Mohit Kumar commited on
Commit
12b62c2
·
1 Parent(s): 9a2601d

Updated file

Browse files
Files changed (1) hide show
  1. app.py +2 -12
app.py CHANGED
@@ -1,6 +1,4 @@
1
  import os
2
- os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
3
-
4
  import gradio as gr
5
  import numpy as np
6
  from transformers import AutoModelForTokenClassification
@@ -92,23 +90,15 @@ def process_image(image):
92
  return image
93
 
94
 
95
- title = "Invoice Information extraction using LayoutLMv3 model"
96
- description = "Invoice Information Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
97
-
98
- article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>"
99
-
100
- examples =[['example1.png'],['example2.png'],['example3.png']]
101
 
102
- css = """.output_image, .input_image {height: 600px !important}"""
103
 
104
  iface = gr.Interface(fn=process_image,
105
  inputs=gr.inputs.Image(type="pil"),
106
  outputs=gr.outputs.Image(type="pil", label="annotated image"),
107
  title=title,
108
  description=description,
109
- article=article,
110
- examples=examples,
111
- css=css,
112
  analytics_enabled = True, enable_queue=True)
113
 
114
  iface.launch(inline=False, share=False, debug=False)
 
1
  import os
 
 
2
  import gradio as gr
3
  import numpy as np
4
  from transformers import AutoModelForTokenClassification
 
90
  return image
91
 
92
 
93
+ title = "Invoice Information extraction by Mohit Kumar"
94
+ description = "Invoice Information Extraction for Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
 
 
 
 
95
 
 
96
 
97
  iface = gr.Interface(fn=process_image,
98
  inputs=gr.inputs.Image(type="pil"),
99
  outputs=gr.outputs.Image(type="pil", label="annotated image"),
100
  title=title,
101
  description=description,
 
 
 
102
  analytics_enabled = True, enable_queue=True)
103
 
104
  iface.launch(inline=False, share=False, debug=False)