Abhinav Jangra commited on
Commit
136d7b4
·
1 Parent(s): 4b5b3ac

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -77
app.py DELETED
@@ -1,77 +0,0 @@
1
- import streamlit as st
2
- import pickle
3
- import string
4
- from nltk.corpus import stopwords
5
- import nltk
6
- nltk.download('punkt')
7
- nltk.download('stopwords')
8
-
9
-
10
- from nltk.stem.porter import PorterStemmer
11
-
12
- ps=PorterStemmer()
13
-
14
-
15
-
16
-
17
- def transform_text(text):
18
- text=text.lower()
19
- text=nltk.word_tokenize(text)
20
-
21
- y=[]
22
- for i in text:
23
- if i.isalnum():
24
- y.append(i)
25
-
26
- text=y[:]
27
- y.clear()
28
-
29
- for i in text:
30
- if i not in stopwords.words('english') and i not in string.punctuation:
31
- y.append(i)
32
-
33
- text=y[:]
34
- y.clear()
35
-
36
- for i in text:
37
- y.append(ps.stem(i))
38
-
39
-
40
- return " ".join(y)
41
-
42
-
43
-
44
- tfidf=pickle.load(open('vectorizer.pkl','rb'))
45
- model=pickle.load(open('model.pkl','rb'))
46
-
47
- st.title("EMAIL/SMS SPAM CLASSIFIER")
48
-
49
- #follow documentation for syntax and fn
50
-
51
- input_sms=st.text_input("Enter the message :)")
52
-
53
- if st.button('predict'):
54
-
55
- #1.preprocess
56
- transformed_sms=transform_text(input_sms)
57
- #2.vectorize
58
- vector_input=tfidf.transform([transformed_sms])
59
- #3.predict
60
- result=model.predict(vector_input)[0]
61
- #4.display
62
-
63
- if result==1:
64
- st.header("make some friends loner")
65
-
66
- else:
67
- st.header("not spam uwu")
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-