File size: 37,530 Bytes
3124891 23ce2aa 3124891 2d64324 62b9dda fa6916b 29e09f6 2d64324 29e09f6 2d64324 3124891 6f03e09 3124891 843d5d1 3124891 9caaa61 5452482 9caaa61 a848154 3124891 a848154 3124891 30dd31f 3124891 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
# Import necessary libraries
import os # Interacting with the operating system (reading/writing files)
import chromadb # High-performance vector database for storing/querying dense vectors
from dotenv import load_dotenv # Loading environment variables from a .env file
import json # Parsing and handling JSON data
# LangChain imports
from langchain_core.documents import Document # Document data structures
from langchain_core.runnables import RunnablePassthrough # LangChain core library for running pipelines
from langchain_core.output_parsers import StrOutputParser # String output parser
from langchain.prompts import ChatPromptTemplate # Template for chat prompts
from langchain.chains.query_constructor.base import AttributeInfo # Base classes for query construction
from langchain.retrievers.self_query.base import SelfQueryRetriever # Base classes for self-querying retrievers
from langchain.retrievers.document_compressors import LLMChainExtractor, CrossEncoderReranker # Document compressors
from langchain.retrievers import ContextualCompressionRetriever # Contextual compression retrievers
# LangChain community & experimental imports
from langchain_community.vectorstores import Chroma # Implementations of vector stores like Chroma
from langchain_community.document_loaders import PyPDFDirectoryLoader, PyPDFLoader # Document loaders for PDFs
from langchain_community.cross_encoders import HuggingFaceCrossEncoder # Cross-encoders from HuggingFace
from langchain_experimental.text_splitter import SemanticChunker # Experimental text splitting methods
from langchain.text_splitter import (
CharacterTextSplitter, # Splitting text by characters
RecursiveCharacterTextSplitter # Recursive splitting of text by characters
)
from langchain_core.tools import tool
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain_core.prompts import ChatPromptTemplate
# LangChain OpenAI imports
from langchain_openai import ChatOpenAI
from langchain_openai import AzureOpenAIEmbeddings, AzureChatOpenAI # OpenAI embeddings and models
from langchain.embeddings.openai import OpenAIEmbeddings # OpenAI embeddings for text vectors
# LlamaParse & LlamaIndex imports
from llama_parse import LlamaParse # Document parsing library
from llama_index.core import Settings, SimpleDirectoryReader # Core functionalities of the LlamaIndex
# LangGraph import
from langgraph.graph import StateGraph, END, START # State graph for managing states in LangChain
# Pydantic import
from pydantic import BaseModel # Pydantic for data validation
# Typing imports
from typing import Dict, List, Tuple, Any, TypedDict # Python typing for function annotations
# Other utilities
import numpy as np # Numpy for numerical operations
from groq import Groq
from mem0 import MemoryClient
import streamlit as st
from datetime import datetime
#====================================SETUP=====================================#
# Fetch secrets from Hugging Face Spaces
api_key = os.getenv("API_KEY")
endpoint = os.getenv("API_BASE")
llama_api_key = os.getenv("GROQ_API_KEY")
MEM0_API_KEY = os.getenv("MEM0_API_KEY")
# quick sanity check
print("API_KEY:", "🔒 set" if api_key else "❌ missing")
print("API_BASE:", endpoint or "❌ missing")
print("GROQ_API_KEY:", "🔒 set" if llama_api_key else "❌ missing")
print("MEM0_API_KEY:", "🔒 set" if MEM0_API_KEY else "❌ missing")
# Initialize the OpenAI embedding function for Chroma
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction(
api_base=endpoint, # Complete the code to define the API base endpoint
api_key=api_key, # Complete the code to define the API key
model_name='text-embedding-ada-002' # This is a fixed value and does not need modification
)
# This initializes the OpenAI embedding function for the Chroma vectorstore, using the provided endpoint and API key.
# Initialize the OpenAI Embeddings
embedding_model = OpenAIEmbeddings(
openai_api_base=endpoint,
openai_api_key=api_key,
model='text-embedding-ada-002'
)
# Initialize the Chat OpenAI model
llm = ChatOpenAI(
openai_api_base=endpoint,
openai_api_key=api_key,
model="gpt-4o-mini",
streaming=False
)
# This initializes the Chat OpenAI model with the provided endpoint, API key, deployment name, and a temperature setting of 0 (to control response variability).
