Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,119 +1,71 @@
|
|
1 |
-
import
|
2 |
-
from fastapi import
|
3 |
-
from pydantic import BaseModel
|
4 |
-
from typing import List, Optional
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
# Конфигурация квантизации для экономии памяти (ОБЯЗАТЕЛЬНО для бесплатного тарифа)
|
18 |
-
quantization_config = BitsAndBytesConfig(
|
19 |
-
load_in_4bit=True,
|
20 |
-
bnb_4bit_compute_dtype=torch.float16
|
21 |
)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
"""
|
77 |
-
print(f"Received request: {request.dict()}")
|
78 |
-
|
79 |
-
# Преобразуем сообщения из формата OpenAI в единую строку для T5 модели
|
80 |
-
prompt_text = "\n".join([f"{msg.role}: {msg.content}" for msg in request.messages])
|
81 |
-
|
82 |
-
print(f"Formatted prompt for FRIDA:\n{prompt_text}")
|
83 |
-
|
84 |
-
# Кодируем текст в токены
|
85 |
-
inputs = tokenizer(prompt_text, return_tensors="pt").to(model.device)
|
86 |
-
prompt_tokens_count = inputs["input_ids"].shape[1]
|
87 |
-
|
88 |
-
# Генерируем ответ от модели
|
89 |
-
outputs = model.generate(
|
90 |
-
**inputs,
|
91 |
-
max_new_tokens=request.max_tokens,
|
92 |
-
temperature=request.temperature,
|
93 |
-
do_sample=True,
|
94 |
-
eos_token_id=tokenizer.eos_token_id,
|
95 |
-
pad_token_id=tokenizer.pad_token_id
|
96 |
-
)
|
97 |
-
|
98 |
-
# Декодируем сгенерированные токены обратно в текст
|
99 |
-
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
100 |
-
|
101 |
-
# Считаем токены ответа
|
102 |
-
completion_tokens_count = outputs[0].shape[0]
|
103 |
-
|
104 |
-
print(f"Generated response: {response_text}")
|
105 |
-
|
106 |
-
# Формируем ответ в формате OpenAI
|
107 |
-
response_message = ChatMessage(role="assistant", content=response_text)
|
108 |
-
choice = ChatCompletionChoice(index=0, message=response_message)
|
109 |
-
usage = UsageInfo(
|
110 |
-
prompt_tokens=prompt_tokens_count,
|
111 |
-
completion_tokens=completion_tokens_count,
|
112 |
-
total_tokens=prompt_tokens_count + completion_tokens_count
|
113 |
-
)
|
114 |
-
|
115 |
-
return ChatCompletionResponse(choices=[choice], usage=usage)
|
116 |
-
|
117 |
-
@app.get("/")
|
118 |
-
def health_check():
|
119 |
-
return {"status": "ok", "model_name": MODEL_ALIAS}
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
from typing import List, Optional
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
|
9 |
+
app = FastAPI(title="FRIDA Embedding API", version="1.0")
|
10 |
+
|
11 |
+
app.add_middleware(
|
12 |
+
CORSMiddleware,
|
13 |
+
allow_origins=["*"],
|
14 |
+
allow_credentials=True,
|
15 |
+
allow_methods=["*"],
|
16 |
+
allow_headers=["*"],
|
|
|
|
|
|
|
|
|
17 |
)
|
18 |
|
19 |
+
MODEL_NAME = "ai-forever/FRIDA"
|
20 |
+
model = SentenceTransformer(MODEL_NAME)
|
21 |
+
EMBED_DIM = model.get_sentence_embedding_dimension()
|
22 |
+
|
23 |
+
SUPPORTED_PROMPTS = [
|
24 |
+
"search_query",
|
25 |
+
"search_document",
|
26 |
+
"paraphrase",
|
27 |
+
"categorize",
|
28 |
+
"categorize_sentiment",
|
29 |
+
"categorize_topic",
|
30 |
+
"categorize_entailment",
|
31 |
+
]
|
32 |
+
|
33 |
+
class EmbedRequest(BaseModel):
|
34 |
+
texts: List[str] = Field(..., description="Список текстов")
|
35 |
+
prompt_name: Optional[str] = Field("search_document", description="FRIDA prompt_name")
|
36 |
+
|
37 |
+
class EmbedResponse(BaseModel):
|
38 |
+
embeddings: List[List[float]]
|
39 |
+
dim: int
|
40 |
+
|
41 |
+
@app.get("/health")
|
42 |
+
def health():
|
43 |
+
return {"status": "ok"}
|
44 |
+
|
45 |
+
@app.get("/metadata")
|
46 |
+
def metadata():
|
47 |
+
return {
|
48 |
+
"model": MODEL_NAME,
|
49 |
+
"embedding_dim": EMBED_DIM,
|
50 |
+
"pooling": "cls",
|
51 |
+
"prompts_supported": SUPPORTED_PROMPTS,
|
52 |
+
}
|
53 |
+
|
54 |
+
@app.post("/embed", response_model=EmbedResponse)
|
55 |
+
def embed(req: EmbedRequest):
|
56 |
+
if not req.texts:
|
57 |
+
raise HTTPException(status_code=400, detail="texts must be non-empty")
|
58 |
+
prompt = req.prompt_name or "search_document"
|
59 |
+
if prompt not in SUPPORTED_PROMPTS:
|
60 |
+
raise HTTPException(status_code=400, detail=f"Unsupported prompt_name: {prompt}")
|
61 |
+
|
62 |
+
vectors = model.encode(
|
63 |
+
req.texts,
|
64 |
+
convert_to_numpy=True,
|
65 |
+
prompt_name=prompt,
|
66 |
+
normalize_embeddings=True,
|
67 |
+
batch_size=min(16, max(1, len(req.texts))),
|
68 |
+
show_progress_bar=False,
|
69 |
+
).astype(np.float32)
|
70 |
+
|
71 |
+
return {"embeddings": vectors.tolist(), "dim": int(vectors.shape[1])}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|