Spaces:
Running
Running
File size: 31,775 Bytes
c2df150 a9c5d3b c2df150 a9c5d3b c2df150 a9c5d3b c2df150 a9c5d3b c2df150 a9c5d3b c2df150 a9c5d3b c2df150 a9c5d3b c2df150 a9c5d3b c2df150 cf526b4 c2df150 a9c5d3b c2df150 a9c5d3b c2df150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
import gradio as gr
import json
import os
import ssl
import base64
import urllib.request
import tempfile
import requests
import soundfile as sf
from datetime import datetime
from typing import Dict, List, Optional, Tuple
import edge_tts
from langdetect import detect
from io import BytesIO
# Custom CSS for better styling
CUSTOM_CSS = """
/* General styling */
.container {
max-width: 900px;
margin: auto;
}
/* Header styling */
#header {
text-align: center;
padding: 20px;
margin-bottom: 30px;
}
/* Component styling */
.input-section {
background: var(--background-fill-primary);
padding: 20px;
border-radius: 10px;
margin-bottom: 20px;
}
.output-section {
background: var(--background-fill-primary);
padding: 20px;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
/* Note styling */
.note-card {
background: var(--background-fill-primary);
padding: 15px;
margin: 10px 0;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
/* Adaptive text colors for both themes */
.output-section .prose {
color: var(--body-text-color) !important;
}
.output-section p,
.output-section h1,
.output-section h2,
.output-section h3,
.output-section h4,
.output-section h5,
.output-section h6 {
color: var(--body-text-color) !important;
}
/* Ensure Markdown content uses theme colors */
.output-section .markdown-body {
color: var(--body-text-color) !important;
background-color: var(--background-fill-primary) !important;
}
/* Style blockquotes and code blocks */
.output-section blockquote {
border-left: 3px solid var(--border-color-primary);
color: var(--body-text-color);
background: var(--background-fill-secondary);
}
.output-section code {
color: var(--body-text-color);
background: var(--background-fill-secondary);
}
"""
# Create a light theme
LIGHT_THEME = gr.themes.Default(
primary_hue="blue",
secondary_hue="blue",
neutral_hue="slate",
font=["Source Sans Pro", "ui-sans-serif", "system-ui", "sans-serif"],
font_mono=["JetBrains Mono", "ui-monospace", "Consolas", "monospace"],
)
MULTILINGUAL_SYSYTEM_PROMPTS = {
'english': {
'system': """You are a world class AI assistant. From users' collection of random thoughts, you need to organize into a clear, concise, and actionable format. Please structure them into the following categories that STRICTLY follows this format:
🧠 Main Idea/Theme – Summarize the central topic.
✅ Actionable Steps – Break down what can be done next.
❓ Open Questions – Highlight any uncertainties or areas that need further exploration.
Here are thoughts:""",
'summarize': "Summarize the text above."
},
'chinese': {
'system': """你是一位世界级的AI助手。你需要将用户的随想整理成清晰、简洁和可行的格式。请严格按照以下格式将内容分类:
🧠 主要想法/主题 – 总结核心话题。
✅ 可行步骤 – 分解下一步可以做什么。
❓ 开放性问题 – 突出任何不确定性或需要进一步探索的领域。
以下是想法:""",
'summarize': "总结上述文本。"
},
'german': {
'system': """Sie sind ein erstklassiger KI-Assistent. Sie müssen die zufälligen Gedanken der Benutzer in ein klares, prägnantes und umsetzbares Format bringen. Bitte strukturieren Sie die Inhalte streng nach folgendem Format:
🧠 Hauptidee/Thema – Fassen Sie das zentrale Thema zusammen.
✅ Umsetzbare Schritte – Schlüsseln Sie auf, was als nächstes getan werden kann.
❓ Offene Fragen – Heben Sie Unklarheiten oder Bereiche hervor, die weiterer Erforschung bedürfen.
Hier sind die Gedanken:""",
'summarize': "Fassen Sie den obigen Text zusammen."
