Spaces:
Runtime error
Runtime error
Upload ./hy3dgen/texgen/custom_rasterizer/lib/custom_rasterizer_kernel/rasterizer_gpu.cu with huggingface_hub
Browse files
hy3dgen/texgen/custom_rasterizer/lib/custom_rasterizer_kernel/rasterizer_gpu.cu
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "rasterizer.h"
|
| 2 |
+
|
| 3 |
+
__device__ void rasterizeTriangleGPU(int idx, float* vt0, float* vt1, float* vt2, int width, int height, INT64* zbuffer, float* d, float occlusion_truncation) {
|
| 4 |
+
float x_min = std::min(vt0[0], std::min(vt1[0],vt2[0]));
|
| 5 |
+
float x_max = std::max(vt0[0], std::max(vt1[0],vt2[0]));
|
| 6 |
+
float y_min = std::min(vt0[1], std::min(vt1[1],vt2[1]));
|
| 7 |
+
float y_max = std::max(vt0[1], std::max(vt1[1],vt2[1]));
|
| 8 |
+
|
| 9 |
+
for (int px = x_min; px < x_max + 1; ++px) {
|
| 10 |
+
if (px < 0 || px >= width)
|
| 11 |
+
continue;
|
| 12 |
+
for (int py = y_min; py < y_max + 1; ++py) {
|
| 13 |
+
if (py < 0 || py >= height)
|
| 14 |
+
continue;
|
| 15 |
+
float vt[2] = {px + 0.5f, py + 0.5f};
|
| 16 |
+
float baryCentricCoordinate[3];
|
| 17 |
+
calculateBarycentricCoordinate(vt0, vt1, vt2, vt, baryCentricCoordinate);
|
| 18 |
+
if (isBarycentricCoordInBounds(baryCentricCoordinate)) {
|
| 19 |
+
int pixel = py * width + px;
|
| 20 |
+
if (zbuffer == 0) {
|
| 21 |
+
atomicExch(&zbuffer[pixel], (INT64)(idx + 1));
|
| 22 |
+
continue;
|
| 23 |
+
}
|
| 24 |
+
float depth = baryCentricCoordinate[0] * vt0[2] + baryCentricCoordinate[1] * vt1[2] + baryCentricCoordinate[2] * vt2[2];
|
| 25 |
+
float depth_thres = 0;
|
| 26 |
+
if (d) {
|
| 27 |
+
depth_thres = d[pixel] * 0.49999f + 0.5f + occlusion_truncation;
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
int z_quantize = depth * (2<<17);
|
| 31 |
+
INT64 token = (INT64)z_quantize * MAXINT + (INT64)(idx + 1);
|
| 32 |
+
if (depth < depth_thres)
|
| 33 |
+
continue;
|
| 34 |
+
atomicMin(&zbuffer[pixel], token);
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
}
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
__global__ void barycentricFromImgcoordGPU(float* V, int* F, int* findices, INT64* zbuffer, int width, int height, int num_vertices, int num_faces,
|
| 41 |
+
float* barycentric_map)
|
| 42 |
+
{
|
| 43 |
+
int pix = blockIdx.x * blockDim.x + threadIdx.x;
|
| 44 |
+
if (pix >= width * height)
|
| 45 |
+
return;
|
| 46 |
+
INT64 f = zbuffer[pix] % MAXINT;
|
| 47 |
+
if (f == (MAXINT-1)) {
|
| 48 |
+
findices[pix] = 0;
|
| 49 |
+
barycentric_map[pix * 3] = 0;
|
| 50 |
+
barycentric_map[pix * 3 + 1] = 0;
|
| 51 |
+
barycentric_map[pix * 3 + 2] = 0;
|
| 52 |
+
return;
|
| 53 |
+
}
|
| 54 |
+
findices[pix] = f;
|
| 55 |
+
f -= 1;
|
| 56 |
+
float barycentric[3] = {0, 0, 0};
|
| 57 |
+
if (f >= 0) {
|
| 58 |
+
float vt[2] = {float(pix % width) + 0.5f, float(pix / width) + 0.5f};
|
| 59 |
+
float* vt0_ptr = V + (F[f * 3] * 4);
|
| 60 |
+
float* vt1_ptr = V + (F[f * 3 + 1] * 4);
|
| 61 |
+
float* vt2_ptr = V + (F[f * 3 + 2] * 4);
|
| 62 |
+
|
| 63 |
+
float vt0[2] = {(vt0_ptr[0] / vt0_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt0_ptr[1] / vt0_ptr[3]) * (height - 1) + 0.5f};
|
| 64 |
+
float vt1[2] = {(vt1_ptr[0] / vt1_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt1_ptr[1] / vt1_ptr[3]) * (height - 1) + 0.5f};
|
| 65 |
+
float vt2[2] = {(vt2_ptr[0] / vt2_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt2_ptr[1] / vt2_ptr[3]) * (height - 1) + 0.5f};
|
| 66 |
+
|
| 67 |
+
calculateBarycentricCoordinate(vt0, vt1, vt2, vt, barycentric);
|
| 68 |
+
|
| 69 |
+
barycentric[0] = barycentric[0] / vt0_ptr[3];
|
| 70 |
+
barycentric[1] = barycentric[1] / vt1_ptr[3];
|
| 71 |
+
