Spaces:
Running
Running
File size: 31,372 Bytes
5325553 cbde992 5325553 089499a 6d105e8 5325553 6d105e8 5325553 6d105e8 cbde992 6d105e8 cbde992 5325553 6d105e8 5325553 b8d2774 5325553 b8d2774 5325553 b8d2774 5325553 b8d2774 5325553 b8d2774 5325553 b8d2774 5325553 b8d2774 5325553 b8d2774 5325553 b8d2774 5325553 089499a 5325553 089499a 5325553 089499a 5325553 089499a 5325553 089499a 5325553 e8daeee b8d2774 089499a b8d2774 089499a b8d2774 5325553 45fea98 56b7e8f 5325553 b8d2774 5325553 b8d2774 5325553 b8d2774 5325553 6d105e8 5325553 b8d2774 5325553 089499a 5325553 724e3a3 5325553 fd1391b b8d2774 e8daeee b8d2774 e8daeee b8d2774 5325553 fd1391b b8d2774 e8daeee b8d2774 c26e8e3 e8daeee b8d2774 709fb5e b8d2774 089499a b8d2774 e8daeee c26e8e3 b8d2774 5325553 fd1391b e8daeee 5325553 b8d2774 5325553 b8d2774 5325553 b8d2774 5325553 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
import gradio as gr
import json
import requests
import urllib.request
import os
import ssl
import base64
from PIL import Image
import soundfile as sf
import mimetypes
import logging
from io import BytesIO
import tempfile
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Azure ML endpoint configuration
url = os.getenv("AZURE_ENDPOINT")
api_key = os.getenv("AZURE_API_KEY")
# Default parameter values
default_max_tokens = 4096
default_temperature = 0.0
default_top_p = 1.0
default_presence_penalty = 0.0
default_frequency_penalty = 0.0
# Initialize MIME types
mimetypes.init()
def call_aml_endpoint(payload, url, api_key, params=None):
"""Call Azure ML endpoint with the given payload."""
# Allow self-signed HTTPS certificates
def allow_self_signed_https(allowed):
if allowed and not os.environ.get('PYTHONHTTPSVERIFY', '') and getattr(ssl, '_create_unverified_context', None):
ssl._create_default_https_context = ssl._create_unverified_context
allow_self_signed_https(True)
# Set parameters from the UI inputs or use defaults
if params is None:
params = {
"max_tokens": default_max_tokens,
"temperature": default_temperature,
"top_p": default_top_p,
"presence_penalty": default_presence_penalty,
"frequency_penalty": default_frequency_penalty
}
parameters = {
"max_tokens": int(params["max_tokens"]),
"temperature": float(params["temperature"]),
"top_p": float(params["top_p"]),
"presence_penalty": float(params["presence_penalty"]),
"frequency_penalty": float(params["frequency_penalty"]),
"stream": True
}
if "parameters" not in payload["input_data"]:
payload["input_data"]["parameters"] = parameters
# Encode the request body
body = str.encode(json.dumps(payload))
if not api_key:
raise Exception("A key should be provided to invoke the endpoint")
# Set up headers
headers = {'Content-Type': 'application/json', 'Authorization': ('Bearer ' + api_key)}
# Create and send the request
req = urllib.request.Request(url, body, headers)
try:
logger.info(f"Sending request to {url}")
logger.info(f"Using parameters: {parameters}")
response = urllib.request.urlopen(req)
result = response.read().decode('utf-8')
logger.info("Received response successfully")
return json.loads(result)
except urllib.error.HTTPError as error:
logger.error(f"Request failed with status code: {error.code}")
logger.error(f"Headers: {error.info()}")
error_message = error.read().decode("utf8", 'ignore')
logger.error(f"Error message: {error_message}")
return {"error": error_message}
def improved_fetch_audio_from_url(url):
"""Improved function to fetch audio data from URL and convert to base64
Args:
url (str): URL of the audio file
Returns:
tuple: (mime_type, base64_encoded_data) if successful, (None, None) otherwise
"""
try:
# Get the audio file from the URL
logger.info(f"Fetching audio from URL: {url}")
# Use a session with increased timeout
session = requests.Session()
response = session.get(url, timeout=30)
response.raise_for_status()
