Spaces:
Runtime error
Runtime error
| # Open Source Model Licensed under the Apache License Version 2.0 | |
| # and Other Licenses of the Third-Party Components therein: | |
| # The below Model in this distribution may have been modified by THL A29 Limited | |
| # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
| # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
| # The below software and/or models in this distribution may have been | |
| # modified by THL A29 Limited ("Tencent Modifications"). | |
| # All Tencent Modifications are Copyright (C) THL A29 Limited. | |
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from einops import repeat, rearrange | |
| def array_to_tensor(np_array): | |
| image_pt = torch.tensor(np_array).float() | |
| image_pt = image_pt / 255 * 2 - 1 | |
| image_pt = rearrange(image_pt, "h w c -> c h w") | |
| image_pts = repeat(image_pt, "c h w -> b c h w", b=1) | |
| return image_pts | |
| class ImageProcessorV2: | |
| def __init__(self, size=512, border_ratio=None): | |
| self.size = size | |
| self.border_ratio = border_ratio | |
| def recenter(image, border_ratio: float = 0.2): | |
| """ recenter an image to leave some empty space at the image border. | |
| Args: | |
| image (ndarray): input image, float/uint8 [H, W, 3/4] | |
| mask (ndarray): alpha mask, bool [H, W] | |
| border_ratio (float, optional): border ratio, image will be resized to (1 - border_ratio). Defaults to 0.2. | |
| Returns: | |
| ndarray: output image, float/uint8 [H, W, 3/4] | |
| """ | |
| if image.shape[-1] == 4: | |
| mask = image[..., 3] | |
| else: | |
| mask = np.ones_like(image[..., 0:1]) * 255 | |
| image = np.concatenate([image, mask], axis=-1) | |
| mask = mask[..., 0] | |
| H, W, C = image.shape | |
| size = max(H, W) | |
| result = np.zeros((size, size, C), dtype=np.uint8) | |
| coords = np.nonzero(mask) | |
| x_min, x_max = coords[0].min(), coords[0].max() | |
| y_min, y_max = coords[1].min(), coords[1].max() | |
| h = x_max - x_min | |
| w = y_max - y_min | |
| if h == 0 or w == 0: | |
| raise ValueError('input image is empty') | |
| desired_size = int(size * (1 - border_ratio)) | |
| scale = desired_size / max(h, w) | |
| h2 = int(h * scale) | |
| w2 = int(w * scale) | |
| x2_min = (size - h2) // 2 | |
| x2_max = x2_min + h2 | |
| y2_min = (size - w2) // 2 | |
| y2_max = y2_min + w2 | |
| result[x2_min:x2_max, y2_min:y2_max] = cv2.resize(image[x_min:x_max, y_min:y_max], (w2, h2), | |
| interpolation=cv2.INTER_AREA) | |
| bg = np.ones((result.shape[0], result.shape[1], 3), dtype=np.uint8) * 255 | |
| # bg = np.zeros((result.shape[0], result.shape[1], 3), dtype=np.uint8) * 255 | |
| mask = result[..., 3:].astype(np.float32) / 255 | |
| result = result[..., :3] * mask + bg * (1 - mask) | |
| mask = mask * 255 | |
| result = result.clip(0, 255).astype(np.uint8) | |
| mask = mask.clip(0, 255).astype(np.uint8) | |
| return result, mask | |
| def __call__(self, image, border_ratio=0.15, to_tensor=True, return_mask=False, **kwargs): | |
| if self.border_ratio is not None: | |
| border_ratio = self.border_ratio | |
| print(f"Using border_ratio from init: {border_ratio}") | |
| if isinstance(image, str): | |
| image = cv2.imread(image, cv2.IMREAD_UNCHANGED) | |
| image, mask = self.recenter(image, border_ratio=border_ratio) | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| elif isinstance(image, Image.Image): | |
| image = np.asarray(image) | |
| image, mask = self.recenter(image, border_ratio=border_ratio) | |
| image = cv2.resize(image, (self.size, self.size), interpolation=cv2.INTER_CUBIC) | |
| mask = cv2.resize(mask, (self.size, self.size), interpolation=cv2.INTER_NEAREST) | |
| mask = mask[..., np.newaxis] | |
| if to_tensor: | |
| image = array_to_tensor(image) | |
| mask = array_to_tensor(mask) | |
| if return_mask: | |
| return image, mask | |
| return image | |
| IMAGE_PROCESSORS = { | |
| "v2": ImageProcessorV2, | |
| } | |
| DEFAULT_IMAGEPROCESSOR = 'v2' | |