sdhanabal1's picture
Refactor and highlight extract summary
abcaca9
raw
history blame
3.7 kB
import nltk
import streamlit as st
import validators
from transformers import pipeline
from validators import ValidationFailure
from Summarizer import Summarizer
nltk.download('punkt')
DEFAULT_EXTRACTED_ARTICLE_SENTENCES_LENGTH = 10
st.markdown('# Terms & conditions abstractive summarization model :pencil:')
st.write('This app provides the abstract summary of the provided terms & conditions. '
'The abstractive summarization is preceded by LSA (Latent Semantic Analysis) extractive summarization')
st.write('Information about the model :point_right: https://huggingface.co/ml6team/distilbart-tos-summarizer-tosdr')
st.markdown("""
To use this:
- Number of sentences to be extracted is configurable
- Specify an URL to extract contents OR copy terms & conditions content and hit 'Summarize'
""")
@st.cache(allow_output_mutation=True,
suppress_st_warning=True,
show_spinner=False)
def create_pipeline():
with st.spinner('Please wait for the model to load...'):
terms_and_conditions_pipeline = pipeline(
task='summarization',
model='ml6team/distilbart-tos-summarizer-tosdr',
tokenizer='ml6team/distilbart-tos-summarizer-tosdr'
)
return terms_and_conditions_pipeline
def display_abstractive_summary(summary) -> None:
st.subheader("Abstractive Summary")
st.markdown('#####')
st.markdown(summary)
def display_extractive_summary(terms_and_conditions_sentences: list, summary_sentences: list) -> None:
st.subheader("Extractive Summary")
st.markdown('#####')
terms_and_conditions = " ".join(sentence for sentence in terms_and_conditions_sentences)
replaced_text = terms_and_conditions
for sentence in summary_sentences:
replaced_text = replaced_text.replace(sentence, f"<span style='background-color: #FFFF00'>{sentence}</span>")
st.write(replaced_text, unsafe_allow_html=True)
def is_valid_url(url: str) -> bool:
result = validators.url(url)
if isinstance(result, ValidationFailure):
return False
return True
summarizer: Summarizer = Summarizer(create_pipeline())
if 'tc_text' not in st.session_state:
st.session_state['tc_text'] = ''
if 'sentences_length' not in st.session_state:
st.session_state['sentences_length'] = DEFAULT_EXTRACTED_ARTICLE_SENTENCES_LENGTH
st.write('<style>div.row-widget.stRadio > div{flex-direction:row;}</style>', unsafe_allow_html=True)
st.header("Input")
with st.form(key='terms-and-conditions'):
sentences_length_input = st.number_input(
label='Number of sentences to be extracted:',
min_value=1,
value=st.session_state.sentences_length
)
tc_text_input = st.text_area(
value=st.session_state.tc_text,
label='Terms & conditions content or specify an URL:',
height=240
)
submit_button = st.form_submit_button(label='Summarize')
if submit_button:
if is_valid_url(tc_text_input):
(all_sentences, extract_summary_sentences) = summarizer.extractive_summary_from_url(tc_text_input,
sentences_length_input)
else:
(all_sentences, extract_summary_sentences) = summarizer.extractive_summary_from_text(tc_text_input,
sentences_length_input)
extract_summary = " ".join([sentence for sentence in extract_summary_sentences])
abstract_summary = summarizer.abstractive_summary(extract_summary)
display_extractive_summary(all_sentences, extract_summary_sentences)
display_abstractive_summary(abstract_summary)