# Determine MIME type based on URL
file_extension = os.path.splitext(url)[1].lower()
mime_type = None
if file_extension == '.wav':
mime_type = "audio/wav"
elif file_extension == '.mp3':
mime_type = "audio/mpeg"
elif file_extension == '.flac':
mime_type = "audio/flac"
elif file_extension in ['.m4a', '.aac']:
mime_type = "audio/aac"
elif file_extension == '.ogg':
mime_type = "audio/ogg"
else:
# Try to detect the MIME type from headers
content_type = response.headers.get('Content-Type', '')
if content_type.startswith('audio/'):
mime_type = content_type
else:
mime_type = "audio/wav" # Default to WAV
logger.info(f"Detected MIME type: {mime_type}")
# Save content to a temporary file for debugging
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=file_extension)
temp_file.write(response.content)
temp_file.close()
logger.info(f"Saved audio to temporary file: {temp_file.name}")
# Read the file to verify it's valid
try:
# For WAV files, try to read with soundfile to verify
if mime_type == "audio/wav":
data, samplerate = sf.read(temp_file.name)
logger.info(f"Successfully read audio file: {len(data)} samples, {samplerate}Hz")
except Exception as e:
logger.warning(f"Could not verify audio with soundfile: {e}")
# Continue anyway, the file might still be valid
# Convert to base64
with open(temp_file.name, "rb") as f:
audio_content = f.read()
base64_audio = base64.b64encode(audio_content).decode('utf-8')
logger.info(f"Successfully encoded audio to base64, length: {len(base64_audio)}")
# Clean up temporary file
try:
os.unlink(temp_file.name)
except:
pass
return mime_type, base64_audio
except Exception as e:
logger.error(f"Error fetching audio from URL: {e}", exc_info=True)
return None, None
def fetch_image_from_url(url):
"""Fetch image data from URL and convert to base64
Args:
url (str): URL of the image file
Returns:
tuple: (mime_type, base64_encoded_data) if successful, (None, None) otherwise
"""
try:
# Get the image file from the URL
logger.info(f"Fetching image from URL: {url}")
response = requests.get(url)
response.raise_for_status()
# Determine MIME type based on URL
file_extension = os.path.splitext(url)[1].lower()
if file_extension in ['.jpg', '.jpeg']:
mime_type = "image/jpeg"
elif file_extension == '.png':
mime_type = "image/png"
elif file_extension == '.gif':
mime_type = "image/gif"
elif file_extension in ['.bmp', '.tiff', '.webp']:
mime_type = f"image/{file_extension[1:]}"
else:
mime_type = "image/jpeg" # Default to JPEG
# Convert to base64
base64_image = base64.b64encode(response.content).decode('utf-8')
logger.info(f"Successfully fetched and encoded image, mime type: {mime_type}")
return mime_type, base64_image
except Exception as e:
logger.error(f"Error fetching image from URL: {e}")
return None, None
def encode_base64_from_file(file_path):
"""Encode file content to base64 string and determine MIME type."""
file_extension = os.path.splitext(file_path)[1].lower()
# Map file extensions to MIME types
if file_extension in ['.jpg', '.jpeg']:
mime_type = "image/jpeg"
elif file_extension == '.png':
mime_type = "image/png"
elif file_extension == '.gif':
mime_type = "image/gif"
elif file_extension in ['.bmp', '.tiff', '.webp']:
mime_type = f"image/{file_extension[1:]}"
elif file_extension == '.flac':
mime_type = "audio/flac"
elif file_extension == '.wav':
mime_type = "audio/wav"
elif file_extension == '.mp3':
mime_type = "audio/mpeg"
elif file_extension in ['.m4a', '.aac']:
mime_type = "audio/aac"
elif file_extension == '.ogg':
mime_type = "audio/ogg"
else:
mime_type = "application/octet-stream"
# Read and encode file content
with open(file_path, "rb") as file:
encoded_string = base64.b64encode(file.read()).decode('utf-8')
return encoded_string, mime_type
def process_message(history, message, conversation_state):
"""Process user message and update both history and internal state."""