# set the LLM and embedding model in the LlamaIndex settings.
Settings.llm = llm # Complete the code to define the LLM model
Settings.embedding = embedding_model # Complete the code to define the embedding model
#================================Creating Langgraph agent======================#
class AgentState(TypedDict):
query: str # The current user query
expanded_query: str # The expanded version of the user query
context: List[Dict[str, Any]] # Retrieved documents (content and metadata)
response: str # The generated response to the user query
precision_score: float # The precision score of the response
groundedness_score: float # The groundedness score of the response
groundedness_loop_count: int # Counter for groundedness refinement loops
precision_loop_count: int # Counter for precision refinement loops
feedback: str
query_feedback: str
groundedness_check: bool
loop_max_iter: int
def expand_query(state):
"""
Expands the user query to improve retrieval of nutrition disorder-related information.
Args:
state (Dict): The current state of the workflow, containing the user query.
Returns:
Dict: The updated state with the expanded query.
"""
print("---------Expanding Query---------")
#system_message = '''________________________'''
system_message = """You are a nutrition-focused query expander. Take the user’s original question about nutritional disorders and broaden it—adding relevant synonyms, related conditions, and subtopics—without changing its intent, so that the retrieval step can find the most useful documents."""
expand_prompt = ChatPromptTemplate.from_messages([
("system", system_message),
("user", "Expand this query: {query} using the feedback: {query_feedback}")
])
chain = expand_prompt | llm | StrOutputParser()
expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]})
print("expanded_query", expanded_query)
state["expanded_query"] = expanded_query
return state
# Initialize the Chroma vector store for retrieving documents
vector_store = Chroma(
collection_name="nutritional_hypotheticals",
persist_directory="./nutritional_db",
embedding_function=embedding_model
)
# Create a retriever from the vector store
retriever = vector_store.as_retriever(
search_type='similarity',
search_kwargs={'k': 3}
)
def retrieve_context(state):
"""
Retrieves context from the vector store using the expanded or original query.
Args:
state (Dict): The current state of the workflow, containing the query and expanded query.
Returns:
Dict: The updated state with the retrieved context.
"""
print("---------retrieve_context---------")
#query = state['_____'] # Complete the code to define the key for the expanded query
query = state['expanded_query'] #
#print("Query used for retrieval:", query) # Debugging: Print the query
# Retrieve documents from the vector store
docs = retriever.invoke(query)
print("Retrieved documents:", docs) # Debugging: Print the raw docs object
# Extract both page_content and metadata from each document
context= [
{
"content": doc.page_content, # The actual content of the document
"metadata": doc.metadata # The metadata (e.g., source, page number, etc.)
}
for doc in docs
]
#state['_____'] = context # Complete the code to define the key for storing the context
state['context'] = context
print("Extracted context with metadata:", context) # Debugging: Print the extracted context
#print(f"Groundedness loop count: {state['groundedness_loop_count']}")
return state
def craft_response(state: Dict) -> Dict:
"""
Generates a response using the retrieved context, focusing on nutrition disorders.
Args:
state (Dict): The current state of the workflow, containing the query and retrieved context.
Returns:
Dict: The updated state with the generated response.
"""
print("---------craft_response---------")
#system_message = '''________________________'''
system_message = """
You are an expert Nutrition Disorder Specialist. Use only the retrieved context to craft a clear, accurate, and empathetic answer to the user’s query about nutritional disorders.
"""
response_prompt = ChatPromptTemplate.from_messages([
("system", system_message),
("user", "Query: {query}\nContext: {context}\n\nfeedback: {feedback}")
])
chain = response_prompt | llm
response = chain.invoke({
"query": state['query'],
"context": "\n".join([doc["content"] for doc in state['context']]),
#"feedback": ________________ # add feedback to the prompt
"feedback": state['feedback'] # add
})
state['response'] = response
print("intermediate response: ", response)
return state
def score_groundedness(state: Dict) -> Dict:
"""
Checks whether the response is grounded in the retrieved context.
Args:
state (Dict): The current state of the workflow, containing the response and context.
