File size: 37,530 Bytes
3124891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23ce2aa
3124891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d64324
62b9dda
fa6916b
29e09f6
2d64324
 
 
 
 
29e09f6
2d64324
3124891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f03e09
 
3124891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
843d5d1
3124891
9caaa61
 
 
 
 
 
 
 
 
 
 
5452482
 
 
9caaa61
a848154
 
 
 
 
3124891
a848154
 
 
 
 
 
 
3124891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30dd31f
3124891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

# Import necessary libraries
import os  # Interacting with the operating system (reading/writing files)
import chromadb  # High-performance vector database for storing/querying dense vectors
from dotenv import load_dotenv  # Loading environment variables from a .env file
import json  # Parsing and handling JSON data

# LangChain imports
from langchain_core.documents import Document  # Document data structures
from langchain_core.runnables import RunnablePassthrough  # LangChain core library for running pipelines
from langchain_core.output_parsers import StrOutputParser  # String output parser
from langchain.prompts import ChatPromptTemplate  # Template for chat prompts
from langchain.chains.query_constructor.base import AttributeInfo  # Base classes for query construction
from langchain.retrievers.self_query.base import SelfQueryRetriever  # Base classes for self-querying retrievers
from langchain.retrievers.document_compressors import LLMChainExtractor, CrossEncoderReranker  # Document compressors
from langchain.retrievers import ContextualCompressionRetriever  # Contextual compression retrievers

# LangChain community & experimental imports
from langchain_community.vectorstores import Chroma  # Implementations of vector stores like Chroma
from langchain_community.document_loaders import PyPDFDirectoryLoader, PyPDFLoader  # Document loaders for PDFs
from langchain_community.cross_encoders import HuggingFaceCrossEncoder  # Cross-encoders from HuggingFace
from langchain_experimental.text_splitter import SemanticChunker  # Experimental text splitting methods
from langchain.text_splitter import (
    CharacterTextSplitter,  # Splitting text by characters
    RecursiveCharacterTextSplitter  # Recursive splitting of text by characters
)
from langchain_core.tools import tool
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain_core.prompts import ChatPromptTemplate

# LangChain OpenAI imports
from langchain_openai import ChatOpenAI
from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI  # OpenAI embeddings and models
from langchain.embeddings.openai import OpenAIEmbeddings  # OpenAI embeddings for text vectors

# LlamaParse & LlamaIndex imports
from llama_parse import LlamaParse  # Document parsing library
from llama_index.core import Settings, SimpleDirectoryReader  # Core functionalities of the LlamaIndex

# LangGraph import
from langgraph.graph import StateGraph, END, START  # State graph for managing states in LangChain

# Pydantic import
from pydantic import BaseModel  # Pydantic for data validation

# Typing imports
from typing import Dict, List, Tuple, Any, TypedDict  # Python typing for function annotations

# Other utilities
import numpy as np  # Numpy for numerical operations
from groq import Groq
from mem0 import MemoryClient
import streamlit as st
from datetime import datetime

#====================================SETUP=====================================#
# Fetch secrets from Hugging Face Spaces
api_key = os.getenv("API_KEY")
endpoint = os.getenv("API_BASE")
llama_api_key = os.getenv("GROQ_API_KEY")
MEM0_API_KEY = os.getenv("MEM0_API_KEY")

# quick sanity check
print("API_KEY:",       "🔒 set" if api_key else "❌ missing")
print("API_BASE:",      endpoint or "❌ missing")
print("GROQ_API_KEY:",  "🔒 set" if llama_api_key else "❌ missing")
print("MEM0_API_KEY:",  "🔒 set" if MEM0_API_KEY  else "❌ missing")


# Initialize the OpenAI embedding function for Chroma
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
    api_base=endpoint, # Complete the code to define the API base endpoint
    api_key=api_key, # Complete the code to define the API key
    model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
)

# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided endpoint and API key.

# Initialize the OpenAI Embeddings
embedding_model = OpenAIEmbeddings(
    openai_api_base=endpoint,
    openai_api_key=api_key,
    model='text-embedding-ada-002'
)


# Initialize the Chat OpenAI model
llm = ChatOpenAI(
    openai_api_base=endpoint,
    openai_api_key=api_key,
    model="gpt-4o-mini",
    streaming=False
)
# This initializes the Chat OpenAI model with the provided endpoint, API key, deployment name, and a temperature setting of 0 (to control response variability).

