Spaces:
Running
on
Zero
Running
on
Zero
| from __future__ import annotations | |
| import os | |
| import gc | |
| from tqdm import tqdm | |
| import wandb | |
| import torch | |
| from torch.optim import AdamW | |
| from torch.utils.data import DataLoader, Dataset, SequentialSampler | |
| from torch.optim.lr_scheduler import LinearLR, SequentialLR | |
| from einops import rearrange | |
| from accelerate import Accelerator | |
| from accelerate.utils import DistributedDataParallelKwargs | |
| from ema_pytorch import EMA | |
| from model import CFM | |
| from model.utils import exists, default | |
| from model.dataset import DynamicBatchSampler, collate_fn | |
| # trainer | |
| class Trainer: | |
| def __init__( | |
| self, | |
| model: CFM, | |
| epochs, | |
| learning_rate, | |
| num_warmup_updates = 20000, | |
| save_per_updates = 1000, | |
| checkpoint_path = None, | |
| batch_size = 32, | |
| batch_size_type: str = "sample", | |
| max_samples = 32, | |
| grad_accumulation_steps = 1, | |
| max_grad_norm = 1.0, | |
| noise_scheduler: str | None = None, | |
| duration_predictor: torch.nn.Module | None = None, | |
| wandb_project = "test_e2-tts", | |
| wandb_run_name = "test_run", | |
| wandb_resume_id: str = None, | |
| last_per_steps = None, | |
| accelerate_kwargs: dict = dict(), | |
| ema_kwargs: dict = dict() | |
| ): | |
| ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters = True) | |
| self.accelerator = Accelerator( | |
| log_with = "wandb", | |
| kwargs_handlers = [ddp_kwargs], | |
| gradient_accumulation_steps = grad_accumulation_steps, | |
| **accelerate_kwargs | |
| ) | |
| if exists(wandb_resume_id): | |
| init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name, 'id': wandb_resume_id}} | |
| else: | |
| init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name}} | |
| self.accelerator.init_trackers( | |
| project_name = wandb_project, | |
| init_kwargs=init_kwargs, | |
| config={"epochs": epochs, | |
| "learning_rate": learning_rate, | |
| "num_warmup_updates": num_warmup_updates, | |
| "batch_size": batch_size, | |
| "batch_size_type": batch_size_type, | |
| "max_samples": max_samples, | |
| "grad_accumulation_steps": grad_accumulation_steps, | |
| "max_grad_norm": max_grad_norm, | |
| "gpus": self.accelerator.num_processes, | |
| "noise_scheduler": noise_scheduler} | |
| ) | |
| self.model = model | |
| if self.is_main: | |
| self.ema_model = EMA( | |
| model, | |
| include_online_model = False, | |
| **ema_kwargs | |
| ) | |
| self.ema_model.to(self.accelerator.device) | |
| self.epochs = epochs | |
| self.num_warmup_updates = num_warmup_updates | |
| self.save_per_updates = save_per_updates | |
| self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps) | |
| self.checkpoint_path = default(checkpoint_path, 'ckpts/test_e2-tts') | |
| self.batch_size = batch_size | |
| self.batch_size_type = batch_size_type | |
| self.max_samples = max_samples | |
| self.grad_accumulation_steps = grad_accumulation_steps | |
| self.max_grad_norm = max_grad_norm | |
| self.noise_scheduler = noise_scheduler | |
| self.duration_predictor = duration_predictor | |
| self.optimizer = AdamW(model.parameters(), lr=learning_rate) | |
| self.model, self.optimizer = self.accelerator.prepare( | |
| self.model, self.optimizer | |
| ) | |
| def is_main(self): | |
| return self.accelerator.is_main_process | |
| def save_checkpoint(self, step, last=False): | |
| self.accelerator.wait_for_everyone() | |
| if self.is_main: | |
| checkpoint = dict( | |
| model_state_dict = self.accelerator.unwrap_model(self.model).state_dict(), | |
| optimizer_state_dict = self.accelerator.unwrap_model(self.optimizer).state_dict(), | |
| ema_model_state_dict = self.ema_model.state_dict(), | |
| scheduler_state_dict = self.scheduler.state_dict(), | |
| step = step | |
| ) | |
| if not os.path.exists(self.checkpoint_path): | |
| os.makedirs(self.checkpoint_path) | |
| if last == True: | |
| self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt") | |
| print(f"Saved last checkpoint at step {step}") | |
| else: | |
| self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt") | |
| def load_checkpoint(self): | |
| if not exists(self.checkpoint_path) or not os.path.exists(self.checkpoint_path) or not os.listdir(self.checkpoint_path): | |
| return 0 | |
| self.accelerator.wait_for_everyone() | |
| if "model_last.pt" in os.listdir(self.checkpoint_path): | |
| latest_checkpoint = "model_last.pt" | |
| else: | |
| latest_checkpoint = sorted([f for f in os.listdir(self.checkpoint_path) if f.endswith('.pt')], key=lambda x: int(''.join(filter(str.isdigit, x))))[-1] | |
| # checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ | |
| checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location="cpu") | |
| if self.is_main: | |
| self.ema_model.load_state_dict(checkpoint['ema_model_state_dict']) | |
| if 'step' in checkpoint: | |
| self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict']) | |
| self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint['optimizer_state_dict']) | |
| if self.scheduler: | |
| self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) | |
| step = checkpoint['step'] | |
| else: | |
| checkpoint['model_state_dict'] = {k.replace("ema_model.", ""): v for k, v in checkpoint['ema_model_state_dict'].items() if k not in ["initted", "step"]} | |
| self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict']) | |
| step = 0 | |
| del checkpoint; gc.collect() | |
| return step | |
| def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None): | |
| if exists(resumable_with_seed): | |
| generator = torch.Generator() | |
| generator.manual_seed(resumable_with_seed) | |
| else: | |
| generator = None | |
| if self.batch_size_type == "sample": | |
| train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True, | |
| batch_size=self.batch_size, shuffle=True, generator=generator) | |
| elif self.batch_size_type == "frame": | |
| self.accelerator.even_batches = False | |
| sampler = SequentialSampler(train_dataset) | |
| batch_sampler = DynamicBatchSampler(sampler, self.batch_size, max_samples=self.max_samples, random_seed=resumable_with_seed, drop_last=False) | |
| train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True, | |
| batch_sampler=batch_sampler) | |
| else: | |
| raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}") | |
| # accelerator.prepare() dispatches batches to devices; | |
| # which means the length of dataloader calculated before, should consider the number of devices | |
| warmup_steps = self.num_warmup_updates * self.accelerator.num_processes # consider a fixed warmup steps while using accelerate multi-gpu ddp | |
| # otherwise by default with split_batches=False, warmup steps change with num_processes | |
| total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps | |
| decay_steps = total_steps - warmup_steps | |
| warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps) | |
| decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps) | |
| self.scheduler = SequentialLR(self.optimizer, | |
| schedulers=[warmup_scheduler, decay_scheduler], | |
| milestones=[warmup_steps]) | |
| train_dataloader, self.scheduler = self.accelerator.prepare(train_dataloader, self.scheduler) # actual steps = 1 gpu steps / gpus | |
| start_step = self.load_checkpoint() | |
| global_step = start_step | |
| if exists(resumable_with_seed): | |
| orig_epoch_step = len(train_dataloader) | |
| skipped_epoch = int(start_step // orig_epoch_step) | |
| skipped_batch = start_step % orig_epoch_step | |
| skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch) | |
| else: | |
| skipped_epoch = 0 | |
| for epoch in range(skipped_epoch, self.epochs): | |
| self.model.train() | |
| if exists(resumable_with_seed) and epoch == skipped_epoch: | |
| progress_bar = tqdm(skipped_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process, | |
| initial=skipped_batch, total=orig_epoch_step) | |
| else: | |
| progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process) | |
| for batch in progress_bar: | |
| with self.accelerator.accumulate(self.model): | |
| text_inputs = batch['text'] | |
| mel_spec = rearrange(batch['mel'], 'b d n -> b n d') | |
| mel_lengths = batch["mel_lengths"] | |
| # TODO. add duration predictor training | |
| if self.duration_predictor is not None and self.accelerator.is_local_main_process: | |
| dur_loss = self.duration_predictor(mel_spec, lens=batch.get('durations')) | |
| self.accelerator.log({"duration loss": dur_loss.item()}, step=global_step) | |
| loss, cond, pred = self.model(mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler) | |
| self.accelerator.backward(loss) | |
| if self.max_grad_norm > 0 and self.accelerator.sync_gradients: | |
| self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) | |
| self.optimizer.step() | |
| self.scheduler.step() | |
| self.optimizer.zero_grad() | |
| if self.is_main: | |
| self.ema_model.update() | |
| global_step += 1 | |
| if self.accelerator.is_local_main_process: | |
| self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step) | |
| progress_bar.set_postfix(step=str(global_step), loss=loss.item()) | |
| if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0: | |
| self.save_checkpoint(global_step) | |
| if global_step % self.last_per_steps == 0: | |
| self.save_checkpoint(global_step, last=True) | |
| self.accelerator.end_training() | |