Returns:
Dict: The updated state with the groundedness score.
"""
print("---------check_groundedness---------")
#system_message = '''________________________'''
system_message = """
You are a factuality evaluator. Given a piece of context and a proposed response, assign a groundedness score between 0 (no support in the context) and 1 (fully supported by the context).
"""
groundedness_prompt = ChatPromptTemplate.from_messages([
("system", system_message),
("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:")
])
chain = groundedness_prompt | llm | StrOutputParser()
groundedness_score = float(chain.invoke({
"context": "\n".join([doc["content"] for doc in state['context']]),
#"response": __________ # Complete the code to define the response
"response": state['response'] #
}))
print("groundedness_score: ", groundedness_score)
state['groundedness_loop_count'] += 1
print("#########Groundedness Incremented###########")
state['groundedness_score'] = groundedness_score
return state
def check_precision(state: Dict) -> Dict:
"""
Checks whether the response precisely addresses the user’s query.
Args:
state (Dict): The current state of the workflow, containing the query and response.
Returns:
Dict: The updated state with the precision score.
"""
print("---------check_precision---------")
#system_message = '''________________________'''
system_message = """You are a precision evaluator. Given a user query and an answer, assign a precision score from 0 (does not address the query) to 1 (fully answers the query)."""
precision_prompt = ChatPromptTemplate.from_messages([
("system", system_message),
("user", "Query: {query}\nResponse: {response}\n\nPrecision score:")
])
chain = precision_prompt | llm | StrOutputParser() # Complete the code to define the chain of processing
precision_score = float(chain.invoke({
"query": state['query'],
"response":state['response'] # Complete the code to access the response from the state
}))
state['precision_score'] = precision_score
print("precision_score:", precision_score)
state['precision_loop_count'] +=1
print("#########Precision Incremented###########")
return state
def refine_response(state: Dict) -> Dict:
"""
Suggests improvements for the generated response.
Args:
state (Dict): The current state of the workflow, containing the query and response.
Returns:
Dict: The updated state with response refinement suggestions.
"""
print("---------refine_response---------")
#system_message = '''________________________'''
system_message = """
You are a response-refinement assistant. Given a user query and an existing answer, suggest concrete improvements—adding missing details, correcting errors, and clarifying wording to make it as accurate and complete as possible.
"""
refine_response_prompt = ChatPromptTemplate.from_messages([
("system", system_message),
("user", "Query: {query}\nResponse: {response}\n\n"
"What improvements can be made to enhance accuracy and completeness?")
])
chain = refine_response_prompt | llm| StrOutputParser()
# Store response suggestions in a structured format
feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}"
print("feedback: ", feedback)
print(f"State: {state}")
state['feedback'] = feedback
return state
def refine_query(state: Dict) -> Dict:
"""
Suggests improvements for the expanded query.
Args:
state (Dict): The current state of the workflow, containing the query and expanded query.
Returns:
Dict: The updated state with query refinement suggestions.
"""
print("---------refine_query---------")
#system_message = '''________________________'''
system_message = """
You are a query‐refinement assistant. Given an original user question and its expanded form, suggest concrete ways to make the search query more precise, comprehensive, and effective for retrieving nutrition‐disorder information.
"""
refine_query_prompt = ChatPromptTemplate.from_messages([
("system", system_message),
("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n"
"What improvements can be made for a better search?")
])
chain = refine_query_prompt | llm | StrOutputParser()
# Store refinement suggestions without modifying the original expanded query
query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}"
print("query_feedback: ", query_feedback)
print(f"Groundedness loop count: {state['groundedness_loop_count']}")
state['query_feedback'] = query_feedback
return state
def should_continue_groundedness(state):
"""Decides if groundedness is sufficient or needs improvement."""
print("---------should_continue_groundedness---------")
print("groundedness loop count: ", state['groundedness_loop_count'])
if state['groundedness_score'] >= 0.8: # Complete the code to define the threshold for groundedness
print("Moving to precision")
return "check_precision"
else:
if state["groundedness_loop_count"] > state['loop_max_iter']:
return "max_iterations_reached"
else:
print(f"---------Groundedness Score Threshold Not met. Refining Response-----------")
return "refine_response"
def should_continue_precision(state: Dict) -> str:
"""Decides if precision is sufficient or needs improvement."""