},
'french': {
'system': """Vous êtes un assistant IA de classe mondiale. Vous devez organiser les pensées aléatoires des utilisateurs dans un format clair, concis et exploitable. Veuillez structurer le contenu en respectant strictement le format suivant:
🧠 Idée/Thème principal – Résumez le sujet central.
✅ Étapes exploitables – Décomposez ce qui peut être fait ensuite.
❓ Questions ouvertes – Mettez en évidence les incertitudes ou les domaines nécessitant une exploration plus approfondie.
Voici les pensées :""",
'summarize': "Résumez le texte ci-dessus."
},
'italian': {
'system': """Sei un assistente IA di classe mondiale. Devi organizzare i pensieri casuali degli utenti in un formato chiaro, conciso e pratico. Si prega di strutturare il contenuto seguendo rigorosamente questo formato:
🧠 Idea/Tema principale – Riassumi l'argomento centrale.
✅ Passi attuabili – Scomponi cosa si può fare dopo.
❓ Domande aperte – Evidenzia eventuali incertezze o aree che necessitano di ulteriore esplorazione.
Ecco i pensieri:""",
'summarize': "Riassumi il testo sopra."
},
'japanese': {
'system': """あなたは世界クラスのAIアシスタントです。ユーザーのランダムな考えを、明確で簡潔で実行可能な形式に整理する必要があります。以下の形式に厳密に従って内容を構造化してください:
🧠 メインアイデア/テーマ – 中心的なトピックを要約します。
✅ 実行可能なステップ – 次に何ができるかを分解します。
❓ オープンな質問 – 不確実性や更なる探求が必要な領域を強調します。
以下が考えです:""",
'summarize': "上記のテキストを要約してください。"
},
'spanish': {
'system': """Eres un asistente de IA de clase mundial. Necesitas organizar los pensamientos aleatorios de los usuarios en un formato claro, conciso y procesable. Por favor, estructure el contenido siguiendo estrictamente este formato:
🧠 Idea/Tema principal – Resume el tema central.
✅ Pasos procesables – Desglose lo que se puede hacer a continuación.
❓ Preguntas abiertas – Destaca cualquier incertidumbre o áreas que necesiten más exploración.
Aquí están los pensamientos:""",
'summarize': "Resume el texto anterior."
},
'portuguese': {
'system': """Você é um assistente de IA de classe mundial. Você precisa organizar os pensamentos aleatórios dos usuários em um formato claro, conciso e acionável. Por favor, estruture o conteúdo seguindo rigorosamente este formato:
🧠 Ideia/Tema principal – Resuma o tópico central.
✅ Passos acionáveis – Detalhe o que pode ser feito a seguir.
❓ Questões em aberto – Destaque quaisquer incertezas ou áreas que precisam de mais exploração.
Aqui estão os pensamentos:""",
'summarize': "Resuma o texto acima."
}
}
def load_audio_from_url(url):
"""
Load audio from a URL using soundfile
Args:
url (str): URL of the audio file
Returns:
tuple: (audio_data, sample_rate) if successful, None otherwise
"""
try:
# Get the audio file from the URL
response = requests.get(url)
