Spaces:
Sleeping
Sleeping
File size: 7,883 Bytes
9b4020a ae465d3 9b4020a ae465d3 9b4020a 642c5e3 ae465d3 9b4020a 642c5e3 f07b5e8 642c5e3 f07b5e8 642c5e3 9b4020a 0e307f8 9b4020a 648fe8a 9b4020a 0e307f8 9b4020a ae465d3 9b4020a ae465d3 9b4020a 648fe8a 9b4020a ae465d3 9b4020a 648fe8a 9b4020a ae465d3 9b4020a ae465d3 9b4020a ae465d3 9b4020a ae465d3 9b4020a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
import os
import yaml
from langchain.prompts.chat import ChatPromptTemplate
from huggingface_hub import hf_hub_download
from spinoza_project.source.frontend.utils import make_html_source
from spinoza_project.source.backend.prompt_utils import (
to_chat_instruction,
SpecialTokens,
)
from spinoza_project.source.backend.get_prompts import get_qa_prompts
from spinoza_project.source.backend.document_store import pickle_to_document_store
def get_config():
if os.getenv("EKI_OPENAI_LLM_DEPLOYMENT_NAME"):
with open("./spinoza_project/config.yaml") as f:
return yaml.full_load(f)
else:
with open("./spinoza_project/config_public.yaml") as f:
return yaml.full_load(f)
def get_prompts(config):
prompts = {}
for source in config["prompt_naming"]:
with open(f"./spinoza_project/prompt_{source}.yaml") as f:
prompts[source] = yaml.full_load(f)
return prompts
def set_prompts(prompts, config):
chat_qa_prompts, chat_reformulation_prompts = ({}, {})
for source, prompt in prompts.items():
chat_qa_prompt, chat_reformulation_prompt = get_qa_prompts(config, prompt)
chat_qa_prompts[source] = chat_qa_prompt
chat_reformulation_prompts[source] = chat_reformulation_prompt
return chat_qa_prompts, chat_reformulation_prompts
def get_assets():
with open("./assets/style.css", "r") as f:
css = f.read()
with open("./assets/source_information.md", "r") as f:
source_information = f.read()
return css, source_information
def get_qdrants(config):
qdrants = {
tab: pickle_to_document_store(
hf_hub_download(
repo_id="SpinozaProject/spinoza-database",
filename=f"database_{tab}.pickle",
repo_type="dataset",
)
)
for tab in config["prompt_naming"]
if tab in ["Science", "Loi", "Organismes publics", "ADEME"]
}
return qdrants
def get_qdrants_public(config):
qdrants = {
tab: pickle_to_document_store(
hf_hub_download(
repo_id=config["prompt_naming"],
filename=f"database_{tab}.pickle",
repo_type="dataset",
)
)
for tab in config["prompt_naming"]
if tab not in ["Science", "Loi", "Organismes publics", "ADEME", "Presse", "AFP"]
}
return qdrants
def get_theme():
return gr.themes.Base(
primary_hue="blue",
secondary_hue="red",
font=[
gr.themes.GoogleFont("Poppins"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
)
def get_init_prompt():
return """
Bonjour, je suis Spinoza, un assistant conversationnel expert sur le climat conçu pour vous aider dans votre parcours journalistique. Je répondrai à vos questions en lien avec le climat en me basant **sur les sources fournies**.
⚠️ Limitations
*Veuillez noter que ce système de questionnement est à un stade précoce, il n'est pas parfait et peut parfois donner des réponses non pertinentes. Si vous n'êtes pas satisfait de la réponse, veuillez poser une question plus spécifique ou signaler vos commentaires pour nous aider à améliorer le système.*
Que voulez-vous apprendre ?
"""
def get_synthesis_prompt(config):
special_tokens = SpecialTokens(config)
with open(f"./spinoza_project/prompt_Spinoza.yaml", "r") as f:
synthesis_template = f.read()
synthesis_prompt = to_chat_instruction(synthesis_template, special_tokens)
synthesis_prompt_template = ChatPromptTemplate.from_messages([synthesis_prompt])
return synthesis_prompt_template
def zip_longest_fill(*args, fillvalue=None):
# zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D-
iterators = [iter(it) for it in args]
num_active = len(iterators)
if not num_active:
return
cond = True
fillvalues = [fillvalue] * len(iterators)
while cond:
values = []
for i, it in enumerate(iterators):
try:
value = next(it)
if not value:
value = next(it)
except StopIteration:
value = fillvalues[i]
values.append(value)
new_cond = False
for i, elt in enumerate(values):
if elt != fillvalues[i]:
new_cond = True
cond = new_cond
fillvalues = values.copy()
yield tuple(values)
def start_agents():
gr.Info(message="Les agents et Spinoza démarent leurs analyses...", duration=3)
return [
(
None,
"J'attends que tous les agents aient terminé pour générer une réponse...",
)
]
def end_agents():
gr.Info(
message="Les agents et Spinoza ont fini de répondre à votre question",
duration=3,
)
def next_call():
return
def format_question(question):
return f"{question}"
def parse_question(question):
x = question.replace("<p>", "").replace("</p>\n", "")
if "### " in x:
return x.split("### ")[1]
return x
def reformulate(llm, chat_reformulation_prompts, question, tab, config):
if tab in list(config["tabs"].keys()):
return llm.stream(
chat_reformulation_prompts[config["source_mapping"][tab]],
{"question": parse_question(question)},
)
else:
return iter([None] * 5)
def add_question(question):
return question
def answer(llm, chat_qa_prompts, question, source, tab, config):
if tab in list(config["tabs"].keys()):
if len(source) < 10:
return iter(["Aucune source trouvée, veuillez reformuler votre question"])
else:
return llm.stream(
chat_qa_prompts[config["source_mapping"][tab]],
{
"question": parse_question(question),
"sources": source.replace("<p>", "").replace("</p>\n", ""),
},
)
else:
return iter([None] * 5)
def get_sources(questions, qdrants, bdd_presse, bdd_afp, config):
k = config["num_document_retrieved"]
min_similarity = config["min_similarity"]
text, formated = [], []
for i, (question, tab) in enumerate(zip(questions, list(config["tabs"].keys()))):
sources = (
bdd_presse.similarity_search_with_relevance_scores(
question.replace("<p>", "").replace("</p>\n", ""), k=k
)
if tab == "Presse"
else (
bdd_afp.similarity_search_with_relevance_scores(
question.replace("<p>", "").replace("</p>\n", ""), k=k
)
if tab == "AFP"
else qdrants[
config["source_mapping"][tab]
].similarity_search_with_relevance_scores(
config["query_preprompt"]
+ question.replace("<p>", "").replace("</p>\n", ""),
k=k,
)
)
)
sources = [(doc, score) for doc, score in sources if score >= min_similarity]
formated.extend(
[
make_html_source(source[0], j, source[1], config)
for j, source in zip(range(k * i + 1, k * (i + 1) + 1), sources)
]
)
text.extend(
[
"\n\n".join(
[
f"Doc {str(j)} with source type {source[0].metadata.get('file_source_type')}:\n"
+ source[0].page_content
for j, source in zip(range(k * i + 1, k * (i + 1) + 1), sources)
]
)
]
)
formated = "".join(formated)
return formated, text
|