print("---------should_continue_precision---------")
print("precision loop count: ", state['precision_loop_count'])
if state['precision_score'] >= 0.8: # Threshold for precision
return "pass" # Complete the workflow
else:
if state['precision_loop_count'] > state['loop_max_iter']: # Maximum allowed loops
return "max_iterations_reached"
else:
print(f"---------Precision Score Threshold Not met. Refining Query-----------") # Debugging
return "refine_query" # Refine the query
def max_iterations_reached(state: Dict) -> Dict:
"""Handles the case when the maximum number of iterations is reached."""
print("---------max_iterations_reached---------")
"""Handles the case when the maximum number of iterations is reached."""
response = "I'm unable to refine the response further. Please provide more context or clarify your question."
state['response'] = response
return state
from langgraph.graph import END, StateGraph, START
# def create_workflow() -> StateGraph:
# """Creates the updated workflow for the AI nutrition agent."""
# workflow = StateGraph(_____ ) # Complete the code to define the initial state of the agent
# # Add processing nodes
# workflow.add_node("expand_query", _____ ) # Step 1: Expand user query. Complete with the function to expand the query
# workflow.add_node("retrieve_context", _____ ) # Step 2: Retrieve relevant documents. Complete with the function to retrieve context
# workflow.add_node("craft_response", _____ ) # Step 3: Generate a response based on retrieved data. Complete with the function to craft a response
# workflow.add_node("score_groundedness", _____ ) # Step 4: Evaluate response grounding. Complete with the function to score groundedness
# workflow.add_node("refine_response", _____ ) # Step 5: Improve response if it's weakly grounded. Complete with the function to refine the response
# workflow.add_node("check_precision", _____ ) # Step 6: Evaluate response precision. Complete with the function to check precision
# workflow.add_node("refine_query", _____ ) # Step 7: Improve query if response lacks precision. Complete with the function to refine the query
# workflow.add_node("max_iterations_reached", _____ ) # Step 8: Handle max iterations. Complete with the function to handle max iterations
# # Main flow edges
# workflow.add_edge(START, "expand_query")
# workflow.add_edge("expand_query", "retrieve_context")
# workflow.add_edge("retrieve_context", "craft_response")
# workflow.add_edge("craft_response", "score_groundedness")
# # Conditional edges based on groundedness check
# workflow.add_conditional_edges(
# "score_groundedness",
# ___________, # Use the conditional function
# {
# "check_precision": ___________, # If well-grounded, proceed to precision check.
# "refine_response": ___________, # If not, refine the response.
# "max_iterations_reached": ___________ # If max loops reached, exit.
# }
# )
# workflow.add_edge(__________, ___________) # Refined responses are reprocessed.
# # Conditional edges based on precision check
# workflow.add_conditional_edges(
# "check_precision",
# ___________, # Use the conditional function
# {
# "pass": ___________, # If precise, complete the workflow.
# "refine_query": ___________, # If imprecise, refine the query.
# "max_iterations_reached": ___________ # If max loops reached, exit.
# }
# )
# workflow.add_edge(__________, ___________) # Refined queries go through expansion again.
# workflow.add_edge("max_iterations_reached", END)
# return workflow
def create_workflow() -> StateGraph:
"""Creates the updated workflow for the AI nutrition agent."""
workflow = StateGraph(START) # Initial state of the agent
# Add processing nodes
workflow.add_node("expand_query", expand_query) # Step 1: Expand user query. Complete with the function to expand the query
workflow.add_node("retrieve_context", retrieve_context) # Step 2: Retrieve relevant documents. Complete with the function to retrieve context
workflow.add_node("craft_response", craft_response) # Step 3: Generate a response based on retrieved data. Complete with the function to craft a response
workflow.add_node("score_groundedness", score_groundedness) # Step 4: Evaluate response grounding. Complete with the function to score groundedness
workflow.add_node("refine_response", refine_response) # Step 5: Improve response if it's weakly grounded. Complete with the function to refine the response
workflow.add_node("check_precision", check_precision) # Step 6: Evaluate response precision. Complete with the function to check precision
workflow.add_node("refine_query", refine_query) # Step 7: Improve query if response lacks precision. Complete with the function to refine the query
workflow.add_node("max_iterations_reached", max_iterations_reached) # Step 8: Handle max iterations. Complete with the function to handle max iterations
# Main flow edges
workflow.add_edge(START, "expand_query")
workflow.add_edge("expand_query", "retrieve_context")
workflow.add_edge("retrieve_context", "craft_response")
workflow.add_edge("craft_response", "score_groundedness")
# Conditional edges based on groundedness check
workflow.add_conditional_edges(
"score_groundedness",
should_continue_groundedness, # Use the conditional function
{
"check_precision": "check_precision", # If well-grounded, proceed to precision check.