response.raise_for_status() # Raise exception for bad status codes
# For other formats that soundfile supports directly (WAV, FLAC, etc.)
audio_data, sample_rate = sf.read(BytesIO(response.content))
return sample_rate, audio_data
except Exception as e:
print(f"Error loading audio from URL: {e}")
return None
class VoiceNotesApp:
def __init__(self):
# Azure endpoint configuration
self.azure_url = os.getenv("AZURE_ENDPOINT")
self.api_key = os.getenv("AZURE_API_KEY")
# Initialize sample audio files - all using HTTPS URLs
self.sample_audios = {
"English - Weekend Plan": "https://diamondfan.github.io/audio_files/english.weekend.plan.wav",
"Chinese - Kids & Work": "https://diamondfan.github.io/audio_files/chinese.kid.work.wav",
"German - Vacation Planning": "https://diamondfan.github.io/audio_files/german.vacation.work.wav",
"French - Random Thoughts": "https://diamondfan.github.io/audio_files/french.random.vacation.wav",
"Italian - Daily Life": "https://diamondfan.github.io/audio_files/italian.daily.life.wav",
"Japanese - Seattle Trip Report": "https://diamondfan.github.io/audio_files/japanese.seattle.trip.report.wav",
"Spanish - Soccer Class": "https://diamondfan.github.io/audio_files/spanish.soccer.class.wav",
"Portuguese - Buying House & Friends": "https://diamondfan.github.io/audio_files/portugese.house.friends.wav"
}
# Initialize storage
self.notes_file = "voice_notes.json"
self.notes = self.load_notes()
def load_notes(self):
if os.path.exists(self.notes_file):
with open(self.notes_file, 'r') as f:
notes = json.load(f)
# Sort notes by timestamp in descending order (most recent first)
return sorted(notes, key=lambda x: x['timestamp'], reverse=True)
return []
def save_notes(self):
with open(self.notes_file, 'w') as f:
json.dump(self.notes, f, indent=2)
def encode_base64_from_file(self, file_path):
"""Encode file content to base64 string and determine MIME type."""
file_extension = os.path.splitext(file_path)[1].lower()
# Map file extensions to MIME types
if file_extension in ['.jpg', '.jpeg']:
mime_type = "image/jpeg"
elif file_extension == '.png':
mime_type = "image/png"
elif file_extension == '.gif':
mime_type = "image/gif"
elif file_extension in ['.bmp', '.tiff', '.webp']:
mime_type = f"image/{file_extension[1:]}"
elif file_extension == '.flac':
mime_type = "audio/flac"
elif file_extension == '.wav':
mime_type = "audio/wav"
elif file_extension == '.mp3':
mime_type = "audio/mpeg"
elif file_extension in ['.m4a', '.aac']:
mime_type = "audio/aac"
elif file_extension == '.ogg':
mime_type = "audio/ogg"
else:
mime_type = "application/octet-stream"
# Read and encode file content
with open(file_path, "rb") as file:
encoded_string = base64.b64encode(file.read()).decode('utf-8')
return encoded_string, mime_type
def call_azure_endpoint(self, data):
"""Call Azure ML endpoint with the given data."""
parameters = {"temperature": 0.0}
data["input_data"]["parameters"] = parameters
def allowSelfSignedHttps(allowed):
# bypass the server certificate verification on client side
if allowed and not os.environ.get('PYTHONHTTPSVERIFY', '') and getattr(ssl, '_create_unverified_context', None):
ssl._create_default_https_context = ssl._create_unverified_context
allowSelfSignedHttps(True)
body = str.encode(json.dumps(data))
if not self.api_key:
raise Exception("A key should be provided to invoke the endpoint")
headers = {'Content-Type': 'application/json', 'Authorization': ('Bearer ' + self.api_key)}
req = urllib.request.Request(self.azure_url, body, headers)
try:
response = urllib.request.urlopen(req)
result = response.read().decode('utf-8')
return result
except urllib.error.HTTPError as error:
print("The request failed with status code: " + str(error.code))
print(error.info())
print(error.read().decode("utf8", 'ignore'))
return f"Error: {error.code}"
def transcribe_audio(self, audio_input):
"""Convert speech to text using Azure endpoint"""
try:
# Encode audio file to base64
encoded_audio, mime_type = self.encode_base64_from_file(audio_input)
# Prepare the request payload
speech_prompt = "Based on the attached audio, generate a comprehensive text transcription of the spoken content."