# Extract text and files
text_content = message["text"] if message["text"] else ""
image_files = []
audio_files = []
# Create content array for internal state
content_items = []
# Add text if available
if text_content:
content_items.append({"type": "text", "text": text_content})
# Check if we need to clear history when uploading a second image or audio
should_clear_history = False
# Count existing images and audio in history
existing_images = 0
existing_audio = 0
for msg in conversation_state:
if msg["role"] == "user" and "content" in msg:
for content_item in msg["content"]:
if isinstance(content_item, dict):
if content_item.get("type") == "image_url":
existing_images += 1
elif content_item.get("type") == "audio_url":
existing_audio += 1
# Process and immediately convert files to base64
if message["files"] and len(message["files"]) > 0:
for file_path in message["files"]:
file_extension = os.path.splitext(file_path)[1].lower()
file_name = os.path.basename(file_path)
# Convert the file to base64 immediately
base64_content, mime_type = encode_base64_from_file(file_path)
# Add to content items for the API
if mime_type.startswith("image/"):
content_items.append({
"type": "image_url",
"image_url": {
"url": f"data:{mime_type};base64,{base64_content}"
}
})
image_files.append(file_path)
# Check if this is a second image
if existing_images > 0:
should_clear_history = True
logger.info("Detected second image upload - clearing history")
elif mime_type.startswith("audio/"):
content_items.append({
"type": "audio_url",
"audio_url": {
"url": f"data:{mime_type};base64,{base64_content}"
}
})
audio_files.append(file_path)
# Check if this is a second audio
if existing_audio > 0:
should_clear_history = True
logger.info("Detected second audio upload - clearing history")
# Only proceed if we have content
if content_items:
# Clear history if we're uploading a second image or audio
if should_clear_history:
history = []
conversation_state = []
logger.info("History cleared due to second image/audio upload")
# Add to Gradio chatbot history (for display)
history.append({"role": "user", "content": text_content})
# Add file messages if present
for file_path in image_files + audio_files:
history.append({"role": "user", "content": {"path": file_path}})
logger.info(f"Updated history with user message. Current conversation has {existing_images + len(image_files)} images and {existing_audio + len(audio_files)} audio files")
# Add to internal conversation state (with base64 data)
conversation_state.append({
"role": "user",
"content": content_items
})
return history, gr.MultimodalTextbox(value=None, interactive=False), conversation_state
def process_text_example(example_text, history, conversation_state):
"""Process a text example directly."""
try:
# Initialize history and conversation_state if they're None
if history is None:
history = []
if conversation_state is None:
conversation_state = []
# Add text message to history for display
history.append({"role": "user", "content": example_text})
# Add to conversation state
content_items = [
{"type": "text", "text": example_text}
]
conversation_state.append({
"role": "user",
"content": content_items
})
# Generate bot response
return bot_response(history, conversation_state)
except Exception as e:
logger.error(f"Error processing text example: {e}", exc_info=True)
if history is None:
history = []
history.append({"role": "user", "content": example_text})
history.append({"role": "assistant", "content": f"Error: {str(e)}"})
return history, conversation_state
def process_audio_example_direct(example_text, example_audio_url, history, conversation_state):
"""Process an audio example directly from a URL."""