"refine_response": "refine_response", # If not, refine the response.
"max_iterations_reached": "max_iterations_reached" # If max loops reached, exit.
}
)
workflow.add_edge("refine_response", "craft_response") # Refined responses are reprocessed.
# Conditional edges based on precision check
workflow.add_conditional_edges(
"check_precision",
should_continue_precision, # Use the conditional function
{
"pass": END, # If precise, complete the workflow.
"refine_query": "refine_query", # If imprecise, refine the query.
"max_iterations_reached": "max_iterations_reached" # If max loops reached, exit.
}
)
workflow.add_edge("refine_query", "expand_query") # Refined queries go through expansion again.
workflow.add_edge("max_iterations_reached", END)
return workflow
#=========================== Defining the agentic rag tool ====================#
WORKFLOW_APP = create_workflow().compile()
@tool
def agentic_rag(query: str):
"""
Runs the RAG-based agent with conversation history for context-aware responses.
Args:
query (str): The current user query.
Returns:
Dict[str, Any]: The updated state with the generated response and conversation history.
"""
# Initialize state with necessary parameters
# inputs = {
# "query": query, # Current user query
# "expanded_query": "_____", # Complete the code to define the expanded version of the query
# "context": [], # Retrieved documents (initially empty)
# "response": "_____", # Complete the code to define the AI-generated response
# "precision_score": _____, # Complete the code to define the precision score of the response
# "groundedness_score": _____, # Complete the code to define the groundedness score of the response
# "groundedness_loop_count": _____, # Complete the code to define the counter for groundedness loops
# "precision_loop_count": _____, # Complete the code to define the counter for precision loops
# "feedback": "_____", # Complete the code to define the feedback
# "query_feedback": "_____", # Complete the code to define the query feedback
# "loop_max_iter": _____ # Complete the code to define the maximum number of iterations for loops
# }
inputs = {
"query": query,
"expanded_query": query,
"context": [],
"response": "",
"precision_score": 0.0,
"groundedness_score": 0.0,
"groundedness_loop_count": 0,
"precision_loop_count": 0,
"feedback": "",
"query_feedback": "",
"loop_max_iter": 3
}
output = WORKFLOW_APP.invoke(inputs)
return output
#================================ Guardrails ===========================#
llama_guard_client = Groq(api_key=llama_api_key)
# Function to filter user input with Llama Guard
def filter_input_with_llama_guard(user_input, model="llama-guard-3-8b"):
"""
Filters user input using Llama Guard to ensure it is safe.
Parameters:
- user_input: The input provided by the user.
- model: The Llama Guard model to be used for filtering (default is "llama-guard-3-8b").
Returns:
- The filtered and safe input.
"""
try:
# Create a request to Llama Guard to filter the user input
response = llama_guard_client.chat.completions.create(
messages=[{"role": "user", "content": user_input}],
model=model,
)
# Return the filtered input
return response.choices[0].message.content.strip()
except Exception as e:
print(f"Error with Llama Guard: {e}")
return None
#============================= Adding Memory to the agent using mem0 ===============================#
class NutritionBot:
def __init__(self):
"""
Initialize the NutritionBot class, setting up memory, the LLM client, tools, and the agent executor.