# set the LLM and embedding model in the LlamaIndex settings.
Settings.llm = llm # Complete the code to define the LLM model
Settings.embedding = embedding_model # Complete the code to define the embedding model

#================================Creating Langgraph agent======================#

class AgentState(TypedDict):
    query: str  # The current user query
    expanded_query: str  # The expanded version of the user query
    context: List[Dict[str, Any]]  # Retrieved documents (content and metadata)
    response: str  # The generated response to the user query
    precision_score: float  # The precision score of the response
    groundedness_score: float  # The groundedness score of the response
    groundedness_loop_count: int  # Counter for groundedness refinement loops
    precision_loop_count: int  # Counter for precision refinement loops
    feedback: str
    query_feedback: str
    groundedness_check: bool
    loop_max_iter: int

def expand_query(state):
    """
    Expands the user query to improve retrieval of nutrition disorder-related information.

    Args:
        state (Dict): The current state of the workflow, containing the user query.

    Returns:
        Dict: The updated state with the expanded query.
    """
    print("---------Expanding Query---------")
    #system_message = '''________________________'''
    system_message = """You are a nutrition-focused query expander.  Take the user’s original question about nutritional disorders and broaden it—adding relevant synonyms, related conditions, and subtopics—without changing its intent, so that the retrieval step can find the most useful documents."""


    expand_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Expand this query: {query} using the feedback: {query_feedback}")

    ])

    chain = expand_prompt | llm | StrOutputParser()
    expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]})
    print("expanded_query", expanded_query)
    state["expanded_query"] = expanded_query
    return state


# Initialize the Chroma vector store for retrieving documents
vector_store = Chroma(
    collection_name="nutritional_hypotheticals",
    persist_directory="./nutritional_db",
    embedding_function=embedding_model

)

# Create a retriever from the vector store
retriever = vector_store.as_retriever(
    search_type='similarity',
    search_kwargs={'k': 3}
)

def retrieve_context(state):
    """
    Retrieves context from the vector store using the expanded or original query.

    Args:
        state (Dict): The current state of the workflow, containing the query and expanded query.

    Returns:
        Dict: The updated state with the retrieved context.
    """
    print("---------retrieve_context---------")
    #query = state['_____']  # Complete the code to define the key for the expanded query
    query = state['expanded_query']  #
    #print("Query used for retrieval:", query)  # Debugging: Print the query

    # Retrieve documents from the vector store
    docs = retriever.invoke(query)
    
    print("Retrieved documents:", docs)  # Debugging: Print the raw docs object

    # Extract both page_content and metadata from each document
    context= [
        {
            "content": doc.page_content,  # The actual content of the document
            "metadata": doc.metadata  # The metadata (e.g., source, page number, etc.)
        }
        for doc in docs
    ]
    #state['_____'] = context  # Complete the code to define the key for storing the context
    state['context'] = context
    print("Extracted context with metadata:", context)  # Debugging: Print the extracted context
    #print(f"Groundedness loop count: {state['groundedness_loop_count']}")
    return state



def craft_response(state: Dict) -> Dict:
    """
    Generates a response using the retrieved context, focusing on nutrition disorders.

    Args:
        state (Dict): The current state of the workflow, containing the query and retrieved context.

    Returns:
        Dict: The updated state with the generated response.
    """
    print("---------craft_response---------")
    #system_message = '''________________________'''
    system_message = """
You are an expert Nutrition Disorder Specialist.  Use only the retrieved context to craft a clear, accurate, and empathetic answer to the user’s query about nutritional disorders.
"""

    response_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Query: {query}\nContext: {context}\n\nfeedback: {feedback}")
    ])

    chain = response_prompt | llm
    response = chain.invoke({
        "query": state['query'],
        "context": "\n".join([doc["content"] for doc in state['context']]),
        #"feedback": ________________ # add feedback to the prompt
        "feedback": state['feedback'] # add
    })
    state['response'] = response
    print("intermediate response: ", response)

    return state



def score_groundedness(state: Dict) -> Dict:
    """
    Checks whether the response is grounded in the retrieved context.

    Args:
        state (Dict): The current state of the workflow, containing the response and context.

