Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -112,53 +112,51 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
| 112 |
return filtered_df
|
| 113 |
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
# def filter_models(
|
| 116 |
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, italian_only: bool
|
| 117 |
# ) -> pd.DataFrame:
|
| 118 |
# # Show all models
|
| 119 |
# if show_deleted:
|
| 120 |
-
# filtered_df = df
|
| 121 |
# else: # Show only still on the hub models
|
| 122 |
-
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
|
|
|
|
|
|
| 123 |
|
| 124 |
# type_emoji = [t[0] for t in type_query]
|
| 125 |
-
# filtered_df = filtered_df
|
| 126 |
-
# filtered_df = filtered_df
|
| 127 |
|
| 128 |
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 129 |
-
# params_column = pd.to_numeric(
|
| 130 |
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 131 |
-
# filtered_df = filtered_df
|
|
|
|
| 132 |
# if italian_only:
|
| 133 |
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.author.name] == "๐ฎ๐น"]
|
| 134 |
|
| 135 |
# return filtered_df
|
| 136 |
|
| 137 |
-
def filter_models(
|
| 138 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, italian_only: bool
|
| 139 |
-
) -> pd.DataFrame:
|
| 140 |
-
# Show all models
|
| 141 |
-
if show_deleted:
|
| 142 |
-
filtered_df = df.copy()
|
| 143 |
-
else: # Show only still on the hub models
|
| 144 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True].copy()
|
| 145 |
-
|
| 146 |
-
filtered_df[AutoEvalColumn.model.name] = filtered_df[AutoEvalColumn.model.name].apply(lambda x: x.split('>')[-2].split('<')[0] if '<a' in x else x)
|
| 147 |
-
|
| 148 |
-
type_emoji = [t[0] for t in type_query]
|
| 149 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 150 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 151 |
-
|
| 152 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 153 |
-
params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
|
| 154 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 155 |
-
filtered_df = filtered_df[mask]
|
| 156 |
-
|
| 157 |
-
if italian_only:
|
| 158 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.author.name] == "๐ฎ๐น"]
|
| 159 |
-
|
| 160 |
-
return filtered_df
|
| 161 |
-
|
| 162 |
def get_data_totale():
|
| 163 |
dataset = pd.read_csv("mmlu_pro_it.csv", sep=',')
|
| 164 |
if 'model ' in dataset.columns:
|
|
|
|
| 112 |
return filtered_df
|
| 113 |
|
| 114 |
|
| 115 |
+
def filter_models(
|
| 116 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
| 117 |
+
) -> pd.DataFrame:
|
| 118 |
+
# Show all models
|
| 119 |
+
if show_deleted:
|
| 120 |
+
filtered_df = df
|
| 121 |
+
else: # Show only still on the hub models
|
| 122 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
| 123 |
+
|
| 124 |
+
type_emoji = [t[0] for t in type_query]
|
| 125 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 126 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 127 |
+
|
| 128 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 129 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
| 130 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 131 |
+
filtered_df = filtered_df.loc[mask]
|
| 132 |
+
|
| 133 |
+
return filtered_df
|
| 134 |
+
|
| 135 |
# def filter_models(
|
| 136 |
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, italian_only: bool
|
| 137 |
# ) -> pd.DataFrame:
|
| 138 |
# # Show all models
|
| 139 |
# if show_deleted:
|
| 140 |
+
# filtered_df = df.copy()
|
| 141 |
# else: # Show only still on the hub models
|
| 142 |
+
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True].copy()
|
| 143 |
+
|
| 144 |
+
# filtered_df[AutoEvalColumn.model.name] = filtered_df[AutoEvalColumn.model.name].apply(lambda x: x.split('>')[-2].split('<')[0] if '<a' in x else x)
|
| 145 |
|
| 146 |
# type_emoji = [t[0] for t in type_query]
|
| 147 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
| 148 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
| 149 |
|
| 150 |
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 151 |
+
# params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
|
| 152 |
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
| 153 |
+
# filtered_df = filtered_df[mask]
|
| 154 |
+
|
| 155 |
# if italian_only:
|
| 156 |
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.author.name] == "๐ฎ๐น"]
|
| 157 |
|
| 158 |
# return filtered_df
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
def get_data_totale():
|
| 161 |
dataset = pd.read_csv("mmlu_pro_it.csv", sep=',')
|
| 162 |
if 'model ' in dataset.columns:
|