Upload 2 files
Browse files- app.py +127 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import streamlit as st
|
3 |
+
from dotenv import load_dotenv, find_dotenv
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
import openai
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
# Load environment variables from the .env file
|
11 |
+
load_dotenv(find_dotenv())
|
12 |
+
|
13 |
+
# Configure Streamlit page settings
|
14 |
+
st.set_page_config(page_title="Nutrition Assistant", page_icon="🔮")
|
15 |
+
|
16 |
+
# Configure Sambanova API with an API key from environment variables
|
17 |
+
openai.api_key = os.getenv("SAMBANOVA_API_KEY")
|
18 |
+
openai.api_base = "https://api.sambanova.ai/v1"
|
19 |
+
|
20 |
+
# Define a function to encode an image to base64 format
|
21 |
+
def image_to_base64(image):
|
22 |
+
buffered = BytesIO()
|
23 |
+
image.save(buffered, format="PNG")
|
24 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
25 |
+
|
26 |
+
# Define a function to handle the response from the Sambanova Llama model
|
27 |
+
def get_llama_response(input, image):
|
28 |
+
# Convert image to base64 format
|
29 |
+
image_base64 = image_to_base64(image)
|
30 |
+
|
31 |
+
# Prepend the base64 data with the appropriate format
|
32 |
+
image_data_url = f"data:image/png;base64,{image_base64}"
|
33 |
+
|
34 |
+
try:
|
35 |
+
# Send input and image data to the model and get textual response
|
36 |
+
response = openai.ChatCompletion.create(
|
37 |
+
model="Llama-3.2-90B-Vision-Instruct",
|
38 |
+
messages=[{
|
39 |
+
"role": "user",
|
40 |
+
"content": [
|
41 |
+
{"type": "text", "text": input},
|
42 |
+
{"type": "image_url", "image_url": {"url": image_data_url}}
|
43 |
+
]
|
44 |
+
}],
|
45 |
+
temperature=0.1,
|
46 |
+
top_p=0.1
|
47 |
+
)
|
48 |
+
|
49 |
+
# Print the entire response to debug
|
50 |
+
print(response) # For debugging purposes, this will print to your server's log
|
51 |
+
|
52 |
+
# Check if the response contains 'choices'
|
53 |
+
if 'choices' in response:
|
54 |
+
return response['choices'][0]['message']['content']
|
55 |
+
else:
|
56 |
+
# Handle the case where 'choices' is missing
|
57 |
+
return f"Error: Response structure is missing 'choices'. Full response: {response}"
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
# Catch any exceptions (e.g., network issues, invalid API key, etc.)
|
61 |
+
return f"An error occurred: {str(e)}"
|
62 |
+
|
63 |
+
# Define a function to set up image uploading and handle the image data
|
64 |
+
def input_image_setup(uploaded_file):
|
65 |
+
if uploaded_file:
|
66 |
+
return Image.open(uploaded_file)
|
67 |
+
else:
|
68 |
+
raise FileNotFoundError("No image uploaded")
|
69 |
+
|
70 |
+
# Sidebar configuration for navigation and file upload
|
71 |
+
st.sidebar.title("Navigation")
|
72 |
+
st.sidebar.header("Upload Section")
|
73 |
+
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
74 |
+
|
75 |
+
# Display the main header of the application
|
76 |
+
st.header("Nutrition Assistant")
|
77 |
+
if uploaded_file:
|
78 |
+
image = Image.open(uploaded_file)
|
79 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
80 |
+
|
81 |
+
# Create a button for triggering the food analysis
|
82 |
+
submit = st.button("Analyze this Food")
|
83 |
+
|
84 |
+
# Set the prompt for the AI model
|
85 |
+
input_prompt = """
|
86 |
+
You are an expert nutritionist analyzing the food items in the image.
|
87 |
+
Start by determining if the image contains food items.
|
88 |
+
If the image does not contain any food items,
|
89 |
+
clearly state "No food items detected in the image."
|
90 |
+
and do not provide any calorie information.
|
91 |
+
If food items are detected,
|
92 |
+
start by naming the meal based on the image,
|
93 |
+
identify and list every ingredient you can find in the image,
|
94 |
+
and then estimate the total calories for each ingredient.
|
95 |
+
Summarize the total calories based on the identified ingredients.
|
96 |
+
Follow the format below:
|
97 |
+
|
98 |
+
If no food items are detected:
|
99 |
+
No food items detected in the image.
|
100 |
+
|
101 |
+
If food items are detected:
|
102 |
+
Meal Name: [Name of the meal]
|
103 |
+
|
104 |
+
1. Ingredient 1 - estimated calories
|
105 |
+
2. Ingredient 2 - estimated calories
|
106 |
+
----
|
107 |
+
Total estimated calories: X
|
108 |
+
|
109 |
+
Finally, mention whether the food is healthy or not,
|
110 |
+
and provide the percentage split of protein, carbs, and fats in the food item.
|
111 |
+
Also, mention the total fiber content in the food item and any other important details.
|
112 |
+
"""
|
113 |
+
|
114 |
+
# Action to take when the 'Analyze this Food' button is clicked
|
115 |
+
if submit:
|
116 |
+
if uploaded_file:
|
117 |
+
with st.spinner("Processing..."):
|
118 |
+
try:
|
119 |
+
image_data = input_image_setup(uploaded_file)
|
120 |
+
response = get_llama_response(input_prompt, image_data)
|
121 |
+
st.success("Analysis Complete!")
|
122 |
+
st.subheader("Food Analysis")
|
123 |
+
st.write(response)
|
124 |
+
except Exception as e:
|
125 |
+
st.error(f"Error: {str(e)}")
|
126 |
+
else:
|
127 |
+
st.warning("Please upload an image first.")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.19.0
|
2 |
+
python-dotenv==1.0.0
|
3 |
+
Pillow==8.4.0
|
4 |
+
openai==0.27.0
|