    Returns:
        Dict: The updated state with the groundedness score.
    """
    print("---------check_groundedness---------")
    #system_message = '''________________________'''
    system_message = """
You are a factuality evaluator.  Given a piece of context and a proposed response, assign a groundedness score between 0 (no support in the context) and 1 (fully supported by the context).
"""

    groundedness_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:")
    ])

    chain = groundedness_prompt | llm | StrOutputParser()
    groundedness_score = float(chain.invoke({
        "context": "\n".join([doc["content"] for doc in state['context']]),
        #"response": __________ # Complete the code to define the response
        "response": state['response'] # 
    }))
    print("groundedness_score: ", groundedness_score)
    state['groundedness_loop_count'] += 1
    print("#########Groundedness Incremented###########")
    state['groundedness_score'] = groundedness_score

    return state



def check_precision(state: Dict) -> Dict:
    """
    Checks whether the response precisely addresses the user’s query.

    Args:
        state (Dict): The current state of the workflow, containing the query and response.

    Returns:
        Dict: The updated state with the precision score.
    """
    print("---------check_precision---------")
    #system_message = '''________________________'''
    system_message = """You are a precision evaluator. Given a user query and an answer, assign a precision score from 0 (does not address the query) to 1 (fully answers the query)."""

    precision_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Query: {query}\nResponse: {response}\n\nPrecision score:")
    ])

    chain = precision_prompt | llm | StrOutputParser() # Complete the code to define the chain of processing
    precision_score = float(chain.invoke({
        "query": state['query'],
        "response":state['response'] # Complete the code to access the response from the state
    }))
    state['precision_score'] = precision_score
    print("precision_score:", precision_score)
    state['precision_loop_count'] +=1
    print("#########Precision Incremented###########")
    return state



def refine_response(state: Dict) -> Dict:
    """
    Suggests improvements for the generated response.

    Args:
        state (Dict): The current state of the workflow, containing the query and response.

    Returns:
        Dict: The updated state with response refinement suggestions.
    """
    print("---------refine_response---------")

    #system_message = '''________________________'''
    system_message = """
You are a response-refinement assistant. Given a user query and an existing answer, suggest concrete improvements—adding missing details, correcting errors, and clarifying wording to make it as accurate and complete as possible.
"""

    refine_response_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Query: {query}\nResponse: {response}\n\n"
                 "What improvements can be made to enhance accuracy and completeness?")
    ])

    chain = refine_response_prompt | llm| StrOutputParser()

    # Store response suggestions in a structured format
    feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}"
    print("feedback: ", feedback)
    print(f"State: {state}")
    state['feedback'] = feedback
    return state



def refine_query(state: Dict) -> Dict:
    """
    Suggests improvements for the expanded query.

    Args:
        state (Dict): The current state of the workflow, containing the query and expanded query.

    Returns:
        Dict: The updated state with query refinement suggestions.
    """
    print("---------refine_query---------")
    #system_message = '''________________________'''
    system_message = """
You are a query‐refinement assistant. Given an original user question and its expanded form, suggest concrete ways to make the search query more precise, comprehensive, and effective for retrieving nutrition‐disorder information.
"""

    refine_query_prompt = ChatPromptTemplate.from_messages([
        ("system", system_message),
        ("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n"
                 "What improvements can be made for a better search?")
    ])

    chain = refine_query_prompt | llm | StrOutputParser()

    # Store refinement suggestions without modifying the original expanded query
    query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}"
    print("query_feedback: ", query_feedback)
    print(f"Groundedness loop count: {state['groundedness_loop_count']}")
    state['query_feedback'] = query_feedback
    return state



def should_continue_groundedness(state):
  """Decides if groundedness is sufficient or needs improvement."""
  print("---------should_continue_groundedness---------")
  print("groundedness loop count: ", state['groundedness_loop_count'])
  if state['groundedness_score'] >=  0.8:  # Complete the code to define the threshold for groundedness
      print("Moving to precision")
      return "check_precision"
  else:
      if state["groundedness_loop_count"] > state['loop_max_iter']:
        return "max_iterations_reached"
      else:
        print(f"---------Groundedness Score Threshold Not met. Refining Response-----------")
        return "refine_response"


def should_continue_precision(state: Dict) -> str:
    """Decides if precision is sufficient or needs improvement."""
    print("---------should_continue_precision---------")
    print("precision loop count: ",  state['precision_loop_count'])
    if state['precision_score'] >= 0.8: # Threshold for precision
        return "pass"  # Complete the workflow
    else:
        if state['precision_loop_count'] > state['loop_max_iter']:  # Maximum allowed loops
            return "max_iterations_reached"
        else:
            print(f"---------Precision Score Threshold Not met. Refining Query-----------")  # Debugging
            return "refine_query"  # Refine the query




def max_iterations_reached(state: Dict) -> Dict:
    """Handles the case when the maximum number of iterations is reached."""
    print("---------max_iterations_reached---------")
    """Handles the case when the maximum number of iterations is reached."""
    response = "I'm unable to refine the response further. Please provide more context or clarify your question."
    state['response'] = response
    return state



from langgraph.graph import END, StateGraph, START

# def create_workflow() -> StateGraph:
#     """Creates the updated workflow for the AI nutrition agent."""
#     workflow = StateGraph(_____ )  # Complete the code to define the initial state of the agent

