|
import gradio as gr |
|
from dotenv import load_dotenv |
|
from roboflow import Roboflow |
|
from PIL import Image |
|
import tempfile |
|
import os |
|
import requests |
|
import cv2 |
|
import numpy as np |
|
import subprocess |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
rf_api_key = os.getenv("ROBOFLOW_API_KEY") |
|
workspace = os.getenv("ROBOFLOW_WORKSPACE") |
|
project_name = os.getenv("ROBOFLOW_PROJECT") |
|
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION")) |
|
|
|
|
|
OWLV2_API_KEY = os.getenv("COUNTGD_API_KEY") |
|
OWLV2_PROMPTS = ["bottle", "tetra pak","cans", "carton drink"] |
|
|
|
|
|
rf = Roboflow(api_key=rf_api_key) |
|
project = rf.workspace(workspace).project(project_name) |
|
yolo_model = project.version(model_version).model |
|
|
|
|
|
|
|
def detect_combined(image): |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: |
|
image.save(temp_file, format="JPEG") |
|
temp_path = temp_file.name |
|
|
|
try: |
|
|
|
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json() |
|
|
|
|
|
nestle_class_count = {} |
|
nestle_boxes = [] |
|
for pred in yolo_pred['predictions']: |
|
class_name = pred['class'] |
|
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1 |
|
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height'])) |
|
|
|
total_nestle = sum(nestle_class_count.values()) |
|
|
|
|
|
|
|
headers = { |
|
"Authorization": "Basic " + OWLV2_API_KEY, |
|
} |
|
data = { |
|
"prompts": OWLV2_PROMPTS, |
|
"model": "owlv2", |
|
"confidence": 0.25 |
|
} |
|
with open(temp_path, "rb") as f: |
|
files = {"image": f} |
|
response = requests.post("https://api.landing.ai/v1/tools/text-to-object-detection", files=files, data=data, headers=headers) |
|
result = response.json() |
|
owlv2_objects = result['data'][0] if 'data' in result else [] |
|
|
|
competitor_class_count = {} |
|
competitor_boxes = [] |
|
for obj in owlv2_objects: |
|
if 'bounding_box' in obj: |
|
bbox = obj['bounding_box'] |
|
|
|
if not is_overlap(bbox, nestle_boxes): |
|
class_name = obj.get('label', 'unknown').strip().lower() |
|
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1 |
|
competitor_boxes.append({ |
|
"class": class_name, |
|
"box": bbox, |
|
"confidence": obj.get("score", 0) |
|
}) |
|
|
|
total_competitor = sum(competitor_class_count.values()) |
|
|
|
|
|
result_text = "Product Nestle\n\n" |
|
for class_name, count in nestle_class_count.items(): |
|
result_text += f"{class_name}: {count}\n" |
|
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n" |
|
if competitor_class_count: |
|
result_text += f"Total Unclassified Products: {total_competitor}\n" |
|
else: |
|
result_text += "No Unclassified Products detected\n" |
|
|
|
|
|
img = cv2.imread(temp_path) |
|
|
|
|
|
for pred in yolo_pred['predictions']: |
|
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height'] |
|
cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2) |
|
cv2.putText(img, pred['class'], (int(x - w/2), int(y - h/2 - 10)), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) |
|
|
|
|
|
for comp in competitor_boxes: |
|
x1, y1, x2, y2 = comp['box'] |
|
unclassified_classes = ["cans"] |
|
display_name = "unclassified" if any(cls in comp['class'].lower() for cls in unclassified_classes) else comp['class'] |
|
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2) |
|
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}", |
|
(int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) |
|
|
|
output_path = "/tmp/combined_output.jpg" |
|
cv2.imwrite(output_path, img) |
|
|
|
return output_path, result_text |
|
|
|
except Exception as e: |
|
return temp_path, f"Error: {str(e)}" |
|
finally: |
|
os.remove(temp_path) |
|
|
|
def is_overlap(box1, boxes2, threshold=0.3): |
|
""" |
|
Fungsi untuk mendeteksi overlap bounding box. |
|
Parameter: |
|
- box1: Bounding box pertama dengan format (x1, y1, x2, y2) |
|
- boxes2: List bounding box lainnya dengan format (x_center, y_center, width, height) |
|
""" |
|
x1_min, y1_min, x1_max, y1_max = box1 |
|
for b2 in boxes2: |
|
x2, y2, w2, h2 = b2 |
|
x2_min = x2 - w2/2 |
|
x2_max = x2 + w2/2 |
|
y2_min = y2 - h2/2 |
|
y2_max = y2 + h2/2 |
|
|
|
dx = min(x1_max, x2_max) - max(x1_min, x2_min) |
|
dy = min(y1_max, y2_max) - max(y1_min, y2_min) |
|
if (dx >= 0) and (dy >= 0): |
|
area_overlap = dx * dy |
|
area_box1 = (x1_max - x1_min) * (y1_max - y1_min) |
|
if area_overlap / area_box1 > threshold: |
|
return True |
|
return False |
|
|
|
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface: |
|
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(type="pil", label="Input Image") |
|
with gr.Column(): |
|
output_image = gr.Image(label="Detect Object") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Counting Object") |
|
|
|
|
|
detect_button = gr.Button("Detect") |
|
|
|
|
|
detect_button.click( |
|
fn=detect_combined, |
|
inputs=input_image, |
|
outputs=[output_image, output_text] |
|
) |
|
|
|
iface.launch() |