payload = {
"input_data": {
"input_string": [
{
"role": "user",
"content": [
{
"type": "text",
"text": speech_prompt
},
{
"type": "audio_url",
"audio_url": {
"url": f"data:{mime_type};base64,{encoded_audio}"
}
}
]
}
]
}
}
# Call Azure endpoint
response_json = self.call_azure_endpoint(payload)
# Parse response
try:
response_data = json.loads(response_json)
# Extract the actual response text
if isinstance(response_data, dict) and "output" in response_data:
transcription = response_data["output"]
else:
transcription = response_json
except:
transcription = response_json
print(f"Debug transcription:\n{transcription}")
return transcription
except Exception as e:
print(f"Transcription error: {str(e)}")
return f"Error transcribing: {str(e)}"
def summarize_text(self, text):
"""Generate a summary in the detected language using Azure endpoint"""
if not text:
return "No text to summarize"
try:
# First, detect language
detected_language = detect(text)
# Map detected language to supported languages
language_mapping = {
'en': 'english',
'zh-cn': 'chinese',
'de': 'german',
'fr': 'french',
'it': 'italian',
'ja': 'japanese',
'es': 'spanish',
'pt': 'portuguese'
}
# Default to English if language not supported
selected_language = language_mapping.get(detected_language, 'english')
print(f"Detected language: {detected_language} ; Selected language: {selected_language} ; Text: {text}")
# Generate summary in detected language
prompts = MULTILINGUAL_SYSYTEM_PROMPTS[selected_language]
# Prepare the request payload for summarization
payload = {
"input_data": {
"input_string": [
{
"role": "system",
"content": [
{
"type": "text",
"text": prompts["system"]
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": text
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": prompts["summarize"]
}
]
}
]
}
}
# Call Azure endpoint
response_json = self.call_azure_endpoint(payload)
# Parse response
try:
response_data = json.loads(response_json)
# Extract the actual response text
if isinstance(response_data, dict) and "output" in response_data:
summary = response_data["output"]
else:
summary = response_json
except:
summary = response_json
print(f"Debug summary:\n{summary}")
return summary, selected_language
except Exception as e:
print(f"Summarization error: {str(e)}")
return f"Error summarizing: {str(e)}", "english"
def format_note_display(self, note):
"""Format note for display in a Gradio interface"""
return f"""## 📝 Summary
{note['summary']}
---
## 🎙️ Transcription
{note['transcription']}
---
## 🕒 Timestamp
**{note['timestamp']}**
---
## 🌐 Detected Language
**{note['language']}**"""
def search_notes(self, query):
"""Search through notes content"""
if not query:
return self.list_all_notes()
matching_notes = []
query = query.lower()
for note in self.notes:
if (query in note['transcription'].lower() or
query in note['summary'].lower()):
matching_notes.append(note)
if not matching_notes:
return "No matching notes found"
return "\n\n---\n\n".join([self.format_note_display(note) for note in matching_notes])
def list_all_notes(self):
"""Return all notes in formatted string"""
if not self.notes:
return "No notes found"
# Notes are already sorted by timestamp in load_notes()
return "\n\n---\n\n".join([self.format_note_display(note) for note in self.notes])
def process_note(self, audio, progress=gr.Progress()):
"""Process audio input and generate note with summary"""
if audio is None:
return "Please record or upload an audio file.", None, "❌ No audio provided"
try:
# Start processing
progress(0, desc="Starting audio processing...")
# Transcribe audio (25% of progress)
progress(0.25, desc="Transcribing audio...")
transcription = self.transcribe_audio(audio)
# Generate summary (35% more progress)
progress(0.60, desc="Generating summary...")
summary, selected_language = self.summarize_text(transcription)
# Create and save note (25% more progress)
progress(0.85, desc="Saving note...")
note = {
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"transcription": transcription,
"summary": summary,
"language": selected_language
}
# Save note
self.notes.append(note)
self.save_notes()
# Complete
progress(1.0, desc="Complete!")
return self.format_note_display(note), audio, "✅ Processing complete!"