#     # Add processing nodes
#     workflow.add_node("expand_query", _____ )         # Step 1: Expand user query. Complete with the function to expand the query
#     workflow.add_node("retrieve_context", _____ ) # Step 2: Retrieve relevant documents. Complete with the function to retrieve context
#     workflow.add_node("craft_response", _____ )     # Step 3: Generate a response based on retrieved data. Complete with the function to craft a response
#     workflow.add_node("score_groundedness", _____ )  # Step 4: Evaluate response grounding. Complete with the function to score groundedness
#     workflow.add_node("refine_response", _____ )   # Step 5: Improve response if it's weakly grounded. Complete with the function to refine the response
#     workflow.add_node("check_precision", _____ )   # Step 6: Evaluate response precision. Complete with the function to check precision
#     workflow.add_node("refine_query", _____ )         # Step 7: Improve query if response lacks precision. Complete with the function to refine the query
#     workflow.add_node("max_iterations_reached", _____ )  # Step 8: Handle max iterations. Complete with the function to handle max iterations

#     # Main flow edges
#     workflow.add_edge(START, "expand_query")
#     workflow.add_edge("expand_query", "retrieve_context")
#     workflow.add_edge("retrieve_context", "craft_response")
#     workflow.add_edge("craft_response", "score_groundedness")

#     # Conditional edges based on groundedness check
#     workflow.add_conditional_edges(
#         "score_groundedness",
#         ___________,  # Use the conditional function
#         {
#             "check_precision": ___________,  # If well-grounded, proceed to precision check.
#             "refine_response": ___________,  # If not, refine the response.
#             "max_iterations_reached": ___________  # If max loops reached, exit.
#         }
#     )

#     workflow.add_edge(__________, ___________)  # Refined responses are reprocessed.

#     # Conditional edges based on precision check
#     workflow.add_conditional_edges(
#         "check_precision",
#         ___________,  # Use the conditional function
#         {
#             "pass": ___________,              # If precise, complete the workflow.
#             "refine_query": ___________,  # If imprecise, refine the query.
#             "max_iterations_reached": ___________  # If max loops reached, exit.
#         }
#     )

#     workflow.add_edge(__________, ___________)  # Refined queries go through expansion again.

#     workflow.add_edge("max_iterations_reached", END)

#     return workflow

def create_workflow() -> StateGraph:
    """Creates the updated workflow for the AI nutrition agent."""
    workflow = StateGraph(START)  # Initial state of the agent

    # Add processing nodes
    workflow.add_node("expand_query", expand_query)               # Step 1: Expand user query. Complete with the function to expand the query
    workflow.add_node("retrieve_context", retrieve_context)       # Step 2: Retrieve relevant documents. Complete with the function to retrieve context
    workflow.add_node("craft_response", craft_response)           # Step 3: Generate a response based on retrieved data. Complete with the function to craft a response
    workflow.add_node("score_groundedness", score_groundedness)   # Step 4: Evaluate response grounding. Complete with the function to score groundedness
    workflow.add_node("refine_response", refine_response)         # Step 5: Improve response if it's weakly grounded. Complete with the function to refine the response
    workflow.add_node("check_precision", check_precision)         # Step 6: Evaluate response precision. Complete with the function to check precision
    workflow.add_node("refine_query", refine_query)               # Step 7: Improve query if response lacks precision. Complete with the function to refine the query
    workflow.add_node("max_iterations_reached", max_iterations_reached)  # Step 8: Handle max iterations. Complete with the function to handle max iterations

    # Main flow edges
    workflow.add_edge(START, "expand_query")
    workflow.add_edge("expand_query", "retrieve_context")
    workflow.add_edge("retrieve_context", "craft_response")
    workflow.add_edge("craft_response", "score_groundedness")

    # Conditional edges based on groundedness check
    workflow.add_conditional_edges(
        "score_groundedness",
        should_continue_groundedness,  # Use the conditional function
        {
            "check_precision": "check_precision",            # If well-grounded, proceed to precision check.
            "refine_response": "refine_response",            # If not, refine the response.
            "max_iterations_reached": "max_iterations_reached"  # If max loops reached, exit.
        }
    )
    workflow.add_edge("refine_response", "craft_response")  # Refined responses are reprocessed.

