Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,209 +1,6 @@
|
|
| 1 |
-
# ruff: noqa: E402
|
| 2 |
-
|
| 3 |
-
import os
|
| 4 |
-
import json
|
| 5 |
-
import tempfile
|
| 6 |
-
from functools import lru_cache
|
| 7 |
-
from importlib.resources import files
|
| 8 |
-
|
| 9 |
import gradio as gr
|
| 10 |
-
import numpy as np
|
| 11 |
-
import soundfile as sf
|
| 12 |
-
import torch
|
| 13 |
-
import torchaudio
|
| 14 |
-
from cached_path import cached_path
|
| 15 |
-
import spaces
|
| 16 |
-
|
| 17 |
-
from f5_tts.infer.utils_infer import (
|
| 18 |
-
infer_process,
|
| 19 |
-
load_model,
|
| 20 |
-
load_vocoder,
|
| 21 |
-
preprocess_ref_audio_text,
|
| 22 |
-
remove_silence_for_generated_wav,
|
| 23 |
-
save_spectrogram,
|
| 24 |
-
tempfile_kwargs,
|
| 25 |
-
)
|
| 26 |
-
from f5_tts.model import DiT, UNetT
|
| 27 |
-
|
| 28 |
-
DEFAULT_TTS_MODEL = "F5-TTS_v1"
|
| 29 |
-
DEFAULT_TTS_MODEL_CFG = [
|
| 30 |
-
"hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors",
|
| 31 |
-
"hf://SWivid/F5-TTS/F5TTS_v1_Base/vocab.txt",
|
| 32 |
-
json.dumps(dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)),
|
| 33 |
-
]
|
| 34 |
-
|
| 35 |
-
# Load vocoder and models on module load
|
| 36 |
-
vocoder = load_vocoder()
|
| 37 |
-
model_cache = {}
|
| 38 |
-
model_cache[DEFAULT_TTS_MODEL] = load_model(
|
| 39 |
-
DiT,
|
| 40 |
-
json.loads(DEFAULT_TTS_MODEL_CFG[2]),
|
| 41 |
-
str(cached_path(DEFAULT_TTS_MODEL_CFG[0]))
|
| 42 |
-
)
|
| 43 |
-
model_cache["E2-TTS"] = load_model(
|
| 44 |
-
UNetT,
|
| 45 |
-
dict(dim=1024, depth=24, heads=16, ff_mult=4, text_mask_padding=False, pe_attn_head=1),
|
| 46 |
-
str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
| 47 |
-
)
|
| 48 |
-
custom_ema_model, pre_custom_path = None, ""
|
| 49 |
-
tts_model_choice = DEFAULT_TTS_MODEL
|
| 50 |
-
|
| 51 |
-
def gpu_decorator(fn):
|
| 52 |
-
return spaces.GPU(fn)
|
| 53 |
-
|
| 54 |
-
with gr.Blocks() as app:
|
| 55 |
-
gr.Markdown("# ZeroGPU TTS - F5/E2 Demo")
|
| 56 |
-
|
| 57 |
-
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
| 58 |
-
gen_text_input = gr.Textbox(label="Text to Generate", lines=4)
|
| 59 |
-
gen_text_file = gr.File(label="Upload Text File", file_types=[".txt"])
|
| 60 |
-
|
| 61 |
-
ref_text_input = gr.Textbox(label="Reference Text (optional)", lines=2)
|
| 62 |
-
ref_text_file = gr.File(label="Upload Reference Text", file_types=[".txt"])
|
| 63 |
-
|
| 64 |
-
remove_silence = gr.Checkbox(label="Remove Silences", value=False)
|
| 65 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 66 |
-
seed_input = gr.Number(value=0, precision=0, label="Seed")
|
| 67 |
-
|
| 68 |
-
cross_fade_duration_slider = gr.Slider(label="Cross-Fade Duration", minimum=0.0, maximum=1.0, value=0.15)
|
| 69 |
-
nfe_slider = gr.Slider(label="NFE Steps", minimum=4, maximum=64, value=32, step=2)
|
| 70 |
-
speed_slider = gr.Slider(label="Speed", minimum=0.3, maximum=2.0, value=1.0, step=0.1)
|
| 71 |
-
|
| 72 |
-
generate_btn = gr.Button("Generate")
|
| 73 |
-
audio_output = gr.Audio(label="Synthesized Audio")
|
| 74 |
-
spectrogram_output = gr.Image(label="Spectrogram")
|
| 75 |
-
|
| 76 |
-
@gpu_decorator
|
| 77 |
-
def infer(
|
| 78 |
-
ref_audio_orig,
|
| 79 |
-
ref_text,
|
| 80 |
-
gen_text,
|
| 81 |
-
model,
|
| 82 |
-
remove_silence,
|
| 83 |
-
seed,
|
| 84 |
-
cross_fade_duration=0.15,
|
| 85 |
-
nfe_step=32,
|
| 86 |
-
speed=1,
|
| 87 |
-
show_info=gr.Info,
|
| 88 |
-
):
|
| 89 |
-
if not ref_audio_orig:
|
| 90 |
-
gr.Warning("Please provide reference audio.")
