"} and val1 == "not_enough_information"
        ):
            return val1 if val1 != "not_enough_information" else val2
        return "not_enough_information"

    # Step 1: Check text_text and image_image
    final_result = resolve_classification(text_text, image_image)
    if final_result != "not_enough_information":
        return final_result

    # Step 2: Check text_image and image_text
    final_result = resolve_classification(text_image, image_text)
    if final_result != "not_enough_information":
        return final_result

    # Step 3: If still undetermined, return "not_enough_information"
    return "not_enough_information"


def main():
    st.title("Multimodal Evidence-Based Misinformation Classification")
    st.write("Upload claims that have image and/or text content to verify.")

    # File uploader for images
    uploaded_image = st.file_uploader(
        "Upload an image (1 max)", type=["jpg", "jpeg", "png"], key="image_uploader"
    )

    if uploaded_image:
        try:
            image = Image.open(uploaded_image).convert("RGB")
            st.image(image, caption="Uploaded Image", use_container_width=True)
        except Exception as e:
            st.error(f"Failed to display the image: {e}")

    # Text input field
    input_text = st.text_area("Enter text (max 4096 characters)", "", max_chars=4096)

    # Sliders for top_k values
    col1, col2 = st.columns(2)
    with col1:
        top_k_text = st.slider(
            "Top-k Text Evidences", min_value=1, max_value=5, value=2, key="top_k_text"
        )
    with col2:
        top_k_image = st.slider(
            "Top-k Image Evidences",
            min_value=1,
            max_value=5,
            value=2,
            key="top_k_image",
        )

    # Generate Enriched Text button
    if st.button("Verify Claim"):
        if not uploaded_image and not input_text:
            st.warning("Please upload an image or enter text.")
            return

        progress = st.progress(0)

        # Step 1: Generate caption
        progress.progress(10)
        st.write("### Step 1: Generating caption...")
        image_caption = ""
        if uploaded_image:
            image_caption = generate_caption(image)
            st.write("**Generated Image Caption:**", image_caption)

        # Step 2: Enrich text
        progress.progress(40)
        st.write("### Step 2: Enriching text...")
        enriched_text = enrich_text_with_caption(input_text, image_caption)
        st.write("**Enriched Text:**")
        st.write(enriched_text)

        # Step 3: Retrieve evidences by text
        progress.progress(50)
        st.write("### Step 3: Retrieving evidences by text...")
        if input_text:
            text_evidences = retrieve_evidences_by_text(enriched_text, top_k=top_k_text)
            st.write(f"Retrieved {len(text_evidences)} text evidences.")
        else:
            text_evidences = None
            st.write("Text modality is missing from the input claim!")

        # Step 4: Retrieve evidences by image
        progress.progress(70)
        st.write("### Step 4: Retrieving evidences by image...")
        if uploaded_image:
            image_evidences = retrieve_evidences_by_image(
                uploaded_image, top_k=top_k_image
            )
            st.write(f"Retrieved {len(image_evidences)} image evidences.")
        else:
            image_evidences = None
            st.write("Image modality is missing from the input claim!")

        # Step 5: Classify evidences
        progress.progress(90)
        st.write("### Step 5: Verifying claim with retrieved evidences...")
        for evidence in (text_evidences or []) + (image_evidences or []):
            a, b, c, d = classify_evidence(
                claim_text=enriched_text,
                claim_image_path=uploaded_image,
                evidence_text=evidence.text,
                evidence_image_path=evidence.image_path,
            )
            evidence.classification_result_all = a, b, c, d
            evidence.classification_result_final = get_final_classification(
                evidence.classification_result_all
            )

        # Step 6: Display evidences
        progress.progress(100)
        if text_evidences or image_evidences:
            st.write("## Results")
            tabs = st.tabs(["Text Evidences", "Image Evidences"])

            with tabs[0]:
                if text_evidences:
                    st.write("### Text Evidences")
                    display_evidence_tab(text_evidences, "text")
                else:
                    st.write("Text modality is missing from the input claim!")

            with tabs[1]:
                if image_evidences:
                    st.write("### Image Evidences")
                    display_evidence_tab(image_evidences, "image")
                else:
                    st.write("Image modality is missing from the input claim!")


if __name__ == "__main__":
    main()