    # Conditional edges based on precision check
    workflow.add_conditional_edges(
        "check_precision",
        should_continue_precision,  # Use the conditional function
        {
            "pass": END,                   # If precise, complete the workflow.
            "refine_query": "refine_query",        # If imprecise, refine the query.
            "max_iterations_reached": "max_iterations_reached"  # If max loops reached, exit.
        }
    )
    workflow.add_edge("refine_query", "expand_query")  # Refined queries go through expansion again.

    workflow.add_edge("max_iterations_reached", END)

    return workflow


#=========================== Defining the agentic rag tool ====================#
WORKFLOW_APP = create_workflow().compile()
@tool
def agentic_rag(query: str):
    """
    Runs the RAG-based agent with conversation history for context-aware responses.

    Args:
        query (str): The current user query.

    Returns:
        Dict[str, Any]: The updated state with the generated response and conversation history.
    """
    # Initialize state with necessary parameters
    # inputs = {
    #     "query": query,  # Current user query
    #     "expanded_query": "_____",  # Complete the code to define the expanded version of the query
    #     "context": [],  # Retrieved documents (initially empty)
    #     "response": "_____",  # Complete the code to define the AI-generated response
    #     "precision_score": _____,  # Complete the code to define the precision score of the response
    #     "groundedness_score": _____,  # Complete the code to define the groundedness score of the response
    #     "groundedness_loop_count": _____,  # Complete the code to define the counter for groundedness loops
    #     "precision_loop_count": _____,  # Complete the code to define the counter for precision loops
    #     "feedback": "_____",  # Complete the code to define the feedback
    #     "query_feedback": "_____",  # Complete the code to define the query feedback
    #     "loop_max_iter": _____  # Complete the code to define the maximum number of iterations for loops
    # }

    inputs = {
        "query": query,
        "expanded_query": query,
        "context": [],
        "response": "",
        "precision_score": 0.0,
        "groundedness_score": 0.0,
        "groundedness_loop_count": 0,
        "precision_loop_count": 0,
        "feedback": "",
        "query_feedback": "",
        "loop_max_iter": 3
    }


    output = WORKFLOW_APP.invoke(inputs)

    return output


#================================ Guardrails ===========================#
llama_guard_client = Groq(api_key=llama_api_key)
# Function to filter user input with Llama Guard
def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
    """
    Filters user input using Llama Guard to ensure it is safe.

    Parameters:
    - user_input: The input provided by the user.
    - model: The Llama Guard model to be used for filtering (default is "llama-guard-3-8b").

    Returns:
    - The filtered and safe input.
    """
    try:
        # Create a request to Llama Guard to filter the user input
        response = llama_guard_client.chat.completions.create(
            messages=[{"role": "user", "content": user_input}],
            model=model,
        )
        # Return the filtered input
        return response.choices[0].message.content.strip()
    except Exception as e:
        print(f"Error with Llama Guard: {e}")
        return None


#============================= Adding Memory to the agent using mem0 ===============================#

class NutritionBot:
    def __init__(self):
        """
        Initialize the NutritionBot class, setting up memory, the LLM client, tools, and the agent executor.
        """

        # Initialize a memory client to store and retrieve customer interactions
        self.memory = MemoryClient(api_key=MEM0_API_KEY)  # Complete the code to define the memory client API key

        # # Initialize the OpenAI client using the provided credentials
        # self.client = ChatOpenAI(
        #     model_name="gpt-4o-mini",  # Specify the model to use (e.g., GPT-4 optimized version)
        #     api_key=config.get("API_KEY"),  # API key for authentication
        #     endpoint = config.get("OPENAI_API_BASE"),
        #     temperature=0  # Controls randomness in responses; 0 ensures deterministic results
        # )

        import os
        from openai import OpenAI

        # # Set environment variables beforehand, if not already
        # os.environ['OPENAI_API_KEY'] = config.get("API_KEY")
        # os.environ['OPENAI_API_BASE'] = config.get("OPENAI_API_BASE")

