Multi-task-NLP / keyword_extraction.py
miesnerjacob's picture
installed en_core_web_sm independently from spacy
67caa78
raw
history blame
2.63 kB
import spacy
import pytextrank
import re
from operator import itemgetter
import en_core_web_sm
class KeywordExtractor:
def __init__(self):
self.nlp = en_core_web_sm.load()
self.nlp.add_pipe("textrank")
def get_keywords(self, text, max_keywords):
doc = self.nlp(text)
kws = [i.text for i in doc._.phrases[:max_keywords]]
return kws
def get_keyword_indicies(self, string_list, text):
out = []
for s in string_list:
indicies = [[m.start(), m.end()] for m in re.finditer(re.escape(s), text)]
out.extend(indicies)
return out
def merge_overlapping_indicies(self, indicies):
# Sort the array on the basis of start values of intervals.
indicies.sort()
stack = []
# insert first interval into stack
stack.append(indicies[0])
for i in indicies[1:]:
# Check for overlapping interval,
# if interval overlap
if (stack[-1][0] <= i[0] <= stack[-1][-1]) or (stack[-1][-1] == i[0]-1):
stack[-1][-1] = max(stack[-1][-1], i[-1])
else:
stack.append(i)
return stack
def merge_until_finished(self, indicies):
len_indicies = 0
while True:
merged = self.merge_overlapping_indicies(indicies)
if len_indicies == len(merged):
out_indicies = sorted(merged, key=itemgetter(0))
return out_indicies
else:
len_indicies = len(merged)
def get_annotation(self, text, indicies, kws):
# Convert indicies to list
# kws = kws + [i.lower() for i in kws]
arr = list(text)
for idx in sorted(indicies, reverse=True):
arr.insert(idx[0], "<kw>")
arr.insert(idx[1]+1, "XXXxxxXXXxxxXXX <kw>")
annotation = ''.join(arr)
split = annotation.split('<kw>')
final_annotation = [(x.replace('XXXxxxXXXxxxXXX ', ''), "KEY", "#26aaef") if "XXXxxxXXXxxxXXX" in x else x for x in split]
kws_check = []
for i in final_annotation:
if type(i) is tuple:
kws_check.append(i[0])
return final_annotation
def generate(self, text, max_keywords):
kws = self.get_keywords(text, max_keywords)
indicies = list(self.get_keyword_indicies(kws, text))
if indicies:
indicies_merged = self.merge_until_finished(indicies)
annotation = self.get_annotation(text, indicies_merged, kws)
else:
annotation = None
return annotation, kws