except Exception as e:
return str(e), None, f"❌ Error: {str(e)}"
async def text_to_speech(self, text, detected_lang):
"""Convert text to speech using Edge TTS with language-specific voices"""
if not text.strip():
return None
# Map of language codes to Edge TTS voices
voice_mapping = {
'english': 'en-US-RogerNeural', # English
'chinese': 'zh-CN-XiaoxiaoNeural', # Chinese
'german': 'de-DE-KatjaNeural', # German
'french': 'fr-FR-HenriNeural', # French
'italian': 'it-IT-DiegoNeural', # Italian
'japanese': 'ja-JP-KeitaNeural', # Japanese
'spanish': 'es-ES-XimenaNeural', # Spanish
'portuguese': 'pt-BR-AntonioNeural', # Portuguese
}
# Default to English if language not supported
voice = voice_mapping.get(detected_lang, 'en-US-EricNeural')
try:
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
except Exception as e:
print(f"TTS Error: {str(e)}")
return None
def create_interface(self):
"""Create an enhanced Gradio interface with improved styling and layout"""
# Preload Chinese sample as default
default_audio_path = self.sample_audios["English - Weekend Plan"]
# Create the layout with tabs
with gr.Blocks(
css=CUSTOM_CSS,
theme=LIGHT_THEME,
title="Thoughts Organizer"
) as interface:
# Header section
with gr.Row(elem_id="header"):
gr.Markdown(
"""
# 🎙️ Thoughts Organizer with Phi-4-Multimodal
### Transform your spoken thoughts into organized, actionable insights
Capture, organize, and act on your spoken thoughts with AI-powered voice notes in multiple languages, including English, Chinese, German, French, Italian, Japanese, Spanish, and Portuguese. Other demos include [Phi-4-multimodal](https://huggingface.co/spaces/microsoft/phi-4-multimodal), [Phi-4-Mini](https://huggingface.co/spaces/microsoft/phi-4-mini) playgrounds, [Stories Come Alive](https://huggingface.co/spaces/microsoft/StoriesComeAlive), [Phine Speech Translator](https://huggingface.co/spaces/microsoft/PhineSpeechTranslator)
"""
)
# Main content tabs
with gr.Tabs():
# Record New Note Tab
with gr.Tab("📝 New Note", id="new_note"):
with gr.Column(elem_classes="input-section"):
# Audio input with clear instructions
gr.Markdown("### Record or Upload Your Voice Note")
audio_input = gr.Audio(
sources=["microphone", "upload"],
type="filepath",
label="",
interactive=True,
show_download_button=True
)
with gr.Row():
sample_audio = gr.Dropdown(
choices=list(self.sample_audios.keys()),
label="Select a sample audio to try",
value="English - Weekend Plan"
)
# Process button with loading state
process_btn = gr.Button("🔄 Process Note", variant="primary")
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
# Add progress bar
progress_bar = gr.Progress()
with gr.Column(elem_classes="output-section"):
# Status message display
processing_status = gr.Markdown(label="Status", value="Ready to process...")