        # # Use the proper OpenAI client
        # self.client = OpenAI(
        # api_key=os.environ["API_KEY"],
        # base_url=os.environ["API_BASE"]
        # )

        # Initialize the ChatOpenAI client from LangChain
        self.client = ChatOpenAI(
            model="gpt-4o-mini",  # Specify the model to use
            openai_api_key=api_key, # Use the api_key from the setup section
            openai_api_base=endpoint, # Use the endpoint from the setup section
            temperature=0  # Controls randomness in responses; 0 ensures deterministic results
        )
        # Define tools available to the chatbot, such as web search
        tools = [agentic_rag]

        # Define the system prompt to set the behavior of the chatbot
        system_prompt = """You are a caring and knowledgeable Medical Support Agent, specializing in nutrition disorder-related guidance. Your goal is to provide accurate, empathetic, and tailored nutritional recommendations while ensuring a seamless customer experience.
                          Guidelines for Interaction:
                          Maintain a polite, professional, and reassuring tone.
                          Show genuine empathy for customer concerns and health challenges.
                          Reference past interactions to provide personalized and consistent advice.
                          Engage with the customer by asking about their food preferences, dietary restrictions, and lifestyle before offering recommendations.
                          Ensure consistent and accurate information across conversations.
                          If any detail is unclear or missing, proactively ask for clarification.
                          Always use the agentic_rag tool to retrieve up-to-date and evidence-based nutrition insights.
                          Keep track of ongoing issues and follow-ups to ensure continuity in support.
                          Your primary goal is to help customers make informed nutrition decisions that align with their health conditions and personal preferences.

        """

        # Build the prompt template for the agent
        prompt = ChatPromptTemplate.from_messages([
            ("system", system_prompt),  # System instructions
            ("human", "{input}"),  # Placeholder for human input
            ("placeholder", "{agent_scratchpad}")  # Placeholder for intermediate reasoning steps
        ])

        # Create an agent capable of interacting with tools and executing tasks
        agent = create_tool_calling_agent(self.client, tools, prompt)

        # Wrap the agent in an executor to manage tool interactions and execution flow
        self.agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)


    def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None):
        """
        Store customer interaction in memory for future reference.

        Args:
            user_id (str): Unique identifier for the customer.
            message (str): Customer's query or message.
            response (str): Chatbot's response.
            metadata (Dict, optional): Additional metadata for the interaction.
        """
        if metadata is None:
            metadata = {}

        # Add a timestamp to the metadata for tracking purposes
        metadata["timestamp"] = datetime.now().isoformat()

        # Format the conversation for storage
        conversation = [
            {"role": "user", "content": message},
            {"role": "assistant", "content": response}
        ]

        # Store the interaction in the memory client
        self.memory.add(
            conversation,
            user_id=user_id,
            output_format="v1.1",
            metadata=metadata
        )


    def get_relevant_history(self, user_id: str, query: str) -> List[Dict]:
        """
        Retrieve past interactions relevant to the current query.

        Args:
            user_id (str): Unique identifier for the customer.
            query (str): The customer's current query.

        Returns:
            List[Dict]: A list of relevant past interactions.
        """
        return self.memory.search(
            query=query,  # Search for interactions related to the query
            user_id=user_id,  # Restrict search to the specific user
            limit=5 # Complete the code to define the limit for retrieved interactions
        )


    def handle_customer_query(self, user_id: str, query: str) -> str:
        """
        Process a customer's query and provide a response, taking into account past interactions.

        Args:
            user_id (str): Unique identifier for the customer.
            query (str): Customer's query.

        Returns:
            str: Chatbot's response.
        """

        # Retrieve relevant past interactions for context
        relevant_history = self.get_relevant_history(user_id, query)

        # Build a context string from the relevant history
        context = "Previous relevant interactions:\n"
        for memory in relevant_history:
            context += f"Customer: {memory['memory']}\n"  # Customer's past messages
            context += f"Support: {memory['memory']}\n"  # Chatbot's past responses
            context += "---\n"

        # Print context for debugging purposes
        print("Context: ", context)

        # Prepare a prompt combining past context and the current query
        prompt = f"""
        Context:
        {context}

        Current customer query: {query}

        Provide a helpful response that takes into account any relevant past interactions.
        """

        # Generate a response using the agent
        response = self.agent_executor.invoke({"input": prompt})

        # Store the current interaction for future reference
        self.store_customer_interaction(
            user_id=user_id,
            message=query,
            response=response["output"],
            metadata={"type": "support_query"}
        )

        # Return the chatbot's response
        return response['output']


#=====================User Interface using streamlit ===========================#
def nutrition_disorder_streamlit():
    """
    A Streamlit-based UI for the Nutrition Disorder Specialist Agent.
    """
    st.title("Nutrition Disorder Specialist")
    st.write("Ask me anything about nutrition disorders, symptoms, causes, treatments, and more.")
    st.write("Type 'exit' to end the conversation.")