barycentric[2] = barycentric[2] / vt2_ptr[3];
|
| 72 |
+
float w = 1.0f / (barycentric[0] + barycentric[1] + barycentric[2]);
|
| 73 |
+
barycentric[0] *= w;
|
| 74 |
+
barycentric[1] *= w;
|
| 75 |
+
barycentric[2] *= w;
|
| 76 |
+
|
| 77 |
+
}
|
| 78 |
+
barycentric_map[pix * 3] = barycentric[0];
|
| 79 |
+
barycentric_map[pix * 3 + 1] = barycentric[1];
|
| 80 |
+
barycentric_map[pix * 3 + 2] = barycentric[2];
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
__global__ void rasterizeImagecoordsKernelGPU(float* V, int* F, float* d, INT64* zbuffer, float occlusion_trunc, int width, int height, int num_vertices, int num_faces)
|
| 84 |
+
{
|
| 85 |
+
int f = blockIdx.x * blockDim.x + threadIdx.x;
|
| 86 |
+
if (f >= num_faces)
|
| 87 |
+
return;
|
| 88 |
+
|
| 89 |
+
float* vt0_ptr = V + (F[f * 3] * 4);
|
| 90 |
+
float* vt1_ptr = V + (F[f * 3 + 1] * 4);
|
| 91 |
+
float* vt2_ptr = V + (F[f * 3 + 2] * 4);
|
| 92 |
+
|
| 93 |
+
float vt0[3] = {(vt0_ptr[0] / vt0_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt0_ptr[1] / vt0_ptr[3]) * (height - 1) + 0.5f, vt0_ptr[2] / vt0_ptr[3] * 0.49999f + 0.5f};
|
| 94 |
+
float vt1[3] = {(vt1_ptr[0] / vt1_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt1_ptr[1] / vt1_ptr[3]) * (height - 1) + 0.5f, vt1_ptr[2] / vt1_ptr[3] * 0.49999f + 0.5f};
|
| 95 |
+
float vt2[3] = {(vt2_ptr[0] / vt2_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt2_ptr[1] / vt2_ptr[3]) * (height - 1) + 0.5f, vt2_ptr[2] / vt2_ptr[3] * 0.49999f + 0.5f};
|
| 96 |
+
|
| 97 |
+
rasterizeTriangleGPU(f, vt0, vt1, vt2, width, height, zbuffer, d, occlusion_trunc);
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
std::vector<torch::Tensor> rasterize_image_gpu(torch::Tensor V, torch::Tensor F, torch::Tensor D,
|
| 101 |
+
int width, int height, float occlusion_truncation, int use_depth_prior)
|
| 102 |
+
{
|
| 103 |
+
int device_id = V.get_device();
|
| 104 |
+
cudaSetDevice(device_id);
|
| 105 |
+
int num_faces = F.size(0);
|
| 106 |
+
int num_vertices = V.size(0);
|
| 107 |
+
auto options = torch::TensorOptions().dtype(torch::kInt32).device(torch::kCUDA, device_id).requires_grad(false);
|
| 108 |
+
auto INT64_options = torch::TensorOptions().dtype(torch::kInt64).device(torch::kCUDA, device_id).requires_grad(false);
|
| 109 |
+
auto findices = torch::zeros({height, width}, options);
|
| 110 |
+
INT64 maxint = (INT64)MAXINT * (INT64)MAXINT + (MAXINT - 1);
|
| 111 |
+
auto z_min = torch::ones({height, width}, INT64_options) * (long)maxint;
|
| 112 |
+
|
| 113 |
+
if (!use_depth_prior) {
|
| 114 |
+
rasterizeImagecoordsKernelGPU<<<(num_faces+255)/256,256,0,at::cuda::getCurrentCUDAStream()>>>(V.data_ptr<float>(), F.data_ptr<int>(), 0,
|
| 115 |
+
(INT64*)z_min.data_ptr<long>(), occlusion_truncation, width, height, num_vertices, num_faces);
|
| 116 |
+
} else {
|
| 117 |
+
rasterizeImagecoordsKernelGPU<<<(num_faces+255)/256,256,0,at::cuda::getCurrentCUDAStream()>>>(V.data_ptr<float>(), F.data_ptr<int>(), D.data_ptr<float>(),
|
| 118 |
+
(INT64*)z_min.data_ptr<long>(), occlusion_truncation, width, height, num_vertices, num_faces);
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
auto float_options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA, device_id).requires_grad(false);
|
| 122 |
+
auto barycentric = torch::zeros({height, width, 3}, float_options);
|
| 123 |
+
barycentricFromImgcoordGPU<<<(width * height + 255)/256, 256>>>(V.data_ptr<float>(), F.data_ptr<int>(),
|
| 124 |
+
findices.data_ptr<int>(), (INT64*)z_min.data_ptr<long>(), width, height, num_vertices, num_faces, barycentric.data_ptr<float>());
|
| 125 |
+
|
| 126 |
+
return {findices, barycentric};
|
| 127 |
+
}
|