GPT-SoVITS-WebUI

A Powerful Few-shot Voice Conversion and Text-to-Speech WebUI.

[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange )](https://github.com/RVC-Boss/GPT-SoVITS)
[![Licence](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Boss/GPT-SoVITS/blob/main/LICENSE) [![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/GPT-SoVITS/tree/main) [**English**](./README.md) | [**中文简体**](./docs/cn/README.md) | [**日本語**](./docs/ja/README.md)
------ > Check out our [demo video](https://www.bilibili.com/video/BV12g4y1m7Uw) here! https://github.com/RVC-Boss/GPT-SoVITS/assets/129054828/05bee1fa-bdd8-4d85-9350-80c060ab47fb ## Features: 1. **Zero-shot TTS:** Input a 5-second vocal sample and experience instant text-to-speech conversion. 2. **Few-shot TTS:** Fine-tune the model with just 1 minute of training data for improved voice similarity and realism. 3. **Cross-lingual Support:** Inference in languages different from the training dataset, currently supporting English, Japanese, and Chinese. 4. **WebUI Tools:** Integrated tools include voice accompaniment separation, automatic training set segmentation, Chinese ASR, and text labeling, assisting beginners in creating training datasets and GPT/SoVITS models. ## Environment Preparation If you are a Windows user (tested with win>=10) you can install directly via the prezip. Just download the [prezip](https://huggingface.co/lj1995/GPT-SoVITS-windows-package/resolve/main/GPT-SoVITS-beta.7z?download=true), unzip it and double-click go-webui.bat to start GPT-SoVITS-WebUI. ### Tested Environments - Python 3.9, PyTorch 2.0.1, CUDA 11 - Python 3.10.13, PyTorch 2.1.2, CUDA 12.3 _Note: numba==0.56.4 require py<3.11_ ### Quick Install with Conda ```bash conda create -n GPTSoVits python=3.9 conda activate GPTSoVits bash install.sh ``` ### Install Manually #### Pip Packages ```bash pip install torch numpy scipy tensorboard librosa==0.9.2 numba==0.56.4 pytorch-lightning gradio==3.14.0 ffmpeg-python onnxruntime tqdm cn2an pypinyin pyopenjtalk g2p_en chardet transformers jieba_fast ``` #### Additional Requirements If you need Chinese ASR (supported by FunASR), install: ```bash pip install modelscope torchaudio sentencepiece funasr ``` #### FFmpeg ##### Conda Users ```bash conda install ffmpeg ``` ##### Ubuntu/Debian Users ```bash sudo apt install ffmpeg sudo apt install libsox-dev conda install -c conda-forge 'ffmpeg<7' ``` ##### MacOS Users ```bash brew install ffmpeg ``` ##### Windows Users Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root. ### Pretrained Models Download pretrained models from [GPT-SoVITS Models](https://huggingface.co/lj1995/GPT-SoVITS) and place them in `GPT_SoVITS/pretrained_models`. For Chinese ASR (additionally), download models from [Damo ASR Model](https://modelscope.cn/models/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/files), [Damo VAD Model](https://modelscope.cn/models/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch/files), and [Damo Punc Model](https://modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/files) and place them in `tools/damo_asr/models`. For UVR5 (Vocals/Accompaniment Separation & Reverberation Removal, additionally), download models from [UVR5 Weights](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/uvr5_weights) and place them in `tools/uvr5/uvr5_weights`. ### Using Docker #### docker-compose.yaml configuration 1. Environment Variables: - is_half: Controls half-precision/double-precision. This is typically the cause if the content under the directories 4-cnhubert/5-wav32k is not generated correctly during the "SSL extracting" step. Adjust to True or False based on your actual situation. 2. Volumes Configuration,The application's root directory inside the container is set to /workspace. The default docker-compose.yaml lists some practical examples for uploading/downloading content. 3. shm_size: The default available memory for Docker Desktop on Windows is too small, which can cause abnormal operations. Adjust according to your own situation. 4. Under the deploy section, GPU-related settings should be adjusted cautiously according to your system and actual circumstances. #### Running with docker compose ``` docker compose -f "docker-compose.yaml" up -d ``` #### Running with docker command As above, modify the corresponding parameters based on your actual situation, then run the following command: ``` docker run --rm -it --gpus=all --env=is_half=False --volume=G:\GPT-SoVITS-DockerTest\output:/workspace/output --volume=G:\GPT-SoVITS-DockerTest\logs:/workspace/logs --volume=G:\GPT-SoVITS-DockerTest\SoVITS_weights:/workspace/SoVITS_weights --workdir=/workspace -p 9870:9870 -p 9871:9871 -p 9872:9872 -p 9873:9873 -p 9874:9874 --shm-size="16G" -d breakstring/gpt-sovits:dev-20240123.03 ``` ## Dataset Format The TTS annotation .list file format: ``` vocal_path|speaker_name|language|text ``` Language dictionary: - 'zh': Chinese - 'ja': Japanese - 'en': English Example: ``` D:\GPT-SoVITS\xxx/xxx.wav|xxx|en|I like playing Genshin. ``` ## Todo List - [ ] **High Priority:** - [ ] Localization in Japanese and English. - [ ] User guide. - [ ] Japanese and English dataset fine tune training. - [ ] **Features:** - [ ] Zero-shot voice conversion (5s) / few-shot voice conversion (1min). - [ ] TTS speaking speed control. - [ ] Enhanced TTS emotion control. - [ ] Experiment with changing SoVITS token inputs to probability distribution of vocabs. - [ ] Improve English and Japanese text frontend. - [ ] Develop tiny and larger-sized TTS models. - [ ] Colab scripts. - [ ] Try expand training dataset (2k hours -> 10k hours). - [ ] better sovits base model (enhanced audio quality) - [ ] model mix ## Credits Special thanks to the following projects and contributors: - [ar-vits](https://github.com/innnky/ar-vits) - [SoundStorm](https://github.com/yangdongchao/SoundStorm/tree/master/soundstorm/s1/AR) - [vits](https://github.com/jaywalnut310/vits) - [TransferTTS](https://github.com/hcy71o/TransferTTS/blob/master/models.py#L556) - [Chinese Speech Pretrain](https://github.com/TencentGameMate/chinese_speech_pretrain) - [contentvec](https://github.com/auspicious3000/contentvec/) - [hifi-gan](https://github.com/jik876/hifi-gan) - [Chinese-Roberta-WWM-Ext-Large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) - [fish-speech](https://github.com/fishaudio/fish-speech/blob/main/tools/llama/generate.py#L41) - [ultimatevocalremovergui](https://github.com/Anjok07/ultimatevocalremovergui) - [audio-slicer](https://github.com/openvpi/audio-slicer) - [SubFix](https://github.com/cronrpc/SubFix) - [FFmpeg](https://github.com/FFmpeg/FFmpeg) - [gradio](https://github.com/gradio-app/gradio) ## Thanks to all contributors for their efforts