try:
logger.info(f"Processing audio example with text: {example_text}, URL: {example_audio_url}")
# Initialize history and conversation_state if they're None
if history is None:
history = []
if conversation_state is None:
conversation_state = []
# Check if we need to clear history (if there's already an audio in the conversation)
should_clear_history = False
for msg in conversation_state:
if msg["role"] == "user" and "content" in msg:
for content_item in msg["content"]:
if isinstance(content_item, dict) and content_item.get("type") == "audio_url":
should_clear_history = True
break
if should_clear_history:
history = []
conversation_state = []
logger.info("History cleared due to example with second audio")
# Fetch audio and convert to base64 directly using improved function
mime_type, base64_audio = improved_fetch_audio_from_url(example_audio_url)
if not mime_type or not base64_audio:
error_msg = f"Failed to load audio from {example_audio_url}"
logger.error(error_msg)
history.append({"role": "user", "content": f"{example_text} (Audio URL: {example_audio_url})"})
history.append({"role": "assistant", "content": f"Error: {error_msg}"})
return history, conversation_state
logger.info(f"Successfully loaded audio, mime type: {mime_type}, base64 length: {len(base64_audio)}")
# Add text message to history for display
history.append({"role": "user", "content": example_text})
# Add to conversation state
content_items = [
{"type": "text", "text": example_text},
{"type": "audio_url", "audio_url": {"url": f"data:{mime_type};base64,{base64_audio}"}}
]
conversation_state.append({
"role": "user",
"content": content_items
})
logger.info("Successfully prepared conversation state, now generating response")
# Generate bot response
return bot_response(history, conversation_state)
except Exception as e:
logger.error(f"Error processing audio example: {e}", exc_info=True)
if history is None:
history = []
history.append({"role": "user", "content": f"{example_text} (Audio URL: {example_audio_url})"})
history.append({"role": "assistant", "content": f"Error: {str(e)}"})
return history, conversation_state
def process_image_example_direct(example_text, example_image_url, history, conversation_state):
"""Process an image example directly from a URL."""
try:
# Initialize history and conversation_state if they're None
if history is None:
history = []
if conversation_state is None:
conversation_state = []
# Check if we need to clear history (if there's already an image in the conversation)
should_clear_history = False
for msg in conversation_state:
if msg["role"] == "user" and "content" in msg:
for content_item in msg["content"]:
if isinstance(content_item, dict) and content_item.get("type") == "image_url":
should_clear_history = True
break
if should_clear_history:
history = []
conversation_state = []
logger.info("History cleared due to example with second image")
# Fetch image and convert to base64 directly
mime_type, base64_image = fetch_image_from_url(example_image_url)
if not mime_type or not base64_image:
error_msg = f"Failed to load image from {example_image_url}"
logger.error(error_msg)
history.append({"role": "user", "content": f"{example_text} (Image URL: {example_image_url})"})
history.append({"role": "assistant", "content": f"Error: {error_msg}"})
return history, conversation_state
# Add text message to history for display
history.append({"role": "user", "content": example_text})
# Add to conversation state
content_items = [
{"type": "text", "text": example_text},
{"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{base64_image}"}}
]
conversation_state.append({
"role": "user",
"content": content_items
})
# Generate bot response
return bot_response(history, conversation_state)
except Exception as e:
logger.error(f"Error processing image example: {e}", exc_info=True)
if history is None:
history = []
history.append({"role": "user", "content": f"{example_text} (Image URL: {example_image_url})"})
history.append({"role": "assistant", "content": f"Error: {str(e)}"})
return history, conversation_state
def bot_response(history, conversation_state):
"""Generate bot response based on conversation state."""
if not conversation_state:
return history, conversation_state
# Create the payload
payload = {
"input_data": {
"input_string": conversation_state
}
}
# Log the payload for debugging (without base64 data)
debug_payload = json.loads(json.dumps(payload))
for item in debug_payload["input_data"]["input_string"]:
if "content" in item and isinstance(item["content"], list):
for content_item in item["content"]:
if "image_url" in content_item:
parts = content_item["image_url"]["url"].split(",")
if len(parts) > 1:
content_item["image_url"]["url"] = parts[0] + ",[BASE64_DATA_REMOVED]"
if "audio_url" in content_item:
parts = content_item["audio_url"]["url"].split(",")
if len(parts) > 1:
content_item["audio_url"]["url"] = parts[0] + ",[BASE64_DATA_REMOVED]"
logger.info(f"Sending payload: {json.dumps(debug_payload, indent=2)}")
# Call Azure ML endpoint
response = call_aml_endpoint(payload, url, api_key)
# Extract text response from the Azure ML endpoint response
try:
if isinstance(response, dict):
if "result" in response:
result = response["result"]
elif "output" in response:
# Depending on your API's response format
if isinstance(response["output"], list) and len(response["output"]) > 0:
result = response["output"][0]
else:
result = str(response["output"])
elif "error" in response:
result = f"Error: {response['error']}"
else:
# Just return the whole response as string if we can't parse it
result = f"Received response: {json.dumps(response)}"
else:
result = str(response)
except Exception as e:
result = f"Error processing response: {str(e)}"
# Add bot response to history
if result=="None":
result = "This demo does not support text + audio + image inputs in the same conversation. Please click Clear conversation button."