"""
# Initialize a memory client to store and retrieve customer interactions
self.memory = MemoryClient(api_key=MEM0_API_KEY) # Complete the code to define the memory client API key
# # Initialize the OpenAI client using the provided credentials
# self.client = ChatOpenAI(
# model_name="gpt-4o-mini", # Specify the model to use (e.g., GPT-4 optimized version)
# api_key=config.get("API_KEY"), # API key for authentication
# endpoint = config.get("OPENAI_API_BASE"),
# temperature=0 # Controls randomness in responses; 0 ensures deterministic results
# )
import os
from openai import OpenAI
# # Set environment variables beforehand, if not already
# os.environ['OPENAI_API_KEY'] = config.get("API_KEY")
# os.environ['OPENAI_API_BASE'] = config.get("OPENAI_API_BASE")
# # Use the proper OpenAI client
# self.client = OpenAI(
# api_key=os.environ["API_KEY"],
# base_url=os.environ["API_BASE"]
# )
# Initialize the ChatOpenAI client from LangChain
self.client = ChatOpenAI(
model="gpt-4o-mini", # Specify the model to use
openai_api_key=api_key, # Use the api_key from the setup section
openai_api_base=endpoint, # Use the endpoint from the setup section
temperature=0 # Controls randomness in responses; 0 ensures deterministic results
)
# Define tools available to the chatbot, such as web search
tools = [agentic_rag]
# Define the system prompt to set the behavior of the chatbot
system_prompt = """You are a caring and knowledgeable Medical Support Agent, specializing in nutrition disorder-related guidance. Your goal is to provide accurate, empathetic, and tailored nutritional recommendations while ensuring a seamless customer experience.
Guidelines for Interaction:
Maintain a polite, professional, and reassuring tone.
Show genuine empathy for customer concerns and health challenges.
Reference past interactions to provide personalized and consistent advice.
Engage with the customer by asking about their food preferences, dietary restrictions, and lifestyle before offering recommendations.
Ensure consistent and accurate information across conversations.
If any detail is unclear or missing, proactively ask for clarification.
Always use the agentic_rag tool to retrieve up-to-date and evidence-based nutrition insights.
Keep track of ongoing issues and follow-ups to ensure continuity in support.
Your primary goal is to help customers make informed nutrition decisions that align with their health conditions and personal preferences.
"""
# Build the prompt template for the agent
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt), # System instructions
("human", "{input}"), # Placeholder for human input
("placeholder", "{agent_scratchpad}") # Placeholder for intermediate reasoning steps
])
# Create an agent capable of interacting with tools and executing tasks
agent = create_tool_calling_agent(self.client, tools, prompt)
# Wrap the agent in an executor to manage tool interactions and execution flow
self.agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None):
"""
Store customer interaction in memory for future reference.
Args:
user_id (str): Unique identifier for the customer.
message (str): Customer's query or message.
response (str): Chatbot's response.
metadata (Dict, optional): Additional metadata for the interaction.
"""
if metadata is None:
metadata = {}
# Add a timestamp to the metadata for tracking purposes
metadata["timestamp"] = datetime.now().isoformat()
# Format the conversation for storage
conversation = [
{"role": "user", "content": message},
{"role": "assistant", "content": response}
]
# Store the interaction in the memory client
self.memory.add(
conversation,
user_id=user_id,
output_format="v1.1",
metadata=metadata
)
def get_relevant_history(self, user_id: str, query: str) -> List[Dict]:
"""
Retrieve past interactions relevant to the current query.
Args:
user_id (str): Unique identifier for the customer.
query (str): The customer's current query.
Returns:
List[Dict]: A list of relevant past interactions.
"""
return self.memory.search(
query=query, # Search for interactions related to the query
user_id=user_id, # Restrict search to the specific user
limit=5 # Complete the code to define the limit for retrieved interactions
)
def handle_customer_query(self, user_id: str, query: str) -> str:
"""
Process a customer's query and provide a response, taking into account past interactions.
Args:
user_id (str): Unique identifier for the customer.
query (str): Customer's query.
Returns:
str: Chatbot's response.
"""
# Retrieve relevant past interactions for context
relevant_history = self.get_relevant_history(user_id, query)
# Build a context string from the relevant history
context = "Previous relevant interactions:\n"
for memory in relevant_history:
context += f"Customer: {memory['memory']}\n" # Customer's past messages
context += f"Support: {memory['memory']}\n" # Chatbot's past responses
context += "---\n"
# Print context for debugging purposes
print("Context: ", context)
# Prepare a prompt combining past context and the current query
prompt = f"""
Context:
{context}
Current customer query: {query}
Provide a helpful response that takes into account any relevant past interactions.