    # Initialize session state for chat history and user_id if they don't exist
    if 'chat_history' not in st.session_state:
        st.session_state.chat_history = []
    if 'user_id' not in st.session_state:
        st.session_state.user_id = None

    # Login form: Only if user is not logged in
    if st.session_state.user_id is None:
        with st.form("login_form", clear_on_submit=True):
            user_id = st.text_input("Please enter your name to begin:")
            submit_button = st.form_submit_button("Login")
            if submit_button and user_id:
                st.session_state.user_id = user_id
                st.session_state.chat_history.append({
                    "role": "assistant",
                    "content": f"Welcome, {user_id}! How can I help you with nutrition disorders today?"
                })
                st.session_state.login_submitted = True  # Set flag to trigger rerun
        if st.session_state.get("login_submitted", False):
            st.session_state.pop("login_submitted")
            st.rerun()
    else:
        # Display chat history
        for message in st.session_state.chat_history:
            with st.chat_message(message["role"]):
                st.write(message["content"])

        # Chat input with custom placeholder text
        #user_query = st.chat_input(__________)  # Blank #1: Fill in the chat input prompt (e.g., "Type your question here (or 'exit' to end)...")
        user_query = st.chat_input("Type your question here (or 'exit' to end)...")  # Blank #1:
        if user_query:
            if user_query.lower() == "exit":
                st.session_state.chat_history.append({"role": "user", "content": "exit"})
                with st.chat_message("user"):
                    st.write("exit")
                goodbye_msg = "Goodbye! Feel free to return if you have more questions about nutrition disorders."
                st.session_state.chat_history.append({"role": "assistant", "content": goodbye_msg})
                with st.chat_message("assistant"):
                    st.write(goodbye_msg)
                st.session_state.user_id = None
                st.rerun()
                return

            st.session_state.chat_history.append({"role": "user", "content": user_query})
            with st.chat_message("user"):
                st.write(user_query)

            # Filter input using Llama Guard
            #filtered_result = __________(user_query)  # Blank #2: Fill in with the function name for filtering input (e.g., filter_input_with_llama_guard)
            filtered_result = filter_input_with_llama_guard(user_query)  # Blank #2:
            filtered_result = filtered_result.replace("\n", " ")  # Normalize the result

            # Check if input is safe based on allowed statuses
            #if filtered_result in [__________, __________, __________]:  # Blanks #3, #4, #5: Fill in with allowed safe statuses (e.g., "safe", "unsafe S7", "unsafe S6")
            if filtered_result in ["safe", "unsafe S7", "unsafe S6"]:  # Blanks #3, #4, #5: Fill in with allowed safe statuses (e.g., "safe", "unsafe S7", "unsafe S6")

                try:
                    if 'chatbot' not in st.session_state:
                        #st.session_state.chatbot = __________()  # Blank #6: Fill in with the chatbot class initialization (e.g., NutritionBot)
                        st.session_state.chatbot = NutritionBot()  # Blank #6:
                    #response = st.session_state.chatbot.__________(st.session_state.user_id, user_query)
                    response = st.session_state.chatbot.handle_customer_query(st.session_state.user_id, user_query)
                    # Blank #7: Fill in with the method to handle queries (e.g., handle_customer_query)
                    st.write(response)
                    st.session_state.chat_history.append({"role": "assistant", "content": response})
                except Exception as e:
                    error_msg = f"Sorry, I encountered an error while processing your query. Please try again. Error: {str(e)}"
                    st.write(error_msg)
                    st.session_state.chat_history.append({"role": "assistant", "content": error_msg})
            else:
                inappropriate_msg = "I apologize, but I cannot process that input as it may be inappropriate. Please try again."
                st.write(inappropriate_msg)
                st.session_state.chat_history.append({"role": "assistant", "content": inappropriate_msg})

if __name__ == "__main__":
    nutrition_disorder_streamlit()