history.append({"role": "assistant", "content": result})
# Add to conversation state
conversation_state.append({
"role": "assistant",
"content": [{"type": "text", "text": result}]
})
return history, conversation_state
def enable_input():
"""Re-enable the input box after bot responds."""
return gr.MultimodalTextbox(interactive=True)
def update_debug(conversation_state):
"""Update debug output with the last payload that would be sent."""
if not conversation_state:
return {}
# Create a payload from the conversation
payload = {
"input_data": {
"input_string": conversation_state
}
}
# Remove base64 data to avoid cluttering the UI
sanitized_payload = json.loads(json.dumps(payload))
for item in sanitized_payload["input_data"]["input_string"]:
if "content" in item and isinstance(item["content"], list):
for content_item in item["content"]:
if "image_url" in content_item:
parts = content_item["image_url"]["url"].split(",")
if len(parts) > 1:
content_item["image_url"]["url"] = parts[0] + ",[BASE64_DATA_REMOVED]"
if "audio_url" in content_item:
parts = content_item["audio_url"]["url"].split(",")
if len(parts) > 1:
content_item["audio_url"]["url"] = parts[0] + ",[BASE64_DATA_REMOVED]"
return sanitized_payload
# Add this near the beginning of your Blocks definition, before you define your components
css = """
#small-audio audio {
height: 20px !important;
width: 100px !important;
}
#small-audio .wrap {
max-width: 220px !important;
}
#small-audio .audio-container {
min-height: 0px !important;
}
"""
# Create Gradio demo
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
title = gr.Markdown("# Phi-4-Multimodal Playground")
description = gr.Markdown("""
This demo allows you to interact with the [Phi-4-Multimodal AI model](https://aka.ms/phi-4-multimodal/techreport).
You can type messages, upload images, or record audio to communicate with the AI.
Other demos include [Phi-4-Mini playground](https://huggingface.co/spaces/microsoft/phi-4-mini), [Thoughts Organizer](https://huggingface.co/spaces/microsoft/ThoughtsOrganizer),
[Stories Come Alive](https://huggingface.co/spaces/microsoft/StoriesComeAlive), [Phine Speech Translator](https://huggingface.co/spaces/microsoft/PhineSpeechTranslator)
""")
# Store the conversation state with base64 data
conversation_state = gr.State([])
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
type="messages",
avatar_images=(None, "https://upload.wikimedia.org/wikipedia/commons/d/d3/Phi-integrated-information-symbol.png",),
height=600
)
# trash icon clear all
chatbot.clear(lambda: [], None, conversation_state)
with gr.Row():
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="multiple",
placeholder="Enter a message or upload files (images, audio)...",
show_label=False,
sources=["microphone", "upload"],
)
with gr.Row():
clear_btn = gr.ClearButton([chatbot, chat_input], value="Clear conversation")
clear_btn.click(lambda: [], None, conversation_state) # Also clear the conversation state
gr.HTML("<div style='text-align: right; margin-top: 5px;'><small>Powered by Microsoft <a href=\"https://aka.ms/phi-4-multimodal/azure\">Phi-4-multimodal</a> model on Azure AI.©2025</small></div>")
with gr.Column(scale=1):
with gr.Tab("Audio & Text"):
# Example 1
gr.Audio("https://diamondfan.github.io/audio_files/english.weekend.plan.wav",
label="Preview", elem_id="small-audio")
example1_btn = gr.Button("Transcribe this audio clip")
gr.Markdown("-----")
# Example 2
gr.Audio("https://diamondfan.github.io/audio_files/japanese.seattle.trip.report.wav",
label="Preview", elem_id="small-audio")
example2_btn = gr.Button("Translate audio transcription to English")
# Define handlers for audio examples
def run_audio_example1():
return process_audio_example_direct(