|
| 91 |
-
return gr.update(), gr.update(), ref_text
|
| 92 |
-
|
| 93 |
-
if seed < 0 or seed > 2**31 - 1:
|
| 94 |
-
gr.Warning("Seed must in range 0 ~ 2147483647. Using random seed instead.")
|
| 95 |
-
seed = np.random.randint(0, 2**31 - 1)
|
| 96 |
-
torch.manual_seed(seed)
|
| 97 |
-
used_seed = seed
|
| 98 |
-
|
| 99 |
-
if not gen_text.strip():
|
| 100 |
-
gr.Warning("Please enter text to generate or upload a text file.")
|
| 101 |
-
return gr.update(), gr.update(), ref_text
|
| 102 |
-
|
| 103 |
-
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
|
| 104 |
-
|
| 105 |
-
if isinstance(model, tuple) and model[0] == "Custom":
|
| 106 |
-
global custom_ema_model, pre_custom_path
|
| 107 |
-
if pre_custom_path != model[1]:
|
| 108 |
-
show_info("Loading Custom TTS model...")
|
| 109 |
-
custom_ema_model = load_model(
|
| 110 |
-
DiT,
|
| 111 |
-
json.loads(model[3]),
|
| 112 |
-
str(cached_path(model[1])),
|
| 113 |
-
vocab_file=str(cached_path(model[2]))
|
| 114 |
-
)
|
| 115 |
-
pre_custom_path = model[1]
|
| 116 |
-
ema_model = custom_ema_model
|
| 117 |
-
else:
|
| 118 |
-
ema_model = model_cache.get(model, model_cache[DEFAULT_TTS_MODEL])
|
| 119 |
-
|
| 120 |
-
final_wave, final_sample_rate, combined_spectrogram = infer_process(
|
| 121 |
-
ref_audio,
|
| 122 |
-
ref_text,
|
| 123 |
-
gen_text,
|
| 124 |
-
ema_model,
|
| 125 |
-
vocoder,
|
| 126 |
-
cross_fade_duration=cross_fade_duration,
|
| 127 |
-
nfe_step=nfe_step,
|
| 128 |
-
speed=speed,
|
| 129 |
-
show_info=show_info,
|
| 130 |
-
progress=gr.Progress(),
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
if remove_silence:
|
| 134 |
-
with tempfile.NamedTemporaryFile(suffix=".wav", **tempfile_kwargs) as f:
|
| 135 |
-
temp_path = f.name
|
| 136 |
-
try:
|
| 137 |
-
sf.write(temp_path, final_wave, final_sample_rate)
|
| 138 |
-
remove_silence_for_generated_wav(f.name)
|
| 139 |
-
final_wave, _ = torchaudio.load(f.name)
|
| 140 |
-
finally:
|
| 141 |
-
os.unlink(temp_path)
|
| 142 |
-
final_wave = final_wave.squeeze().cpu().numpy()
|
| 143 |
-
|
| 144 |
-
with tempfile.NamedTemporaryFile(suffix=".png", **tempfile_kwargs) as tmp_spectrogram:
|
| 145 |
-
spectrogram_path = tmp_spectrogram.name
|
| 146 |
-
save_spectrogram(combined_spectrogram, spectrogram_path)
|
| 147 |
-
|
| 148 |
-
return (final_sample_rate, final_wave), spectrogram_path, ref_text, used_seed
|
| 149 |
-
|
| 150 |
-
@gpu_decorator
|
| 151 |
-
def load_text_from_file(file):
