Update app.py
Browse files
app.py
CHANGED
@@ -1,2 +1,37 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the sentiment analysis pipeline
|
5 |
+
model_name = "monsifnadir/DarijaBERT-Sentiment" # Remplacez par le bon modèle si nécessaire
|
6 |
+
sentiment_pipeline = pipeline("text-classification", model=model_name)
|
7 |
+
|
8 |
+
# Mapping des labels Hugging Face vers des catégories de sentiments compréhensibles
|
9 |
+
label_map = {
|
10 |
+
"LABEL_0": "Negative",
|
11 |
+
"LABEL_1": "Neutral",
|
12 |
+
"LABEL_2": "Positive"
|
13 |
+
}
|
14 |
+
|
15 |
+
def classify_text(text):
|
16 |
+
"""Analyse le sentiment du texte."""
|
17 |
+
result = sentiment_pipeline(text)
|
18 |
+
label = result[0]["label"]
|
19 |
+
score = result[0]["score"]
|
20 |
+
|
21 |
+
# Convertir le label en catégorie de sentiment
|
22 |
+
sentiment = label_map.get(label, "Unknown")
|
23 |
+
return f"Sentiment: {sentiment} (Confidence: {score:.2f})"
|
24 |
+
|
25 |
+
# Interface Gradio
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=classify_text,
|
28 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter a Darija sentence..."),
|
29 |
+
outputs="text",
|
30 |
+
title="Darija Sentiment Analysis",
|
31 |
+
description="Enter a text in Darija to analyze its sentiment (Positive, Negative, Neutral)."
|
32 |
+
)
|
33 |
+
|
34 |
+
# Lancer l’application
|
35 |
+
iface.launch()
|
36 |
+
|
37 |
+
|