"Transcribe this audio clip",
"https://diamondfan.github.io/audio_files/english.weekend.plan.wav",
[], []
)
def run_audio_example2():
return process_audio_example_direct(
"Translate audio transcription to English",
"https://diamondfan.github.io/audio_files/japanese.seattle.trip.report.wav",
[], []
)
# Connect buttons to handlers
example1_btn.click(
run_audio_example1,
inputs=[],
outputs=[chatbot, conversation_state]
)
example2_btn.click(
run_audio_example2,
inputs=[],
outputs=[chatbot, conversation_state]
)
with gr.Tab("Image & Text"):
# Example 1
gr.Image("https://upload.wikimedia.org/wikipedia/commons/thumb/3/31/Hanoi_Temple_of_Literature.jpg/640px-Hanoi_Temple_of_Literature.jpg", label="Preview")
img_example1_btn = gr.Button("Write a limerick about this image")
# Example 2
gr.Image("https://pub-c2c1d9230f0b4abb9b0d2d95e06fd4ef.r2.dev/sites/566/2024/09/Screenshot-2024-09-16-115417.png", label="Preview")
img_example2_btn = gr.Button("Convert the chart to a markdown table")
# Define handlers for image examples
def run_image_example1():
return process_image_example_direct(
"Write a limerick about this image",
"https://upload.wikimedia.org/wikipedia/commons/thumb/3/31/Hanoi_Temple_of_Literature.jpg/640px-Hanoi_Temple_of_Literature.jpg",
[], []
)
def run_image_example2():
return process_image_example_direct(
"Convert the chart to a markdown table",
"https://pub-c2c1d9230f0b4abb9b0d2d95e06fd4ef.r2.dev/sites/566/2024/09/Screenshot-2024-09-16-115417.png",
[], []
)
# Connect buttons to handlers
img_example1_btn.click(
run_image_example1,
inputs=[],
outputs=[chatbot, conversation_state]
)
img_example2_btn.click(
run_image_example2,
inputs=[],
outputs=[chatbot, conversation_state]
)
with gr.Tab("Text Only"):
# Create a list of example texts
text_example_list = [
"I'd like to buy a new car. Start by asking me about my budget and which features I care most about, then provide a recommendation.",
"Coffee shops have been slimming down their menus lately. Is less choice making our coffee runs better or do we miss the variety?",
"Explain the Transformer model to a medieval knight"
]
# Create buttons for each example
for i, example_text in enumerate(text_example_list):
with gr.Row():
# gr.Markdown(f"Example {i+1}: **{example_text}**")
text_example_btn = gr.Button(f"{example_text}")
# Connect button to handler with the specific example text
text_example_btn.click(
fn=lambda text=example_text: process_text_example(text, [], []),
inputs=[],
outputs=[chatbot, conversation_state]
)
gr.Markdown("### Instructions")
gr.Markdown("""
- Type a question or statement
- Upload images or audio files
- You can combine text with media files
- Support 2 modalities at the same time
- The model can analyze images and transcribe audio
- For best results with images, use JPG or PNG files
- For audio, use WAV, MP3, or FLAC files
""")
gr.Markdown("### Capabilities")
gr.Markdown("""
This chatbot can:
- Answer questions and provide explanations
- Describe and analyze images
- Transcribe, translate, summarize, and analyze audio content
- Process multiple inputs in the same message
- Maintain context throughout the conversation
""")
with gr.Accordion("Debug Info", open=False):
debug_output = gr.JSON(
label="Last API Request",
value={}
)
# Set up event handlers
msg_submit = chat_input.submit(
process_message, [chatbot, chat_input, conversation_state], [chatbot, chat_input, conversation_state], queue=False
)
msg_response = msg_submit.then(
bot_response, [chatbot, conversation_state], [chatbot, conversation_state], api_name="bot_response"
)
msg_response.then(enable_input, None, chat_input)
# Update debug info
msg_response.then(update_debug, conversation_state, debug_output)
demo.launch(share=True, debug=True) |