|
| 152 |
-
if file:
|
| 153 |
-
with open(file, "r", encoding="utf-8") as f:
|
| 154 |
-
text = f.read().strip()
|
| 155 |
-
else:
|
| 156 |
-
text = ""
|
| 157 |
-
return gr.update(value=text)
|
| 158 |
-
|
| 159 |
-
@gpu_decorator
|
| 160 |
-
def basic_tts(
|
| 161 |
-
ref_audio_input,
|
| 162 |
-
ref_text_input,
|
| 163 |
-
gen_text_input,
|
| 164 |
-
remove_silence,
|
| 165 |
-
randomize_seed,
|
| 166 |
-
seed_input,
|
| 167 |
-
cross_fade_duration_slider,
|
| 168 |
-
nfe_slider,
|
| 169 |
-
speed_slider,
|
| 170 |
-
):
|
| 171 |
-
if randomize_seed:
|
| 172 |
-
seed_input = np.random.randint(0, 2**31 - 1)
|
| 173 |
-
|
| 174 |
-
audio_out, spectrogram_path, ref_text_out, used_seed = infer(
|
| 175 |
-
ref_audio_input,
|
| 176 |
-
ref_text_input,
|
| 177 |
-
gen_text_input,
|
| 178 |
-
tts_model_choice,
|
| 179 |
-
remove_silence,
|
| 180 |
-
seed=seed_input,
|
| 181 |
-
cross_fade_duration=cross_fade_duration_slider,
|
| 182 |
-
nfe_step=nfe_slider,
|
| 183 |
-
speed=speed_slider,
|
| 184 |
-
)
|
| 185 |
-
return audio_out, spectrogram_path, ref_text_out, used_seed
|
| 186 |
-
|
| 187 |
-
gen_text_file.upload(load_text_from_file, inputs=[gen_text_file], outputs=[gen_text_input])
|
| 188 |
-
ref_text_file.upload(load_text_from_file, inputs=[ref_text_file], outputs=[ref_text_input])
|
| 189 |
-
|
| 190 |
-
ref_audio_input.clear(lambda: [None, None], None, [ref_text_input, ref_text_file])
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
inputs=[
|
| 195 |
-
ref_audio_input,
|
| 196 |
-
ref_text_input,
|
| 197 |
-
gen_text_input,
|
| 198 |
-
remove_silence,
|
| 199 |
-
randomize_seed,
|
| 200 |
-
seed_input,
|
| 201 |
-
cross_fade_duration_slider,
|
| 202 |
-
nfe_slider,
|
| 203 |
-
speed_slider,
|
| 204 |
-
],
|
| 205 |
-
outputs=[audio_output, spectrogram_output, ref_text_input, seed_input],
|
| 206 |
-
)
|
| 207 |
|
| 208 |
-
|
| 209 |
-
app.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
with gr.Blocks() as demo:
|
| 4 |
+
gr.Markdown("Hi everyone, due to breaking changes with ZeroGPU/Xet-storage spaces, this space is temporarily down. I hope to find a solution to this soon, so please stay tuned. Sorry for the inconvenience. In the mean time, please check out: https://huggingface.co/spaces/mrfakename/MegaTTS3-Voice-Cloning https://huggingface.co/spaces/styletts2/styletts2 if you need TTS spaces.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
demo.launch()
|
|
|