mnavas commited on
Commit
ebcdff7
·
verified ·
1 Parent(s): 5375375

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +202 -0
app.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+ from smolagents import CodeAgent, GoogleSearchTool, HfApiModel, VisitWebpageTool
7
+
8
+ # (Keep Constants as is)
9
+ # --- Constants ---
10
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
+
12
+ # --- Basic Agent Definition ---
13
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
14
+ class BasicAgent:
15
+ def __init__(self):
16
+ print("BasicAgent initialized.")
17
+ def __call__(self, question: str) -> str:
18
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
19
+ fixed_answer = "This is a default answer."
20
+ print(f"Agent returning fixed answer: {fixed_answer}")
21
+ return fixed_answer
22
+
23
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
24
+ """
25
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
26
+ and displays the results.
27
+ """
28
+ # --- Determine HF Space Runtime URL and Repo URL ---
29
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
30
+
31
+ if profile:
32
+ username= f"{profile.username}"
33
+ print(f"User logged in: {username}")
34
+ else:
35
+ print("User not logged in.")
36
+ return "Please Login to Hugging Face with the button.", None
37
+
38
+ api_url = DEFAULT_API_URL
39
+ questions_url = f"{api_url}/questions"
40
+ submit_url = f"{api_url}/submit"
41
+
42
+ # 1. Instantiate Agent ( modify this part to create your agent)
43
+ try:
44
+ agent = BasicAgent(
45
+ tools=[GoogleSearchTool],
46
+ model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
47
+ add_base_tools=True, # Add any additional base tools
48
+ planning_interval=3 # Enable planning every 3 steps
49
+ )
50
+ except Exception as e:
51
+ print(f"Error instantiating agent: {e}")
52
+ return f"Error initializing agent: {e}", None
53
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
54
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
55
+ print(agent_code)
56
+
57
+ # 2. Fetch Questions
58
+ print(f"Fetching questions from: {questions_url}")
59
+ try:
60
+ response = requests.get(questions_url, timeout=15)
61
+ response.raise_for_status()
62
+ questions_data = response.json()
63
+ if not questions_data:
64
+ print("Fetched questions list is empty.")
65
+ return "Fetched questions list is empty or invalid format.", None
66
+ print(f"Fetched {len(questions_data)} questions.")
67
+ except requests.exceptions.RequestException as e:
68
+ print(f"Error fetching questions: {e}")
69
+ return f"Error fetching questions: {e}", None
70
+ except requests.exceptions.JSONDecodeError as e:
71
+ print(f"Error decoding JSON response from questions endpoint: {e}")
72
+ print(f"Response text: {response.text[:500]}")
73
+ return f"Error decoding server response for questions: {e}", None
74
+ except Exception as e:
75
+ print(f"An unexpected error occurred fetching questions: {e}")
76
+ return f"An unexpected error occurred fetching questions: {e}", None
77
+
78
+ # 3. Run your Agent
79
+ results_log = []
80
+ answers_payload = []
81
+ print(f"Running agent on {len(questions_data)} questions...")
82
+ for item in questions_data:
83
+ task_id = item.get("task_id")
84
+ question_text = item.get("question")
85
+ if not task_id or question_text is None:
86
+ print(f"Skipping item with missing task_id or question: {item}")
87
+ continue
88
+ try:
89
+ submitted_answer = agent(question_text)
90
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
91
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
92
+ except Exception as e:
93
+ print(f"Error running agent on task {task_id}: {e}")
94
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
95
+
96
+ if not answers_payload:
97
+ print("Agent did not produce any answers to submit.")
98
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
99
+
100
+ # 4. Prepare Submission
101
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
102
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
103
+ print(status_update)
104
+
105
+ # 5. Submit
106
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
107
+ try:
108
+ response = requests.post(submit_url, json=submission_data, timeout=60)
109
+ response.raise_for_status()
110
+ result_data = response.json()
111
+ final_status = (
112
+ f"Submission Successful!\n"
113
+ f"User: {result_data.get('username')}\n"
114
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
115
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
116
+ f"Message: {result_data.get('message', 'No message received.')}"
117
+ )
118
+ print("Submission successful.")
119
+ results_df = pd.DataFrame(results_log)
120
+ return final_status, results_df
121
+ except requests.exceptions.HTTPError as e:
122
+ error_detail = f"Server responded with status {e.response.status_code}."
123
+ try:
124
+ error_json = e.response.json()
125
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
126
+ except requests.exceptions.JSONDecodeError:
127
+ error_detail += f" Response: {e.response.text[:500]}"
128
+ status_message = f"Submission Failed: {error_detail}"
129
+ print(status_message)
130
+ results_df = pd.DataFrame(results_log)
131
+ return status_message, results_df
132
+ except requests.exceptions.Timeout:
133
+ status_message = "Submission Failed: The request timed out."
134
+ print(status_message)
135
+ results_df = pd.DataFrame(results_log)
136
+ return status_message, results_df
137
+ except requests.exceptions.RequestException as e:
138
+ status_message = f"Submission Failed: Network error - {e}"
139
+ print(status_message)
140
+ results_df = pd.DataFrame(results_log)
141
+ return status_message, results_df
142
+ except Exception as e:
143
+ status_message = f"An unexpected error occurred during submission: {e}"
144
+ print(status_message)
145
+ results_df = pd.DataFrame(results_log)
146
+ return status_message, results_df
147
+
148
+
149
+ # --- Build Gradio Interface using Blocks ---
150
+ with gr.Blocks() as demo:
151
+ gr.Markdown("# Basic Agent Evaluation Runner")
152
+ gr.Markdown(
153
+ """
154
+ **Instructions:**
155
+
156
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
157
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
158
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
159
+
160
+ ---
161
+ **Disclaimers:**
162
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
163
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
164
+ """
165
+ )
166
+
167
+ gr.LoginButton()
168
+
169
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
170
+
171
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
172
+ # Removed max_rows=10 from DataFrame constructor
173
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
174
+
175
+ run_button.click(
176
+ fn=run_and_submit_all,
177
+ outputs=[status_output, results_table]
178
+ )
179
+
180
+ if __name__ == "__main__":
181
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
182
+ # Check for SPACE_HOST and SPACE_ID at startup for information
183
+ space_host_startup = os.getenv("SPACE_HOST")
184
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
185
+
186
+ if space_host_startup:
187
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
188
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
189
+ else:
190
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
191
+
192
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
193
+ print(f"✅ SPACE_ID found: {space_id_startup}")
194
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
195
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
196
+ else:
197
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
198
+
199
+ print("-"*(60 + len(" App Starting ")) + "\n")
200
+
201
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
202
+ demo.launch(debug=True, share=False)