"""
# Generate a response using the agent
response = self.agent_executor.invoke({"input": prompt})
# Store the current interaction for future reference
self.store_customer_interaction(
user_id=user_id,
message=query,
response=response["output"],
metadata={"type": "support_query"}
)
# Return the chatbot's response
return response['output']
#=====================User Interface using streamlit ===========================#
def nutrition_disorder_streamlit():
"""
A Streamlit-based UI for the Nutrition Disorder Specialist Agent.
"""
st.title("Nutrition Disorder Specialist")
st.write("Ask me anything about nutrition disorders, symptoms, causes, treatments, and more.")
st.write("Type 'exit' to end the conversation.")
# Initialize session state for chat history and user_id if they don't exist
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'user_id' not in st.session_state:
st.session_state.user_id = None
# Login form: Only if user is not logged in
if st.session_state.user_id is None:
with st.form("login_form", clear_on_submit=True):
user_id = st.text_input("Please enter your name to begin:")
submit_button = st.form_submit_button("Login")
if submit_button and user_id:
st.session_state.user_id = user_id
st.session_state.chat_history.append({
"role": "assistant",
"content": f"Welcome, {user_id}! How can I help you with nutrition disorders today?"
})
st.session_state.login_submitted = True # Set flag to trigger rerun
if st.session_state.get("login_submitted", False):
st.session_state.pop("login_submitted")
st.rerun()
else:
# Display chat history
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
# Chat input with custom placeholder text
#user_query = st.chat_input(__________) # Blank #1: Fill in the chat input prompt (e.g., "Type your question here (or 'exit' to end)...")
user_query = st.chat_input("Type your question here (or 'exit' to end)...") # Blank #1:
if user_query:
if user_query.lower() == "exit":
st.session_state.chat_history.append({"role": "user", "content": "exit"})
with st.chat_message("user"):
st.write("exit")
goodbye_msg = "Goodbye! Feel free to return if you have more questions about nutrition disorders."
st.session_state.chat_history.append({"role": "assistant", "content": goodbye_msg})
with st.chat_message("assistant"):
st.write(goodbye_msg)
st.session_state.user_id = None
st.rerun()
return
st.session_state.chat_history.append({"role": "user", "content": user_query})
with st.chat_message("user"):
st.write(user_query)
# Filter input using Llama Guard
#filtered_result = __________(user_query) # Blank #2: Fill in with the function name for filtering input (e.g., filter_input_with_llama_guard)
filtered_result = filter_input_with_llama_guard(user_query) # Blank #2:
filtered_result = filtered_result.replace("\n", " ") # Normalize the result
# Check if input is safe based on allowed statuses
#if filtered_result in [__________, __________, __________]: # Blanks #3, #4, #5: Fill in with allowed safe statuses (e.g., "safe", "unsafe S7", "unsafe S6")
if filtered_result in ["safe", "unsafe S7", "unsafe S6"]: # Blanks #3, #4, #5: Fill in with allowed safe statuses (e.g., "safe", "unsafe S7", "unsafe S6")
try:
if 'chatbot' not in st.session_state:
#st.session_state.chatbot = __________() # Blank #6: Fill in with the chatbot class initialization (e.g., NutritionBot)
st.session_state.chatbot = NutritionBot() # Blank #6:
#response = st.session_state.chatbot.__________(st.session_state.user_id, user_query)
response = st.session_state.chatbot.handle_customer_query(st.session_state.user_id, user_query)
# Blank #7: Fill in with the method to handle queries (e.g., handle_customer_query)
st.write(response)
st.session_state.chat_history.append({"role": "assistant", "content": response})
except Exception as e:
error_msg = f"Sorry, I encountered an error while processing your query. Please try again. Error: {str(e)}"
st.write(error_msg)
st.session_state.chat_history.append({"role": "assistant", "content": error_msg})
else:
inappropriate_msg = "I apologize, but I cannot process that input as it may be inappropriate. Please try again."
st.write(inappropriate_msg)
st.session_state.chat_history.append({"role": "assistant", "content": inappropriate_msg})
if __name__ == "__main__":
nutrition_disorder_streamlit()
|