# Note output display
note_display = gr.Markdown(label="")
# Add TTS playback controls
with gr.Row():
play_btn = gr.Button("🔊 Listen Note", variant="secondary")
tts_audio = gr.Audio(label="TTS Output", visible=True, interactive=False)
# Enhanced All Notes Tab
with gr.Tab("📚 All Notes", id="all_notes"):
with gr.Column():
# Search box
search_box = gr.Textbox(
label="🔍 Search Notes",
placeholder="Enter keywords to search...",
show_label=True
)
# Refresh button for notes
refresh_btn = gr.Button("🔄 Refresh Notes")
# All notes display
all_notes_display = gr.Markdown()
# Function to load sample audio
def load_sample(sample_name):
if not sample_name:
return None
try:
audio_url = self.sample_audios[sample_name]
# Use the load_audio_from_url function to fetch the audio
result = load_audio_from_url(audio_url)
if result:
sample_rate, audio_data = result
return (sample_rate, audio_data)
return None
except Exception as e:
print(f"Error loading sample audio: {e}")
return None
# Automatically load sample when selected
sample_audio.change(
fn=load_sample,
inputs=[sample_audio],
outputs=[audio_input],
api_name="load_sample"
)
def process_and_get_note(audio, progress=gr.Progress()):
try:
note_text, _, status = self.process_note(audio, progress)
# Return both the note text and updated all notes display
all_notes = self.list_all_notes()
return note_text, all_notes, status
except Exception as e:
error_msg = f"❌ Error processing note: {str(e)}"
return "", "", error_msg
# Update the process button click event
process_btn.click(
fn=process_and_get_note,
inputs=[audio_input],
outputs=[note_display, all_notes_display, processing_status],
api_name="process_note"
)
# Function to handle TTS playback
async def play_note(note_text):
if not note_text:
return None
try:
# Extract the detected language from the note display
lang_section = note_text.split("Detected Language")[-1].strip()
detected_lang = lang_section.strip('*').strip()
# Extract the summary section (everything before the first ---)
summary_section = note_text.split("---")[0].strip()
# Remove Markdown headers (#)
cleaned_text = summary_section.replace('#', '')
# Remove emojis and section labels
cleaned_text = cleaned_text.replace('📝 Summary', '').strip()
# Remove all special characters except basic punctuation
# Keep: letters, numbers, spaces, and basic punctuation
clean_chars = []
for char in cleaned_text:
if (char.isalnum() or
char.isspace() or
char in '.,!?-:;()[]{}"\''):
clean_chars.append(char)
cleaned_text = ''.join(clean_chars)
# Remove multiple spaces
cleaned_text = ' '.join(cleaned_text.split())
print(f"Debug - Original text: {summary_section}")
print(f"Debug - Cleaned text: {cleaned_text}")
audio_path = await self.text_to_speech(cleaned_text, detected_lang)
return audio_path
except Exception as e:
print(f"Error in play_note: {str(e)}")
return None
# Update event handlers
play_btn.click(
fn=play_note,
inputs=[note_display],
outputs=[tts_audio],
api_name="play_note"
)
# Clear button functionality
def clear_all():
# Return default/empty values for all components
return None, "", "Ready to process...", ""
clear_btn.click(
fn=clear_all,
inputs=[],
outputs=[
audio_input, # Clear audio input
note_display, # Clear note display
processing_status, # Reset status message
all_notes_display # Clear all notes display
]
)
def refresh_notes():
# Reload notes from disk
self.notes = self.load_notes()
# Return updated notes display
return self.list_all_notes()
refresh_btn.click(
fn=refresh_notes,
inputs=[],
outputs=[all_notes_display],
api_name="refresh_notes"
)
# Add search functionality
search_box.change(
fn=self.search_notes,
inputs=[search_box],
outputs=[all_notes_display],
api_name="search_notes"
)
# Instructions and tips
with gr.Accordion("ℹ️ Tips & Instructions", open=False):
gr.Markdown(
"""
### How to Use:
1. **Record or Upload**: Use the microphone to record directly or upload an audio file
2. **Process**: Click 'Process Note' to convert your voice note into organized text
3. **Review**: View your processed note with main ideas, action items, and questions
4. **Listen**: Click the '🔊 Play Note' button to hear the summary read aloud
5. **Browse**: Switch to 'All Notes' tab to view your note history
### Features:
- 🎙️ Record or upload voice notes
- 📝 Automatic transcription
- 🧠 Smart organization of ideas
- 📚 Historical note tracking
"""
)
# Footer
with gr.Column(elem_classes="output-section"):
gr.Markdown("Powered by Microsoft [Phi-4 multimodal model](https://aka.ms/phi-4-multimodal/azure) on Azure AI. © 2025")
return interface
def run_app():
# Create app instance
app = VoiceNotesApp()
# Launch Gradio interface
interface = app.create_interface()
interface.launch(
share=True,
server_name="0.0.0.0",
)
run_app() |